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Abstract—Answer Set Programming (ASP) is a powerful mod-
eling formalism for combinatorial problems. However, writing
ASP models can be hard. We propose a novel method, called
Sketched Answer Set Programming (SkASP), aimed at facilitat-
ing this. In SkASP, the user writes partial ASP programs, in
which uncertain parts are left open and marked with question
marks. In addition, the user provides a number of positive and
negative examples of the desired program behaviour. SkASP then
synthesises a complete ASP program. This is realized by rewriting
the SkASP program into another ASP program, which can then
be solved by traditional ASP solvers. We evaluate our approach
on 21 well known puzzles and combinatorial problems inspired
by Karps 21 NP-complete problems and on publicly available
ASP encodings.

Index Terms—inductive logic programming, constraint learn-
ing, answer set programming, sketching, constraint program-
ming, relational learning

I. INTRODUCTION

Many AI problems can be formulated as constraint satisfac-
tion problems that can be solved by state-of-the-art constraint
programming (CP) [34] or answer set programming (ASP)
techniques [27]. Although these frameworks provide declara-
tive representations that are in principle easy to understand,
writing models in such languages is not always easy.

On the other hand, for traditional programming languages,
there has been significant attention for techniques that are
able to complete [25] or learn a program from examples [17].
The idea of program sketching is to start from a sketched
program and some examples to complete the program. A
sketched program is essentially a program where some of
the tests and constructs are left open because the programmer
might not know what exact instruction to use. For instance,
when comparing two variables X and Y , the programmer
might not know whether to use X < Y or X ≤ Y or X > Y
and write X ?= Y instead (while also specifying the domain
of ?=, that is, which concrete operators are allowed). By
providing a few examples of desired program behaviour and
a sketch, the target program can then be automatically found.
Sketching is thus a form of ”lazy” programming as one does
not have to fill out all details in the programs; it can also
be considered as program synthesis although there are strong
syntactic restrictions on the programs that can be derived; and
it can be useful for repairing programs once a bug in a program
has been detected. Sketching has been used successfully in a
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number of applications [24], [35], [19] to synthesise imperative
programs. It is these capabilities that this paper brings to the
field of ASP.

As a motivating example assume one needs to solve the
Peacefully Coexisting Armies of Queens, a version of the n-
queens problem with black and white queens, where queens of
the same color do not attack each other. One might come up
with the following sketched program (where Rw (Cb) stand for
the variable representing the row (column) of a white (black)
queen):

Sketch 1: Peacefully Coexisting Armies of Queens
1 :- queen(w,Rw,Cw), queen(b,Rb,Cb), Rw ?= Rb.
2 :- queen(w,Rw,Cw), queen(b,Rb,Cb), Cw ?= Cb.
3 :- queen(w,Rw,Cw), queen(b,Rb,Cb), Rw ?+ Rb ?= Cw ?+ Cb.

This program might have been inspired by a solution written in
the constraint programming language Essence available from
the CSP library [32]. Intuitively, the sketched ASP specifies
constraints on the relationship between two queens on the rows
(first rule), columns (second rule) and diagonals (third rule),
but it expresses also uncertainty about the particular operators
that should be used between the variables through the built-
in alternatives for ?= (which can be instantiated to one of
=, 6=,<,>,≤,≥) and for ?+ (for arithmetic operations). When
providing an adequate set of examples to the ASP, the SkASP
solver will then produce the correct program.

The key contributions of this paper are the following: 1)
we adapt the notion of sketching for use with Answer Set
Programming; 2) we develop an approach (using ASP itself)
for computing solutions to a sketched Answer Set Program;
3) we contribute some simple complexity results on sketched
ASP; and 4) we investigate the effectiveness and limitations
of sketched ASP on a dataset of 21 typical ASP programs.

II. ASP AND SKETCHING

Answer Set Programming (ASP) is a form of declara-
tive programming based on the stable model semantics [15]
of logic programming [27]. We follow the standard syn-
tax and semantics of ASP as described in the Potassco
project [13]. A program is a set of rules of the form a←
a1, . . .ak,not ak+1, . . . ,not an A positive or negative atom is
called a literal, a is a positive propositional literal, called
a head, and for i between 1 and k, ai is a positive propo-
sitional atom; and for i between k + 1 and n, not ai is a
negative propositional literal. The body is the conjunction
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1 [SKETCH]
2 reached(Y) :- cycle(a,Y).
3 reached(Y) :- cycle(X,Y), reached(X).
4 :- ?p(Y), ?not ?q(Y).
5 [EXAMPLES]
6 positive: cycle(a,b). cycle(b,c). ...
7 negative: cycle(a,b). cycle(b,a).
8 [SKETCHEDVAR]
9 ?p/1 : node, reached

10 ?q/1 : node, reached
11 [FACTS]
12 node(a). node(b). node(c).
13 [EXAMPLES]
14 positive: cycle(a,b). cycle(b,c)...
15 negative: cycle(a,b). cycle(b,a).

(a) Hamiltonian Cycle (ASP due to [13])

1 %%%%% EXAMPLES AND DECISIONS %%%%%%
2 positive(0). cycle(0,a,b). cycle(0,b,c). cycle(0,c,a).
3 reified_q_choice(c_node). reified_q_choice(c_reached).
4 1 {decision_q(X) : reified_q_choice(X)} 1.
5 1 {decision_not(pos) ; decision_not(neg)} 1.
6 %%%%% INFERENCE RULES %%%%%%
7 reified_q(E,c_node,X0) :- node(X0),examples(E).
8 reified_q(E,c_reached,X0) :- reached(E,X0).
9 reached(E,Y) :- cycle(E,a,Y), examples(E).

10 reached(E,Y) :- cycle(E,X,Y), reached(E,X), examples(E).
11 reified_not(E,pos,Q,Y) :- reified_q(E,Q,Y).
12 reified_not(E,neg,Q,Y) :- not reified_q(E,Q,Y), dom1(Y),dom2(Q),examples(E).
13 %%%%% POSITIVE/NEGATIVE SKETCHED RULES %%%%%%
14 :- reified_p(E,P,Y), reified_not(E,Not_D,Q,Y), decision_p(P), decision_q(Q),
15 decision_not(Not_D), positive(E).
16 neg_sat(E) :- reified_p(E,P,Y), reified_not(E,Not_D,Q,Y), decision_p(P),
17 decision_q(Q), decision_not(Not_D), negative(E).
18 :- not neg_sat(E), negative(E).

(b) ASP core of rewritten Fig. 1a (only predicate q shown, domains, facts, etc omitted)
1 [SKETCH] %constraints on squares, rows, columns
2 :- cell(X,Y,N), cell(X,Z,M), Y ?= Z, N ?= M.
3 :- cell(X,Y,N), cell(Z,Y,M), X ?= Z, N ?= M.
4 insquare(S,N) :- cell(X,Y,N), square(S,X,Y).
5 :- num(N), squares(S), ?not insquare(S,N).

(c) Sudoku (core). ASP code from [18]

[SKETCH] %constraints on rows and columns
:- cell(X,Y,N), cell(X,Z,M), Y ?= Z, N ?= M.
:- cell(X,Y,N), cell(Z,Y,N), X ?= X, N ?= M.
[EXAMPLES]
positive: cell(1,1,a). cell(1,2,b). cell(1,3,c)...

(d) Latin Square (based on Sudoku; core)

Fig. 1: Collection of sketches and an example of rewriting used in the paper

of the literals. A rule of the form a ← . is called a fact
and abbreviated as a. and a rule without a head specified is
called an integrity constraint (a is ⊥ in this case). Conditional
literals, written as a : l1, . . . , ln, and cardinality constraints,
written as cmin{l1, . . . , ln}cmax, are used (l1, . . . , ln are literals
here, and cmin,cmax are non-negative integers). A conditional
atom holds if its condition is satisfied and a cardinality
constraint is satisfied if between cmin and cmax literals hold in
it. Furthermore, as ASP is based on logic programming and
also allows for variables, denoted in upper-case, the semantics
of a rule or expression with a variable is the same as that of its
set of ground instances. We restrict the ASP language to the
NP-complete subset specified here. For more details on ASP,
see [13], [10].

We extend the syntax of ASP with sketched language
constructions. Instead of allowing only atoms of the form
p(t1, ..., tn), where p/n is a predicate and the ti are terms
(variables or constants), we now allow to use sketched atoms of
the form ?q(t1, ..., tn) where ?q is a sketched predicate variable
with an associated domain dq containing actual predicates of
arity n. The meaning of the sketched atom ?q(t1, ..., tn) is that
it can be replaced by any real atom p(t1, ..., tn) provided that
p/n ∈ dq. It reflects the fact that the programmer does not
know which p/n from dq should be used. Sketched atoms can
be used in the same places as any other atom.

We also provide some syntactic sugar for some special
cases and variants, in particular, we use a sketched inequality
X ?= Y , a sketched arithmetic operator X ?+ Y (strictly
speaking, this is not a sketched predicate but an operator, but
we only make this distinction where needed), and sketched
negation ?not p(X) (which is, in fact, a sketched operator of
the form ”?not ¡atom¿“; it always has as input a positive atom
and its domain is {atom, -atom}, where -atom is a syntactically
new atom, which represents the negation of the original atom).

The domain of X ?= Y is the set {=, 6=,<,>,≥,≤,>}, where
> is the atom that is always satisfied by its arguments, the
domain of X ?+ Y is the set {+,−,×,÷,dist} where dist(a,b)
is defined as |a− b|, and the domain of ?not is { /0,not}. An
example of sketched inequality can be seen in Line 2 of Figure
1c, examples of sketched predicates and negation in Line 4 of
Figure 1a and sketched arithmetic in Line 3 of Sketch 1.

A sketched variable is a sketched predicate, a sketched nega-
tion, a sketched inequality or a sketched arithmetic operator.
The set of all sketched variables is referred to as S. Predicate
p directly positively (negatively) depends on q iff q occurs
positively (negatively) in the body of a rule with p in the head
or p is a sketched predicate and q is in its domain; p depends
(negatively) on q iff (p,q) is in the transitive closure of the
direct dependency relation. A sketch is stratified iff there is
no negative cyclic dependency. We restrict programs to the
stratified case. An example is a set of ground atoms.

A preference is a function from Θ (possible substitutions)
to Z. A substitution θ is preferred over θ ′ given preferences
f iff for all si 7→ di ∈ θ and si 7→ d′i ∈ θ ′ it holds that f (si 7→
di) ≥ f (si 7→ d′i) and at least one inequality is strict. First,
when f (θ) is constant, all substitutions are equal and there
are no preferences (all equally preferred). Because specifying
preferences might impose an extra burden on the user, we also
provide default preferences for the built-in sketched variables
(like inequality, etc), cf. the experimental section.

The Language of Sketched Answer Set Programming
(SkASP) supports some of the language features of ASP. The
language of SkASP has the following characteristics:
• it allows for a set of rules of the form a ←

b1, . . . ,bn,not c1, . . . ,not cm.;
• predicates (such as a predicate p/n or comparison ≤) and

operators (such as arithmethic +,−,×, etc) in these rules
can be sketched;



• aggregates can be used in the body of the rules as well
(stratified; see Extension Section IV);

• the SkASP program has to be stratified;
• the choice rules are not allowed.
The key idea behind our method is that the SkASP program

is rewritten into a normal ASP program (with choice rules,
etc.) in order to obtain a solution through the use of an ASP
solver. As we will see in Theorem 2: the language of SkASP
stays within the complexity bounds of normal ASP, which
makes the rewriting possible (SkASP7→ASP).

Let us now formally introduce the problem of SkASP.

Definition 1 (The Problem of Sketched Answer Set Program-
ming). Given a sketched answer set program P with sketched
variables S of domain D and preferences f , and positive and
negative sets of examples E+ and E−, the Sketched Answer
Set Problem is to find all substitutions θ : S 7→D preferred by
f such that Pθ ∪{e} has an answer for all e in E+ and for no
e in E−. The decision version of SkASP asks whether there
exists such a substitution θ .

III. REWRITING SCHEMA

One might consider a baseline approach that would enumer-
ate all instances of the ASP sketch, and in this way produce
one ASP program for each assignment that could then be tested
on the examples. This naive grounding and testing approach
is, however, infeasible: the number of possible combinations
grows exponentially with the number of sketched variables.
E.g., for the sketch of the Radio Frequency Problem [7] there
are around 105 possible assignments to the sketched variables.
Multiplied by the number of examples, around a million ASP
programs would have to be generated and tested. This is
infeasible in practice.

The key idea behind our approach is to rewrite a SkASP
problem (P,S,D, f ,E+,E−) into an ASP program such that the
original sketching program has a solution iff the ASP program
has an answer set. This is achieved by 1) inserting decision
variables into the sketched predicates, and 2) introducing
example identifiers in the predicates.

The original SkASP problem is then turned into an ASP
problem on these decision variables and solutions to the ASP
problem allow to reconstruct the SkASP substitution.

The rewriting procedure has four major steps: example
expansion, substitution generation, predicate reification and
constraint splitting. (Here we follow the notation on meta-
ASP already used in the literature [21], [11].)

Example Identifiers To allow the use of multiple examples
in the program, every relevant predicate is extended with
an extra argument that represents the example identifier. The
following steps are used to accommodate this in the program,
denoted as metaE(P,S,E+,E−).

1) Let SP be the set of all predicates that depend on a
predicate occurring in one of the examples.

2) Replace each literal p(t1, ..., tn) for a predicate p ∈ SP
in the program P by the literal p(E, t1, ..., tn), where E
is a variable not occurring in the program.

3) Add the guard examples(E) (the index of all pos./neg.
examples) to the body of each rule in P.

4) For each atom p(t1, ..., tn) in the i-th example, add the
fact p(i, t1, ..., tn) to P.

5) For each positive example i, add the fact positive(i) to
P, and for each negative one, the fact negative(i).

E.g., the rule in Line 2 of Figure 1a becomes Line 9 of Figure
1b, and the example in Line 14 is rewritten as in Line 2.

Substitution Generation We now introduce the decision
variables, referred as metaD(S,D):

1) For each sketched variable si with domain Di

1 {decision si(X) : di(X)} 1.

2) For each value v in Di, add the fact di(v).
This constraint ensures that each answer set has exactly one
value from the domain assigned to each sketched variable. This
results in a one-to-one mapping between decision atoms and
sketching substitution θ . An example can be seen in Lines 4
and 5 of Figure 1b.

Predicate Reification We now introduce the reified predi-
cates, referred as metaR(S,D)

1) Replace each occurrence of a sketched atom s(t1, ..., tn)
in a rule of P with the atom reified s(D, t1, . . . , tn), and
add decision s(D) to the body of the rule.

2) For each sketched variable s and value di in its domain,
add the following rule to P:

reified s(di,X1, . . . ,Xn)← di(X1, . . . ,Xn).

where the first argument is the decision variable for s.
Thus, semantically reified s(di,X1, . . . ,Xn) is equivalent to
di(X1, . . . ,Xn) and decision s(di) indicates that the predicate
di has been selected for the sketched variable s. Notice that
we focused here on the general case of a sketched predicate
?p(. . .). It is straightforward to adapt this for the sketched
inequality, negation and arithmetic. Examples of reification
can be seen in Lines 7 of Figure 1b for the sketched ?q of the
sketch in Figure 1a and in Lines 11, 12 for reified negation.

Integrity Constraint Splitting (referred as metaC(P))
1) Replace each integrity constraint ← body by:

← body,positive(E)

negsat(E)← body,negative(E)

2) And add the rule to the program:

← negative(E),not negsat(E).

This will ensure that all positives and none of the negatives
have a solution. For example, the constraint in Line 4 of Figure
1a is rewritten into a positive constraint in Lines 14,15 and
into a negative in Lines 16, 16, 17.

Another important result is that the preferences do not
affect the decision complexity. Proofs can be found in the
supplementary materials.



Theorem 1 (Sound and Complete Sketched Rewriting). A
sketched ASP program (P,S,D, f ,E+,E−) has a satisfying
substitution θ iff the meta program
T = metaE(P,S,E+,E−)∪metaD(S,D)∪metaR(S,D)∪metaC(P)
has an answer set.

Interestingly, the sketched ASP problem is in the same
complexity class as the original ASP program.

Theorem 2 (Complexity of Sketched Answer Set Problem).
The decision version of propositional SkASP is in NP.

Proof. Follows from the encoding of SkASP into a fragment
of ASP which is in NP.

Dealing with preferences Preferences are, as we shall show
in our experiments, useful to restrict the number of solutions.
We have implemented preferences using a post-processing
approach (which will also allow to apply the schema to other
formalisms such as CP or IDP [8]). We first generate the set of
all solutions O (without taking into account the preferences),
and then post-process O. Basically, we filter out from O
any solution that is not preferred (using tests on pairs (o,o′)
from O×O). The preferences introduce a partial order on
the solutions. For example, assume ?p (?q) can take value
p1 (q1) with preference of 1 and p2 (q2) with 2. If (p1,q2)
and (p2,q1) are the only solutions, they are kept because they
are incomparable – (1,2) is not dominated by (2,1) (and vice
versa). If (p1,q1) is also solution, (p1,q2) and (p2,q1) are
removed because they are dominated by (p1,q1).

While the number of potential Answer Sets is in general
exponential for a sketched ASP, the number of programs
actually satisfying the examples is typically rather small (in
our experiments, below 10000-20000). If that is not the case,
then the problem is under-constrained and it needs more
examples. No user would be able to go over a million of
proposed programs.

IV. SYSTEM EXTENSION: AGGREGATES AND USE-CASE

An aggregate #agg is a function from a set of tu-
ples to an integer. For example,#count{Column,Row :
queen(Column,Row)} counts the number of instances
queen(Column,Row) at the tuple level. Aggregates are often
useful for modeling. However, adding aggregates to non-
disjunctive ASP raises the complexity of an AS existence
check, unless aggregate dependencies are stratified [12]. It is
possible to add aggregates into our system under the following
restrictions: stratified case, aggregates occur in the body in
the form N = #agg{. . .}, sketched with the keyword ?# ,
where #agg can be max, min, count and sum. This immediately
allows us to model problems such as Equal Subset Sum (for
details, see the repository), where one needs to split a list of
values, specified as a binary predicate val(ID,Value) into
two subsets, such as subset1(ID) (and subset2(ID)
respectively), such that the sum of both subsets is equal.
Essentially, we sketch the constraint of the form:

:- S1 != S2, S1 = ?#{V,X:val(X,V),subset1(X)}...

Formally, each aggregate can be seen as an expression of
the form:

S = #agg{Z1, . . . ,Zn : cond(

internal︷ ︸︸ ︷
X1, . . . ,Xk,

external︷ ︸︸ ︷
Y1, . . . ,Yh,

aggregated︷ ︸︸ ︷
Z1, . . . ,Zn)},

external(Y1, . . . ,Yh)

where S is an integer output, and Y1, . . . ,Yh, shortened as Ȳ
(X̄ and Z̄ are the same kind of shortening) are bound to other
atoms in the rule, to which we refer as external(Ȳ ) (”external”
with respect to the condition in the aggregate; it is simply
shortening for a conjunction of atoms, which share variables
with the condition in the predicate).

To give an example of X̄ ,Ȳ , Z̄ in a simple context: if we were
to compute an average salary per department in a company,
we might have written a rule of the form:
avg_sal(A,D) :- A = #avg{S,N: salaries(N,S,D)},

department(D).

Then, Z̄ consists of the variable S and D is the external variable
(with respect to the condition in the aggregate), i.e., Ȳ and X̄ is
composed out of the variable N, since it is neither used in the
aggregation, nor in the other atoms outside of the aggregate.

A sketched aggregate ?#, can be reified similarly to the
regular sketched atoms, i.e.:

reified(S,sum,Ȳ )← S = #sum{Z̄ : cond(X̄ ,Ȳ , Z̄)},external(Ȳ ).

similarly for other aggregate functions; the same rules, e.g.,
the example extension, apply to aggregate reification.

With aggregates we can sketch a significantly larger class
of problems. Consider the problem from the Functional Pearls
Collection: “Finding celebrities problem” [5]1. Problem state-
ment: “Given a list of people at a party and for each person
the list of people they know at the party, we want to find the
celebrities at the party. A celebrity is a person that everybody
at the party knows but that only knows other celebrities. At
least one celebrity is present at the party.” The sketch core
looks as follows (names are shortened):
n(N) :- N = ?#{ P : p(P) }.
:- c(C), p(C), n(N), S = ?#{P : k(P,C), p(P)},

S < N-1.
:- c(C), p(C), not c(P), k(C,P).

The last rule is an integrity constraint verifying that no
celebrity, c, knows a person who is not a celebrity. The first
line sketches a rule that should find what aggregation metric
on the people (unary predicate person, p) should be used in
the problem. The sketched rule in the second line makes use of
this metric, denoted as n, and says that an aggregation should
be performed on the binary ”knows” predicate, k, (indicating
that two persons know each other); so the outcome of the
sketched aggregation on the connection between people should
be compared to an overall metric on all people individually.

V. EXPERIMENTAL EVALUATION

For the experimental evaluation we have created a dataset
consisting of 21 classical combinatorial problems among

1 ASP code: hakank.org/answer set programming/finding celebrities.lp4

hakank.org/answer_set_programming/finding_celebrities.lp4


Problem # Sketched # ?= # ?+ # ?not # ?p # Rules
Graph Clique 3 1 0 0 2 4
3D Matching 3 3 0 0 0 1
Graph Coloring 7 4 0 0 3 2
Domination Set 3 0 0 1 2 5
Exact Cover 7 2 0 1 4 3
Sudoku 5 4 0 1 0 4
B&W Queens 5 3 2 0 0 3
Hitting Set 3 0 0 1 2 2
FAP 3 0 0 1 2 3
Feedback Arc Set 4 0 0 2 2 3
Latin Square 4 4 0 0 0 2
Edge Domination 3 0 0 1 2 5
FAP 5 3 2 0 0 3
Set Packing 4 2 0 0 2 1
Clique Cover 4 3 0 1 0 3
Feedback Set 5 0 0 5 0 3
Edge Coloring 3 3 0 0 0 3
Set Splitting 5 2 0 1 2 3
N Queens 6 4 2 0 0 3
Vertex Cover 3 0 0 1 2 4
Subg. Isomorph. 5 2 0 1 2 4

TABLE I: Dataset summary: the number of sketched variables,
of rules, of particular types of sketched variables, e.g., “#
?not”, indicates how many atoms with the sketched negation
are in the program.

which most are NP-complete. For the problem list and precise
sketch specifications used in the experiments, we refer to
Table I. All problems, their code, and implementation de-
tails, can be found in the accompanying Github repository:
https://github.com/SergeyParamonov/sketching

Dataset of Sketches. The key challenge in evaluating
program synthesis techniques such as SkASP is the absence
of benchmark datasets (as available in more typical machine
learning tasks). At the same time, although there are many
example ASP programs available in blogs, books or come
with software, these typically employ advanced features (such
as incremental grounding, optimization or external sources)
which are not supported by SkASP as yet. Therefore we had
to design our own dataset in a systematic way (and put it in the
public domain). The dataset is based on a systematic concept
(the 21 problems by Karp). When we could find encodings
for these problem (such as Sudoku in Figure 1c from [18]
and Hamiltonian Cycle in Figure 1a from [13]) we took these
problems, in all other cases we developed a solution according
to the standard generate and test development methodology of
ASP. Specifically (see Q5) we looked for different encodings
in the public domain of ASPs favorite – the N-queens problem
(these encoding can tackle even its NP-complete version [16]).

After creating all the ASP programs, we turned them
into sketches by looking for meaningful opportunities to
use sketched variables. We introduced sketched variables to
replace operators (equalities and inequalities), to replace arith-
metic (such as plus and minus) and to decide whether to use
negated literals or not, and to make abstraction of predicates
for which another predicate existed with the same signature.

Finally, we had to select the examples in a meaningful way,
that is, we selected examples that would be informative (as
a user of SkASP would also do). Positive examples were
actually selected more or less random, negative examples
are meant to violate one or more of the properties of the

problem. Furthermore, we also tried to select examples that
carry different information (again as a user of SkASP would
do). We selected between 4 and 7 examples for each model.
Where relevant in the experiments, we sampled the sketched
variables (e.g. Q5) or the examples (e.g. Q3)

Experimental questions are designed to evaluate how
usable is SkASP in practice. Users want in general to provide
only a few examples (Q1-Q3), to obtain a small number of
solutions (ideally only one) (Q1-Q2), the examples should
be small (Q4), the solutions should be correct (all), want to
know whether and when to use preferences (Q2), and how
robust the technique is to changes in the encoding (Q5) as
it is well known in ASP that small changes in the encoding
can have large effects. Finally, they are typically interested
in how the learned programs change as the sketches become
more complex (Q3). With this in mind, we have designed and
investigated the following experimental questions:
• Q1: What is the relationship between the number of ex-

amples and the number of solutions? How many examples
does it take to converge?

• Q2: Are preferences useful?
• Q3: What is the effect of the number of sketched vari-

ables on the convergence and correctness of the learned
programs?

• Q4: Do models learned on examples with small parameter
values generalize to models with larger parameter values?

• Q5: What is the effect of encoding variations on the
number of solutions and their correctness?

Implementation details and limitations. The SkASP en-
gine is written in Python 3.4 and requires pyasp. All examples
have been run on a 64-bit Ubuntu 14.04, tested in Clingo 5.2.0.
The current implementation does not support certain language
constructs such as choice rules or optimization.

We use the default preferences in the experiments for the
built-in inequality sketch X ?= Y : namely = and 6= have
equal maximal preference. A user can redefine the preferences.
Our experiments indicate that for other sketched types (e.g.,
arithmetic, etc) no default preferences are needed.

We investigate Q1 by measuring the impact of the number
of examples on the number of solutions of the 21 SkASP
problems. An interesting observation is that even if the user
wants to solve, say the Latin Square 20× 20, she does not
need to provide examples of size 20 ·20= 400. She can simply
provide 3×3 examples and our SkASP problem will learn the
generic Latin Square program (see Figure 1d).

Figure 2a shows how the number of solutions for some of
our 21 SkASP problems depends on the number of examples.
In some cases, 7 examples are sufficient to converge to a single
solution e.g., FAP, B&W Queens.

On some other problems, however, after 7 examples there
still remain many solutions (on average 18 for problems that
do not converge). Figure 2b reports the same information as
Figure 2a for all 21 problems: the average number of solutions;
the average on the 9 that converge within 7 examples, referred
to as the easy problems; and the average on the 12 that still
have several solutions after 7 examples, referred to as the

https://github.com/SergeyParamonov/sketching


(a) Convergence without preferences (with 5
sketched variables): B&W Queens (Sketch 1)
and FAP converge, while Sudoku does not

(b) Average number of solutions over the
dataset, split into the easy group converging
without preferences and hard not converging

(c) Between 2 and 7 examples are needed to
obtain a unique solution (or a small group of
equivalent ones) under preferences.

(d) The effect of the number of sketched
variables on the solutions with preferences

(e) The effect of the number of sketched
variables on the solutions without preferences

(f) Dependency between the number of
sketched variables and precision

Fig. 2: Addressing experimental questions Q1-Q3. Q1 and Q2: convergence without preferences (a), across the dataset (b), for
each problem (c). Q3: the effect of different number of sketched variable on the number of solutions and precision, FAP (d,
e); N-queens (f). log-scale (a-e)

(a) Measuring the generalized accuracy and
number of solutions. Latin Square 4×4.

(b) The number of solutions (default prefer-
ences) for various N-queen encodings

(c) Correctness for N-queens various encod-
ings (precision)

Fig. 3: Addressing experimental questions Q4 and Q5: generalization accuracy on Latin Square (a), the effect of the encoding
variations on the number of solutions (b), on precision (c).

hard problems. When SkASP does not converge to a unique
solution, this leaves the user with choices, often amongst
equivalent ASP programs, which is undesirable.

For problems that do not converge after a few examples,
we propose to use preferences, as provided by our SkASP
framework. We use the default preference described earlier.

We investigate Q2 by measuring again the impact of the
number of examples on the number of solutions. In Figure
2c, we observe that all problems have converged in less
than 7 examples (under default preferences). The impact of
preferences on the speed of convergence is even more visible
on the whole set of problems, as reported in Figure 2b. The
number of solutions with preferences is smaller, and often
much smaller than without preferences, whatever the number
of examples provided. With preferences, all our 21 problems
are learned with 7 examples.

To analyze the number of solutions in Q3, we look into
the convergence of FAP by varying the number of sketched
variables. The original sketched program of FAP contains 5
sketched variables. We vary it from 2 to 5 by turning 3, 2, 1, or
0 sketched variables into their actual value (chosen randomly
and repeated over multiple runs). As expected, in Figure 2d,
we observe that the more there are sketched variables in
the SkASP, the slower the number of solutions decreases.
Furthermore, the number of sketched variables has a greater
impact on the convergence without preferences, as we see
in Figure 2e. After 3-5 examples under preferences we have
fewer than 10 solutions, while without preferences there are
still dozens or hundreds of solutions.

To analyze correctness in Q3, we need first to define it.
Informally, we mean that the program classifies arbitrary
examples correctly, i.e., positive as positive, etc. A typical



metric to measure this is accuracy. However, there are no
well defined arbitrary positive and negative examples for the
most problems: what is an arbitrary random example for
Feedback Arc Cover? Problems like Sudoku and N-queens do
have standard examples because they are parameterized with
a single parameter, which has a default value. Furthermore,
for the standard 8-queens we know all solutions analytically,
i.e., 92 combinations. Another issue is that the negative and
positive classes are unbalanced. The usual way to address
this issue is to use precision, i.e., True Positive

True+False Positives . (Recall is
typically one because the incorrect programs produce way too
many solutions that include the correct ones.) In Figure 2f,
we see that in all cases we were able to reach the correct
solution (here the locations of sketched variables were fixed
as specified in the dataset); while increasing the number of
sketched variables generally decreases the precision.

To investigate Q4, we have used the Latin Square from
Listing 1d. We have used examples for Latin Square 3× 3,
and verified its correctness on Latin Square 4×4 (which can
be checked analytically because all solutions are known). We
have discovered, that there is an inverse dependency between
number of solutions and accuracy, see Figure 3a. This happens
because there are typically very few useful or “intended”
programs while there are lot of incorrect ones.

To investigate Q5, we have focused on the N-queens prob-
lem and collected several encodings from multiple sources:
Potascco, Hakank.org, an ASP course by Tran Cao Son2

and our encoding. Whereas all the encodings model the
same problem they show significant variations in expressing
constraints. To reduce the bias in how the sketched variables
are introduced and systematically measure the parameters, we
pick sketched variables randomly (inequalities and arithmetic)
and use the same examples from our dataset (randomly picking
the correct amount) for all models.

In Figure 3b, while there is a certain variation in the
number of solutions, they demonstrate similar behavior. For
each encoding we have introduced 5 sketched variables and
measured the number of solutions and precision. In Figure
3c we see that there is indeed a slight variation in precision,
with 3 out of 4 clearly reaching above 90% precision, one
reaching 100% and one getting 82%. Thus, despite variations
in encoding, they generaly behave similarly on the key metrics.
The results have been averaged over 100 runs.

Overall, we observe that only few examples are needed to
converge to a unique or a small group of equivalent solutions.
An example where such equivalent solutions are found is the
edge coloring problem, where two equivalent (for undirected
graphs) constraints are found:

← color(X ,Y1,C),color(X ,Y2,C), Y1 6= Y2.

← color(X1,Y,C),color(X2,Y,C), X1 6= X2.

For this problem these two constraints are equivalent and
cannot be differentiated by any valid example.

2 www.hakank.org/answer set programming/nqueens.lp
www.cs.uni-potsdam.de/∼torsten/Lehre/ASP/Folien/asp-handout.pdf
www.cs.nmsu.edu/∼tson/tutorials/asp-tutorial.pdf

An interesting observation we made on these experiments is
that the hardness (e.g., in terms of runtime) of searching for a
solution of a problem is not directly connected to the hardness
of learning the constraints of this problem. This can be
explained by the incomparability of the search spaces. SkASP
searches through the search space of sketched variables, which
is usually much smaller than the search space of the set of
decision variables of the problem to learn.

VI. RELATED WORK

The problem of sketched ASP is related to a number of
topics. First, the idea of sketching originates from the area
of programming languages, where it relates to so called self-
completing programs [25], typically in C [24] and in Java [19],
where an imperative program has a question mark instead of
a constant and a programmer provides a number of examples
to find the right substitution for it. While sketching has been
used in imperative programming languages, it has – to the best
of the authors’ knowledge – never been applied to ASP and
constraint programming. What is also new is that the sketched
ASP is solved using a standard ASP solver, i.e., ASP itself.

Second, there is a connection to the field of inductive
(logic) programming (ILP) [9], [28], [17]. An example is meta-
interpretive learning [29], [30] where a Prolog program is
learned based on a set of higher-order rules, which act as a
kind of template that can be used to complete the program.
However, meta-interpretive learning differs from SkASP in
that it induces full programs and pursues as other ILP methods
a search- and trace-based approach guided by generality,
whereas SkASP using a constraint solver (i.e., ASP itself)
directly. Furthermore, the target is different in that ASPs are
learned, which include constraints. SkASP relates to meta-
interpretation in ASP [11] in rule and decision materialization.
The purpose is, however, different: they aim at synthesizing a
program of higher complexity (ΣP

2 ) given programs of lower
complexity (NP and Co-NP).

There are also interesting works in the intersection of ILP,
program synthesis and ASP [21], [23], [33]. The ILASP
system [22] learns an ASP program from examples, and a set
of modes, while minimizing a metric, typically the number
of atoms. This program, learned completely from scratch, is
not necessarily the best program from the user’s point of
view and may limit the possibility to localize the uncertainty
based on the user’s knowledge of the problem. Indeed, if all
sketched predicates are added in the modes with corresponding
background knowledge, then the set of hypotheses of sketched
ASP is a subset of ILASP. However, if we specify a sketched
constraint :- p(X),q(Y),X?=Y with the negative example
{p(1),q(2)} as modes for ILASP [22], it would learn a
program like :- p(X) (minimal program), but that is clearly
not the program intended by the sketch. Furthermore, we
compute all preferred programs instead of a single solution.

Third, there is also work on constraint learning, where the
systems such as CONACQ [4], [2] and QUACQ [3] learn a
set of propositional constraints, and ModelSeeker [1] learns
global constraints governing a particular set of examples. The

www.hakank.org/answer_set_programming/nqueens.lp
www.cs.uni-potsdam.de/~torsten/Lehre/ASP/Folien/asp-handout.pdf
www.cs.nmsu.edu/~tson/tutorials/asp-tutorial.pdf


subject has also been investigated in ILP setting [20]. However,
the idea in all these approaches is to learn the complete
specification of CSPs from scratch. Our setting is probably
more realistic from a user perspective as it allows to use
the knowledge that the user no doubt possesses about the
underlying problem, and also requires much less examples.
On the other hand, SkASP also makes, as other sketching
approaches, the strong assumption that the intended target
program is an instance of the sketched one. This may not
always be true, for instance, when rules are missing in the
program. This is an interesting issue for further research.

Fourth, our approach is related to debugging of ASP [14],
[31]. Unlike SkASP such debuggers can be used to locate
bugs, but typically do not provide help in fixing them. On the
other hand, once a bug is identified, SkASP could be used to
repair it by introducing a sketch and a number of examples3

The approach of [26] is based on classical ILP techniques
of generalization and specification and does not provide the
freedom to indicate uncertain parts of the program.

VII. DISCUSSION AND CONCLUSIONS

Our contribution is four-fold: we have introduced the prob-
lem of sketched ASP; we have provided a rewriting schema
for SkASP; we have created a dataset of sketches and we
have evaluated our approach empirically demonstrating its
efficiency and effectiveness.

User interaction is an interesting future direction, namely
to suggest constraints and examples. For the former, if we
are not able to reject a negative example, we can construct a
constraint that would reject the negative examples and none
of the positive examples. As for the examples, if we have two
solutions to a problem, we can generate an example discrimi-
nating between them and ask user to clarify it, while this might
not always be possible, since symmetric assignments might
lead to semantically identical programs. In practice, however,
this might be an important addition to simplify sketching for
end users. Another direction is to incorporate non-constant
preference handling into the model using the extensions of
ASP for preference handling, such as asprin [6].
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