
HAL Id: lirmm-02311595
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02311595v1

Submitted on 11 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Side-channel Attacks on Blinded Scalar Multiplications
Revisited

Thomas Roche, Laurent Imbert, Victor Lomné

To cite this version:
Thomas Roche, Laurent Imbert, Victor Lomné. Side-channel Attacks on Blinded Scalar Multiplica-
tions Revisited. CARDIS 2019 - 18th Smart Card Research and Advanced Application Conference,
Nov 2019, Prague, Czech Republic. pp.95-108, �10.1007/978-3-030-42068-0_6�. �lirmm-02311595�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02311595v1
https://hal.archives-ouvertes.fr


Side-channel Attacks on Blinded Scalar
Multiplications Revisited

Thomas Roche1, Laurent Imbert2, and Victor Lomné1

1 NinjaLab, Montpellier, France (https://ninjalab.io)
2 LIRMM, CNRS, University of Montpellier, Montpellier, France

Abstract. In a series of recent articles (from 2011 to 2017), Schindler
et al. show that exponent/scalar blinding is not as effective a counter-
measure as expected against side-channel attacks targeting RSA modu-
lar exponentiation and ECC scalar multiplication. Precisely, these works
demonstrate that if an attacker is able to retrieve many randomizations
of the same secret, this secret can be fully recovered even when a signi-
ficative proportion of the blinded secret bits are erroneous. With a focus
on ECC, this paper improves the best results of Schindler et al. in both
the generic case of random-order elliptic curves and the specific case of
structured-order elliptic curves. Our results show that larger blinding
material and higher error rates can be successfully handled by an at-
tacker in practice. This study also opens new directions in this line of
work by the proposal of a three-steps attack process that isolates the
attack critical path (in terms of complexity and success rate) and hence
eases the development of future solutions.

1 Introduction

Nowadays, all modern tamper-resistant implementations of public-key algorithms
embed relatively cheap, yet very strong countermeasures based on various ran-
domization strategies. As a consequence, single-trace horizontal attacks have
gained more and more attention from the side-channel community.

Single trace horizontal attacks apply to both elliptic curve scalar multiplica-
tion and modular exponentiation (RSA). Implemented in a supervised or non-
supervised setup, they provide the attacker with a randomized, or blinded scalar
(resp. exponent) from the observation of a single scalar multiplication or ex-
ponentiation. Although these attacks do not yield the original scalar (resp. ex-
ponent), the disclosure of a blinded value may allow an attacker to counterfeit
digital signatures or impersonate any party in a key exchange protocol.

This ultimate attack thus renders scalar (resp. exponent) randomization use-
less. However, it requires a very high signal-to-noise ratio to be successful in
practice. Many recent publications claim successful single trace horizontal at-
tacks on secure RSA or ECC [2, 8–12, 17, 19]. These attacks do not usually re-
cover the whole blinded value. The missing bits are eventually recovered using
brute-force. Therefore, the number of incorrect bits must remain relatively small



for the attack to be successful. In single-trace horizontal attacks, this number of
incorrect bits is dictated by the so-called bit error rate of the attack.

In this work, we consider the case where brute-forcing the incorrect bits
is impracticable. We focus on ECC scalar multiplication but our analysis for
random-order elliptic curves easily extends to RSA exponentiation. We assume
that the attacker can observe several scalar multiplications with the same long-
term secret scalar but each execution uses fresh randoms for scalar blinding. A
typical example of such a context occurs in the public key generation of ECC
cryptosystems. The attacker requests from a device many generations of the
public key corresponding to the private key securely stored inside the device. We
will also assume that the scalar randomization is done following [4] by adding
to the secret scalar a random multiple of the elliptic curve order.

The first paper in the literature to tackle this problem is the seminal work
of Schindler and Itoh [13] which exhibits a very efficient attack (in terms of
number of traces and computational effort) when small blinding factors r are
used. Over the past five years, this result was improved [14], applied to specific
elliptic curves [5,15] and to RSA with CRT [16]. In the present paper, we expand
this line of results by suggesting several improvements that make it possible to
recover scalars blinded with large random factors (> 32 bits), and high bit error
rates (> 10%).

1.1 Preliminaries and Notations

In the following, we consider an elliptic curve defined over the finite field Fp,
with p a K-bit prime (typically K = 256). E denotes the order of the curve and
d is the secret scalar, target of the attack. Both E and d can be represented
on K bits. The term msb (resp. lsb) will be used to shorten most (resp. least)
significant bits.

For each scalar multiplication, the scalar d is blinded by adding a random
multiple of the group order, i.e. d` ← d + r` × E, where r` is an R-bit random
value. The blinded scalar d` is then represented on K +R bits.

The attaker observes N scalar multiplications. These N side-channel obser-
vations, called traces, are denoted {T`}`<N 3.

For each trace T`, the attacker’s horizontal side-channel attack outputs a
noisy blinded scalar, denoted d̃`. For all bit index i < K + R, it is assumed
that the probability εb for bit d̃`[i] to be erroneous, called bit error rate, is
independent of both ` and i. Depending on the context (supervised or non-
supervised horizontal attacks) εb is considered known or unknown to the attacker.

In [13], the authors introduce a cornerstone tool for all subsequent attacks
called Non-Adjacent-Form distinguisher. Given two noisy blinded scalars (d̃i, d̃j)
and two guesses (r̂i, r̂j) on their respective blinding factors, the distinguisher
provides a very robust way to assert the correctness of the guesses. We define

3 A more formal notation would be {T`}`∈Z;06`<N .



DNAF
i,j as follows:

DNAF
i,j = HW(NAF(d̃i − r̂i × E − (d̃j − r̂j × E))),

where NAF() is the non-adjacent form encoding (see e.g. [7]) and HW() is the
natural extension of the Hamming Weight function to signed-digit representa-
tions.

Schindler and Itoh observed4 that DNAF
i,j is significantly smaller for correct

values (r̂i, r̂j). A detailed study of the distinguisher behaviour with respect to
K + R and εb can be found in [13, 14], it allows to choose a bound Bεb,K+R

such that DNAF
i,j < Bεb,K+R implies that (r̂i, r̂j) are correct with high probabil-

ity. Clearly, this distinguisher will be more effective as K and R increase and εb
decreases. The non-adjacent-form distinguisher proves to be sufficient for param-
eters considered in the present study (K = 256, 32 6 R 6 128, 0.1 6 εb 6 0.25).

1.2 Overall Attack Process

Our attack context is the gathering of three independent steps. Our contributions
are solely related to the second step and, for completeness, we briefly describe
the whole attack process below.

Step 1: The attacker acquires N traces corresponding to N independent scalar
multiplications and performs a horizontal attack for each of them. The output of
this first step is a set of noisy blinded scalars {d̃`}`<N together with a bit error
rate εb. In the supervised setting5 (see e.g. [1, 2, 19]) the attacker possesses a
good estimation of the bit error rate εb. Given εb the attacker knows beforehand
the number of acquisitions N that must be performed to have good chance of
success. In the more general unsupervised setting (see e.g. [8–12,17]), the access
to a training device is not possible. The attacker acquires as many traces as
possible and induces a maximal value for εb that can be handled through the
attack. In both cases, this first step provides the attacker with N noisy blinded
scalars together with a gross value for εb.

Step 2: From each noisy blinded scalar d̃`, the attacker guesses the blinding
factor r` or discards the corresponding data from the attack process. The output
of this filtering step is a subset {d̃`}`∈J along with guessed blinding factors
{r`}`∈J for some J ⊂ (Z∩ [0, N − 1]). All r` do not have to be correct but some
of them must be correctly guessed.

4 More precisely, they use this distinguisher to find blinding factor collisions (ri = rj)
by computing HW(NAF(d̃i − d̃j)) (which corresponds to DNAF

i,j when ri = rj).
5 A learning phase is conducted prior to the attack on a similar device where scalar

multiplication inputs and randoms can be chosen, e.g. a template building or a
deep-learning training phase.



Step 3: The last step of the attack recovers the secret scalar d from {d̃`}`∈J and
{r`}`∈J . These inputs may first be trimmed off using e.g. the NAF distinguisher.
(The pair (d̃i, ri) is removed if, for all j 6= i, DNAF

i,j is larger than the predefined
bound Bεb,K+R.) After this optional pruning step, a vertical side-channel attack
can be mounted on the remaining traces. Such an attack is described in [5] for
specific elliptic curves but can be extended straightforwardly in our context to
any elliptic curve and RSA. In Appendix A, we propose a simple vertical attack
to confirm this claim and show that few tens of correctly guessed blinding factors
are enough to successfully recover the secret scalar (resp. exponent).

1.3 Paper Organization and Contributions

This work focuses on improvements in Step 2 when R > 32. The first contri-
bution applies to general elliptic curves without hypothesis on the curve order
form. It is described in Section 2. This new proposal outperforms the current
best attacks by Schindler and Wiemers [14,16], e.g. we show that configurations
where (R = 64, εb = 0.2) and (R = 96, εb = 0.15) can be successfuly attacked in
practice. The second contribution applies to the specific case of elliptic curves
whose order is close to a power of 2. Our strategy and results are presented
in Section 3. Compared to the best known attack [15], our simulations show
significant increases in the success rates for blinding factors up to K/2.

2 On Random-Order Elliptic Curves

In this section we consider elliptic curves without assumption on the form of
their order. Based on previous work, our results can be extended to RSA imple-
mentations without CRT6 and even implementations with CRT7.

We will first briefly describe the Alternate Attack [14] (also described in [16]).
To the best of our knowledge, this attack is the only known attack in the lit-
erature that works in practice for non-negligible values of εb and large blinding
factors (R > 32, typically R = 64 or R = 96). In Section 2.2, we present a new
attack which, compared to [14], offers two advantages: 1. its simplicity. It allows
to exhibit the computational cost of the algorithm for arbitrary chosen success
rate without having to go through costly simulations. Hence providing a better
understanding on the capability of the attack given the attacker’s computational
effort. 2. its efficiency. For an equivalent computational cost, it handles larger
values of R and/or larger values of εb than [14]. This comes at a price: increasing
the number of observed scalar multiplications (i.e. N).

2.1 Previous Work

Let us briefly recall the Alternate attack from Schindler and Wiemers (for more
details see [14, Algorithm 3], also called sub-attack I ).

6 relying on the fact that an RSA modulus n and φ(n) share half of their msb. See [14]
for more details.

7 the authors of [16] managed to recover 2R msb of φ(p) based on continued fractions.



Given a blinded scalar d`, Schindler and Wiemers define α` =
⌊
d`/2

K−1
⌋

(thus α` < 2R+1) and β` = d` mod 2w (for a chosen window size w < K).
Since d` = d+ r` ×E, they demonstrate that the w lsb of d verify the following
equation:

d mod 2w =
(
α`2

K−1 mod E + β` − ω`E
)

mod 2w,

where ω` takes an unknown value in {0, 1}.
From noisy blinded scalars d̃`, we have access to noisy versions of α` (say α̃`)

and β` (say β̃`). The idea is then to brute-force all error patterns (of Hamming
Weight t) over α̃` and β̃` (t must be carefully chose given εb) as well as the values
of ω`. Each hypothesis on (α`, β`, ω`) will provide a candidate x for d mod 2w.
Over all N noisy blinded scalars, the correct d mod 2w should be in the best
ranked candidates x (those that appeared the most during the whole brute-
force).

If successful this attack outputs the w lsb of d, for w typically as large as R. To
finish the attack (and recover the remaining bits of d), the authors of [14] apply
iteratively another attack (so-called sub-attack II ). In our setup (see Section 1.2
for a description of the overall attack process), we would more likely use the
knowledge of d mod 2w to rewind the Alternate Attack and find the most likely
blinding factors r`. Indeed, for some scalars, the correct value of (α`, β`, ω`)
must have been found during the brute-force and can be collected from the
knowledge of d mod 2w. Obtaining the random factor r` is then straightforward
as r` =

⌊
α`2

K−1/E
⌋

+ ω`. Then one would apply Step 3 of the overall attack
process by suppressing the erroneous values of r` based on the NAF distinguisher
and following the approach described in Annex A.

The computational cost of the sub-attack I algorithm is 2M0N predictions
of triplets (α`, β`, ω`), where M0 =

(
R+w
t

)
with t the number of erroneous bits

tested by the brute-force over the ∼ R+w bits of (α`, β`). The authors estimate
the correct values of t, w and N for successful attacks and provide the following
results (copied from [14, Table 12]) that gives the maximum value of R for various
attack configurations.

N 2M0N εb = 0.10 εb = 0.15 εb = 0.20

10 6 240 36 16 4

1000 6 245 96 52 28

100000 6 250 136 76 44

Table 1. Maximum R-values for Schindler and Wiemers’s Algorithm 3 [14, Table 12]

2.2 A New Generic Algorithm

From the bit error rate εb and R it is easy to choose N such that there is a
good chance that at least 2 noisy blinded scalars are correct on their R+ 1 msb



(i.e. α̃` = α`). Indeed, in the idealized hypothesis where each bit of each d̃`
is erroneous with probability εb independently from all other bits, the number
of erroneous bits in the R + 1 msb of each d̃` follows a Binomial distribution
with parameters (R + 1, εb). Therefore, on average, the number of observations
needed to acquire n noisy blinded scalars with t erroneous bits or less in their
R + 1 msb is given by N = n/CDF(R+1,εb)(t), where CDF(R+1,εb)(t) is the
cumulative distribution function of the Binomial distribution with parameters
(R + 1, εb). Equivalently, if the attacker observes N noisy blinded scalars, the
average number of observations that have t or less erroneous bits in their R+ 1
msb is given by n = N × CDF(R+1,εb)(t).

Now, let us assume that N is large enough with respect to (R + 1, εb) such
that there exists (with good probability) two indexes i < j < N such that the
R + 1 most significant bits of d̃i and d̃j are all correct. The idea is to identify
the pair (i, j) based on the NAF distinguisher (see Section 1.1): for all l < N ,
estimate the blinding factor of d̃l as follows

r̃ωll =
⌊
α̃l2

K−1/E
⌋

+ ωl,

where α̃l is the R+ 1 msb of d̃l and ωl takes value 0 or 1. The attacker possesses
then two blinding factor candidates for each d̃l. Also, by hypothesis, there exists
(ωi, ωj) such that ri = r̃ωii and rj = r̃

ωj
j . Computing the NAF distinguisher

on all pairs of noisy blinded scalars for both of their blinding factors, one can
identify the pair (i, j) if they do exist (DNAF

i,j is significantly small compared to

DNAF
k,l where rk 6= r̃ωkk or rl 6= r̃ωll ). This costs 4N(N−1)

2 computations of DNAF.
Once the pair (i, j) is found, the corresponding masks ri and rj are known.

It is now possible to run through the remaining N − 2 noisy blinded scalar, for
each of them, one can brute-force all error patterns with t erroneous bits or less
among the R+ 1 msb. For each error pattern, two blinding factors {r̃ωll }ωl∈{0,1}
are computed from d̃l and the corresponding DNAF

i,l (or DNAF
j,l ) can be estimated

asserting if the correct blinding factor rl was found. t must be chosen such that,
at the end of this step, enough correct blinding factors are found (such that, e.g.
the procedure described in Appendix A can be applied successfully). This step
costs 2(N − 2)×

(
R
t

)
computations of DNAF. Since N was chosen large enough

to yield the initial error-free scalars (i and j), small values of t (typically 1 or 2)
are enough in practice to find few tens of correct rl. The overall complexity of
the algorithm is then dominated by 2N(N − 1) DNAF computations in practice.

Parameter Choices and Comparison with Alternate Attack [14] Table 2
displays the number of noisy blinded scalars (N) such that, on average, at least
2 such scalars are error-free on their R + 1 msb8. Let us emphasize that these

8 N is estimated as follows: N = 2/CDF(R+1,εb)(0). To estimate the attack success
rate, i.e. the chance that actually 2 or more noisy blinded scalars are correct on
their R + 1 msb, it is equal to s = 1 − CDF(N,CDF(R+1,εb)

(0))(1). Our values of N

imply then a 60% success rate. Taking 2N instead of N in Table 2 would increase
the attack success rate to 90%.



estimations are independent from both the size K of E and d. However the attack
itself depends on K since the NAF distinguisher will work better as K increases.
For instance, with K = 256, and bit error rates εb > 0.25 the distinguisher looses
effectivness and becomes totally ineffective when reaching εb = 0.4. These off-
limits cases are identified in Table 2 with blue cells. Also, one needs to take into
account the attack complexity which grows quadratically with N . Gray cells in
Table 2 identify parameters that would lead to 260 or larger number of DNAF

computations, making this attack hardly possible in practice.

R

εb
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

32 23.5 26.0 28.7 211.6 214.7 218.0 221.5 225.3

64 25.8 210.9 216.2 221.9 228.0 234.4 241.4 248.9

96 28.2 215.7 223.7 232.2 241.3 250.9 261.3 272.5

128 210.5 220.6 231.2 242.5 254.5 267.4 281.2 296.1

Table 2. Number of scalar multiplications (for a success rate > 50%)

Without an efficient way to estimate the success rate of the Alternate Attack
from [14], it is difficult to thoroughtly compare the two attacks. Nevertheless,
one can observe from Table 1 that (R > 44, εb = 0.2) and (R > 76, εb = 0.15)
cannot be handled successfully by the Alternate Attack whereas we have shown
that (R = 64, εb = 0.2) and (R = 96, εb = 0.15) are achievable in practice when
several millions of scalar multiplications can be observed.

3 On Structured-Order Elliptic Curves

In this section, we focus on elliptic curves with structured orders9.

3.1 Previous Works

In [15], Schindler and Wiemers study elliptic curves with order of the form
E = 2K ±E0, where E0 is close to 2K/2. This case is pretty common in cryptog-
raphy when the base field is defined using a pseudo-Mersenne prime for efficiency
reasons. Most of the EC standards are of this form, e.g. SEC2 curves [18], NIST
curves [6].

9 Therefore this study does not apply to RSA



A Devide and Conquer Algorithm Schindler and Wiemers observe that
the problem of solving the N noisy blinded scalars can be done using a divide
and conquer algorithm. This observation leads to a much more robust decoding
algorithm than in the general case. Indeed, a blinded scalar d` with blinding
factor r` can be written as follows:

d` = r` × E + d

= r` × (2K ± E0) + d

= r` × 2K + (d± r` × E0)

Hence, if d± r`×E0 is smaller than 2K , then the R msb of d` are exactly the R
bits of r`. As a side remark, if r`×E0 is smaller than d, then the most significant
bits of d are not correctly masked (see e.g. [3]).

Now, for a given window size w, if (d± r` × E0) < 2K , then d` mod 2w and⌊
d`/2

K
⌋

mod 2w only involve the known w lsb of E and the unknown w lsb of
d and r`. From this observation, Schindler and Wiemers (see [15]) propose an
efficient algorithm to recover the secret d that comprises three phases:

– Phase 1: find the R lsb of d as well as the most likely values of the blinding
factor r` for each noisy blinded scalar d̃`.

– Phase 2: select the values r` that are the most likely to be correct based on
the NAF distinguisher (see Section 1.1).

– Phase 3: recover the full secret scalar d.

Phases 2 and 3 correspond exactly to step 3 of our overall attack scheme
described in Section 1.2.

Schindler and Wiemers’ Phase 1 Algorithm is described in [15, Algorithm
4] along with several empirical improvments discussed in the next sections. The
algorithm processes iteratively over a small sliding window of size w (typically
w is 8 or 10). Each iteration consists of two main steps recalled in Algorithm 1
and Algorithm 2 respectively.

In Algorithm 1, the call to EvaluateProbability(r̂`, d̂`, d̃`, i, w, εb) computes
the probability of observing d̃` knowing the error rate εb and the two w-bit words

r̂` and d̂` which correspond respectively to the two w-bit words
⌊
d̃`/2

K+i−1
⌋

mod

2w and
⌊
d̃`/2

i−1
⌋

mod 2w. Hence, we have:

EvaluateProbability(r̂`, d̂`, d̃`, i, w, εb) = εhb (1− εb)2w−h,

where

h = HammingDistance(r̂`,
⌊
d̃`/2

K+i−1
⌋

mod 2w) +

HammingDistance(d̂`,
⌊
d̃`/2

i−1
⌋

mod 2w)



Parameter : Iteration i
Parameter : Window size w, bit error rate εb
Input : {d̃`}`<N : N noisy scalars
Input : {r̃`}`<N : i− 1 lsb of the recovered blinding factors

Input : d mod 2i−1: i− 1 lsb of the recovered scalar
Output : d∗: best guess for d mod 2w+i−1

1 P ← float 1D array of size 2w initialized with zeros;
2 // For each possible value of the next w bits of the secret scalar;

3 for d̂← 0 to 2w − 1 do
4 // Prediction of the w + i− 1 lsb of the scalar knowing the first i− 1 bits;

5 d̄← d̂× 2i−1 + d mod 2i−1;
6 // For each noisy blinded scalar;
7 for `← 0 to N − 1 do
8 // For each possible value of the next w bits of the random r`;
9 for r̂` ← 0 to 2w − 1 do

10 r̄` ← r̂` × 2i−1 + r̃`;
11 // Predict w + i− 1 lsb of d`;

12 d̄` ← (r̄` × E + d̄) mod 2w+i−1;

13 // Define d̂`, the w msb of d̄`;

14 d̂` ←
⌊
d̄`/2

i−1
⌋
;

15 // Compute the probability of observing d̃`, knowing d̂ blinded by r̂`;

16 p← EvaluateProbability(r̂`, d̂`, d̃`, i, w, εb);

17 P [d̂]← P [d̂] + p;

18 d∗ ← argmax(P )× 2i−1 + (d mod 2i−1);
Return : d∗

Algorithm 1: Phase 1, Step 1 of [15, Algorithm 4]

After R iterations of Algorithms 1 and 2 the output is d mod 2R if everything
went correctly. As stated above, this is the most critical phase in Schindler and
Wiemers’s algorithm. They propose two empirical approaches to improve both
its efficiency and effectivness. We will briefly present them in the next section.
However, since these improvements are based on hand-picked thresholds by the
authors of [15] without clear explanations on how to choose these limits (we
are assuming that these thresholds must be adjusted in a case-by-case man-
ner) we will not take them into account in our study. Nevertheless, since the
improvements presented here can be applied on the core algorithms, the empir-
ical improvements can always be added above them. We then focus on the low
level algorithms and leave for future work the addition and study of these extra
improvments.

Empirical Improvements The first improvement is added to Algorithm 2 to
increase the effectivness of the attack. Concretely, the authors add an estimation
of the correctness of r̄`. When this estimation of correctness goes below a certain
threshold, the corresponding noisy blinded scalar d̃` is removed from the process.
The question of how to choose the threshold is not discussed in [15] but several
values are proposed depending on the bit error rate εb and the iteration number
i.

The second improvement is dedicated to efficiency. The algorithm cost is
dominated by Step 1 (Algorithm 1), its complexity being O(22wN). The authors



Parameter : Iteration i
Parameter : Window size w, bit error rate εb
Input : {d̃`}`<N : N noisy scalars
Input : {r̃`}`<N : i− 1 lsb of the recovered blinding factors
Input : d∗: w + i− 1 lsb of the recovered scalar from Step 1
Output : d mod 2i

Output : {r̃`}`<N : i lsb of the recovered blinding factors

1 // For each noisy blinded scalar;
2 for `← 0 to N − 1 do
3 P ← float 1D array of size 2 initialized with zeros;
4 // For each possible value of the next w bits of the random r`;
5 for r̂` ← 0 to 2w do
6 r̄` ← r̂` × 2i−1 + r̃`;
7 // Predict w + i− 1 lsb of d`;

8 d̄` ← (r̄` × E + d∗) mod 2w+i−1;

9 // Define d̂`, the w msb of d̄`;

10 d̂` ←
⌊
d̄`/2

i−1
⌋
;

11 // Compute the probability of observing d̃`, knowing d∗ blinded by r̂`;

12 p← EvaluateProbability(r̂`, d̂`, d̃`, i, w, εb);
13 P [r̂` mod 2]← P [r̂` mod 2] + p;

14 r̃` ← argmax(P )× 2i−1 + r̃`;

15 d∗ ← d∗ mod 2i;
Return : d∗, {r̃`}`<N

Algorithm 2: Phase 1, Step 2 of [15, Algorithm 4]

propose to reduce the number of treated noisy blinded scalars in this step and
apply the second step to all noisy blinded scalars. The idea is that, if costly, Step
1 is more robust than Step 2 and therefore does not need all the N noisy blinded
scalars to correctly guess d mod 2w+i−1. The authors propose, again without
justification, the “good” number of noisy blinded scalars to be used in Step 1
depending on the bit error rate εb and the iteration number i.

The above improvements were not tested in this paper. However, one can
easily see that they can be applied pretty much similarly to our algorithms with
adjusted thresholds.

3.2 Some Results

It is shown in [15] that Algorithms 1 and 2 allow to correct noisy blinded scalars
with large values of R, typically > 64 and large error rates 0.1 6 εb 6 0.15.
This result is very important since before [15], a value of R = 64 was considered
perfectly safe from a side-channel point of view.

One crucial parameter of these algorithms is the choice of the window size
w since the robustness of the procedure increases with w. However, since the
algorithm complexity is dominated by O(22wN), w cannot be very large either.
Figure 1 provides simulation results for various values of w of Algorithms 1 and
2. It gives the average number of bits of d guessed correctly before a wrong
bit appears, as a function of the number of traces N . These simulations were
done with K = 256, R = 64 and εb = 0.15 for curve secp-256-k1 [18] (aka the
Bitcoin’s curve).



Fig. 1. Simulations for K = 256, R = 64, εb = 0.15 on curve secp-256-k1.

In Figure 1, we represent mean values over 50 executions of the algorithms.
Standard deviations to the average results are illustrated by error bars. These
simulations are extremely time consuming as w increases. This is why results are
missing for w > 7. This is probably why the simulation results in [15] are scat-
tered over a few parameters. We believe that Figure 1 provides a complementary
point of view on the efficiency of the correction algorithm of [15]10. Notably, it
is interesting to remark that the impact of the window size is not regular and
that window sizes ranging from 3 to 6 produce similar success rates.

We will see in next Section how the algorithms can be improved in both
efficiency and effectivness.

3.3 Improved Algorithms

First Observations As remarked earlier (and in [15]) w cannot be too small
for the algorithm to work. The reason is that the probability estimation (from
the call to EvaluateProbability() in Algorithm 1) is better when w increases. As
a matter of fact, the EvaluateProbability() procedure estimates the probability
of observing the noisy blinded scalar d̃` knowing two w-bit word predictions on
two separate w-bit sections of d̃`. Therefore, if w is too small this estimation
is not good enough to distinguish good predictions from wrong ones (Figure 1
illustrates this behaviour).

Our proposal will nevertheless reduce w to its minimum (w = 1) and cope
with the above mentioned issue by calling EvaluateProbability() (step 12 of

10 without the empirical improvements discussed in Section 3.1



Algorithm 1 and step 12 of Algorithm 2) over the two (w + i − 1)-bit words r̄`
and d̄` instead of the two w-bit words r̂` and d̂`.

However, doing this directly has a desastrous effect. On the first iteration of
Algorithm 1, many r̃` are actually wrongly estimated (even if they were the best
candidates selected in Algorithm 2) and they remain wrong for the rest of the
execution until the end. However, the original implementation deals naturally
with them because future probability estimations with future w-bit predictions
on these wrong r̃` quickly decrease to give these wrong starts lower and lower
weights in the computation of the best candidate for the bits of d. If we apply
our first proposal directly, these wrong starts will keep their high probability
estimations for more iterations (since we now involve their successful past in
the computation). These wrong starts will then create more chance to choose a
wrong candidate for the guessed bit of d. We propose here to solve this problem
by loosening the selection procedure of the r̃`.

Keeping a List of the Blinding Factors Best Candidates In a nutshell,
the idea is to modify Algorithms 1 and 2 such that instead of working on a
single value r̄` (for each ` < N) which is updated bit-by-bit at each iteration
(step 14 of Algorithm 2), the algorithms will keep a pool of good estimates for
r̃`. Intuitively, if the list of potential candidates is large enough, it will contain
the correct value of r̄` for the current iteration. We will see that small list sizes
are enough to match and exceed the original algorithm effectiveness.

Algorithms Improvements in Detail Algorithms 3 and 4 describe in detail
the full improvements. Concretly, the modifications compared to Algorithms 1
and 2 are threefold:

– the window size w is forced to its minimum (w = 1) and then does not
appear in the algorithm anymore.

– the list of recovered blinding factors at iteration i, i.e. {r̃`}`<N where the
r̃` are defined over i − 1 bits, is replaced by a 2D array (denoted Lr11) of
N ×L best candidates for each r̃`. This array is updated at each iteration of
Algorithm 4. Note that during the first iterations (i 6 log2(L)), all possible
candidates are kept until the list is full.

– the probability estimation is done over t msb of r̄` and d̄` instead of the w
msb in Algorithm 1. Note that if t > R, then all the bits of r̄` and d̄` are
considered in the probability estimation at each iteration.

Together, the last two changes aim at decreasing the value of w to its minimum
and therefore reduce the algorithm complexity without damaging too much the
algorithm success rate. The overall complexity of steps 1 and 2 becomes then
O(N × L). (More precisely, Step 1 runs 4×N × L loop iterations.)

11 The array Lr must be initialized to an integer array of dimension N × L with all
cells initialized to −1 but the first column (Lr[i][0] for all i < N) which must be
initialized to 0.



Parameter : Iteration i
Parameter : Bit error rate εb
Parameter : Max list size L for the candidate lists of r̃`
Parameter : Window size t: this size defines the number of msb to select for probability

estimations
Input : {d̃`}`<N : N noisy scalars
Input : Lr array of dimension N × L containing, for each ` < N , the L best

candidates r̃`
Input : d mod 2i−1: i− 1 lsb of the recovered scalar
Output : d mod 2i

1 P ← float 1D array of size 2 initialized with zeros;
2 // For each possible value of the next bit of the secret scalar;

3 for d̂← 0 to 1 do
4 // Prediction of the i lsb of the scalar knowing the first i− 1 bits;

5 d̄← d̂× 2i−1 + d mod 2i−1;
6 // For each noisy blinded scalar;
7 for `← 0 to N − 1 do
8 // For each possible value of the next bit of the random r`;
9 for r̂` ← 0 to 1 do

10 // For each r̃` in the list Lr[l];
11 for s← 0 to L− 1 do
12 r̃` ← Lr[l][s];
13 if r̃` == −1 then
14 // go to next r̂` value;
15 Break;

16 r̄` ← r̂` × 2i−1 + r̃`;
17 // Predict w + i− 1 lsb of d`;

18 d̄` ← (r̄` × E + d̄) mod 2i;

19 // Define dt`, the t msb of d̄`;

20 dt` ←
⌊
d̄`/2

max(0,i−t)
⌋
;

21 // Define rt`, the t msb of r̄`;

22 rt` ←
⌊
r̄`/2

max(0,i−t)
⌋
;

23 // Compute the probability of observing d̃`, knowing d̂ blinded by rt`;

24 p← EvaluateProbability(rt`, d
t
`, d̃`,max(0, i− t),min(t, i), εb);

25 P [d̂]← P [d̂] + p;

26 d∗ ← argmax(P )× 2i−1 + d mod 2i−1;
Return : d∗

Algorithm 3: Improved Algorithm Step 1

3.4 Simulation Results and Comparisons

We conducted simulations in order to evaluate and compare the new algorithms
to the original proposition of [15]. As in Figure 1, the results give the average
(over 50 tentatives) number of bits of d guessed correctly before a wrong bit
appears, as a function of the number of traces N used for the attack. This
number of correct bits are majored by R since the algorithms studied here stop
when the R lsb of d are found. Apart from R and K, various parameters have
an impact on the efficiency and the effectivness of the algorithms, notably:

L: the maximum size of the best candidate pool for the blinding factors r̃` for
each noisy blinded scalar. We recall here that the complexity of Algorithms 3
and 4 increase linearly with L;



Parameter : Iteration i
Parameter : Bit error rate εb
Parameter : Max list size L for the candidate lists of r̃`
Input : Lr array of dimension N × L containing, for each ` < N , the L best

candidates r̃` on i− 1 bits
Input : d∗: i lsb of the recovered scalar from Step 1
Output : Updated Lr array with best candidates r̃` on i bits

1 // For each noisy blinded scalar;
2 for `← 0 to N − 1 do
3 lr ← number of loaded elements in Lr[l] (lr 6 L);
4 // Create temporary list Lr` of size 2lr;
5 Lr` ← integer 1D array of size 2lr;
6 P ← float 1D array of size 2lr initialized with zeros;
7 // For each r̃` in the list Lr[l];
8 for s← 0 to lr − 1 do
9 r̃` ← Lr[l][s];

10 // Add the two possible values of the next bit of the blinding factor r` to
the temporary list;

11 Lr`[s]← r̃`;

12 Lr`[s+ lr]← 2i−1 + r̃`;

13 if 2lr 6 L then
14 // If Lr` is small enough, keep all r̃` candidates;
15 Lr[l][0 · · · 2lr − 1]← Lr`;

16 else
17 // For each r̃` in the list Lr`;
18 for s← 0 to 2lr − 1 do
19 r̄` ← Lr`[s];
20 // Predict i lsb of d`;

21 d̄` ← (r̄` × E + d∗) mod 2i;

22 // Compute the probability of observing d̃`, knowing d∗ blinded by r̄`;

23 p← EvaluateProbability(r̄`, d̄`, d̃`, 0, i, εb);
24 P [s]← p;

25 Lr[l]← best L candidates in Lr` from their probability estimations P ;

Return : Lr

Algorithm 4: Improved Algorithm Step 2

w: the window size, only the original algorithms are affected by w, the com-
plexity of Algorithms 1 and 2 increase exponentially with w;

t: the number of bits involved in the probability estimation of r̄` and d̄` with
respect to d̃`.

Our first simulations are conducted to find the best empirical value for t. Once
t is chosen, we will focus on the parameter L and its impact on the effectiveness
(compared to the original algorithm when w changes).

Recall that t has no impact on the computational cost of the algorithms, so it
can be chosen freely. Figure 2 displays simulation results for the new algorithm
with the parameter t taking its values in {6, 8, 10, 16, 24, R}12 and small values
for L. It appears that t = 16 provides better results than greater or smaller
values of t in our setup (K = 256, R = 64).

12 for t = R, at iteration i, all bits of r̄` and d̄` are considered for probability estimation,
this version is labeled ”Full”



Fig. 2. Simulation Results K = 256, R = 64, εb = 0.15.

Figure 3 compares the original algorithm for various values of w to the new
algorithm (with t = 16) for various values of L. From these results, we have
equivalent effectivness between the original alg. with w = 7 and the new alg. with
L = 4. However, the new algorithm is 210 times more efficient than the original
algorithm for these parameters. The gap of efficiency seems to increase with w
and L since, for another pair of results (w = 8 for the original algorithm and
L = 8 for the new algorithm) the multiplicative factor between both algorithm
complexity is doubled (211) whereas the new algorithm clearly outperforms the
original one. Finally, let us also remark that the new algorithm with L > 16
reaches the limit of 64-bit correctly recovered on average (i.e. a 100% success
rate since 64 is the maximum number of recovered bits) in less than 10000 traces.
We recall that these algorithms must reach the end with correct 64-bit lsb of d
(since in our simulation we choose R = 64) for the overall attack to be successful.

Finally, Figure 4 provides simulation results for R = 64, 96, 120 for the new
algorithm (t = 16, L = 32) and two different bit-error-rate (εb = 0.15 and
εb = 0.13). These results show, in accordance with original results from [15], that
when elliptic curves with structured-order are used, R must be chosen strictly
larger K/2 in practice for an effective side-channel countermeasure.



Fig. 3. Simulation Results K = 256, R = 64, εb = 0.15.

Fig. 4. Simulation K = 256, L = 32, t = 16.

4 Conclusion and Future Work

In this paper we exhibited algorithms to recover a secret scalar from many
noisy blinded scalars (e.g. outputs of horizontal side-channel attacks over blinded
scalar multiplications) when blinding factors are over more than 32 bits and bit
error rate is larger than 10%. Our propositions, both in the general case of
random-order elliptic curves as well as in the specific case of structured-order
elliptic curves, outperform the best known algorithms for these parameters.



Apart from a series of articles from Schindler et al. works on this topic are
rather scarse in the literature. This is however a very important aspect of prac-
tical side-channel analysis over public key cryptography and we believe there
are still room for improvements. Another interesting avenue for future work is
to formulate theoretic bounds on the attacker capability to recover the secret
scalar given a set of noisy blinded scalars.

References

1. A. Bauer, É. Jaulmes, E. Prouff, and J. Wild. Horizontal and vertical side-channel
attacks against secure RSA implementations. In E. Dawson, editor, Topics in
Cryptology - CT-RSA 2013 - The Cryptographers’ Track at the RSA Conference
2013, San Francisco,CA, USA, February 25-March 1, 2013. Proceedings, volume
7779 of Lecture Notes in Computer Science, pages 1–17. Springer, 2013.

2. M. Carbone, V. Conin, M. Cornelie, F. Dassance, G. Dufresne, C. Dumas,
E. Prouff, and A. Venelli. Deep learning to evaluate secure RSA implementations.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):132–161, 2019.

3. M. Ciet and M. Joye. (virtually) free randomization techniques for elliptic curve
cryptography. In S. Qing, D. Gollmann, and J. Zhou, editors, Information and
Communications Security, 5th International Conference, ICICS 2003, Huhehaote,
China, October 10-13, 2003, Proceedings, volume 2836 of Lecture Notes in Com-
puter Science, pages 348–359. Springer, 2003.

4. J.-S. Coron. Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems. In cC. Kocc and C. Paar, editors, Cryptographic Hardware and
Embedded Systems – CHES ’99, volume 1717 of Lecture Notes in Computer Science,
pages 292–302. Springer, 1999.

5. B. Feix, M. Roussellet, and A. Venelli. Side-channel analysis on blinded regular
scalar multiplications. In W. Meier and D. Mukhopadhyay, editors, Progress in
Cryptology - INDOCRYPT 2014 - 15th International Conference on Cryptology
in India, New Delhi, India, December 14-17, 2014, Proceedings, volume 8885 of
Lecture Notes in Computer Science, pages 3–20. Springer, 2014.

6. FIPS PUB 186-3. Digital Signature Standard. National Institute of Standards and
Technology, Mar. 2006. Draft.

7. D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography.
Springer Professional Computing Series, Jan. 2003.

8. J. Heyszl, A. Ibing, S. Mangard, F. D. Santis, and G. Sigl. Clustering algorithms
for non-profiled single-execution attacks on exponentiations. In A. Francillon and
P. Rohatgi, editors, Smart Card Research and Advanced Applications - 12th In-
ternational Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013.
Revised Selected Papers, volume 8419 of Lecture Notes in Computer Science, pages
79–93. Springer, 2013.

9. K. Järvinen and J. Balasch. Single-trace side-channel attacks on scalar multi-
plications with precomputations. In K. Lemke-Rust and M. Tunstall, editors,
Smart Card Research and Advanced Applications - 15th International Conference,
CARDIS 2016, Cannes, France, November 7-9, 2016, Revised Selected Papers, vol-
ume 10146 of Lecture Notes in Computer Science, pages 137–155. Springer, 2016.

10. E. Nascimento and L. Chmielewski. Applying horizontal clustering side-channel at-
tacks on embedded ECC implementations. In T. Eisenbarth and Y. Teglia, editors,
Smart Card Research and Advanced Applications - 16th International Conference,



CARDIS 2017, Lugano, Switzerland, November 13-15, 2017, Revised Selected Pa-
pers, volume 10728 of Lecture Notes in Computer Science, pages 213–231. Springer,
2017.

11. E. Nascimento, L. Chmielewski, D. Oswald, and P. Schwabe. Attacking embedded
ECC implementations through cmov side channels. In R. Avanzi and H. M. Heys,
editors, Selected Areas in Cryptography - SAC 2016 - 23rd International Confer-
ence, St. John’s, NL, Canada, August 10-12, 2016, Revised Selected Papers, volume
10532 of Lecture Notes in Computer Science, pages 99–119. Springer, 2016.

12. G. Perin, L. Imbert, L. Torres, and P. Maurine. Attacking randomized exponentia-
tions using unsupervised learning. In E. Prouff, editor, Constructive Side-Channel
Analysis and Secure Design - 5th International Workshop, COSADE 2014, Paris,
France, April 13-15, 2014. Revised Selected Papers, volume 8622 of Lecture Notes
in Computer Science, pages 144–160. Springer, 2014.

13. W. Schindler and K. Itoh. Exponent blinding does not always lift (partial) SPA
resistance to higher-level security. In J. López and G. Tsudik, editors, Applied
Cryptography and Network Security - 9th International Conference, ACNS 2011,
Nerja, Spain, June 7-10, 2011. Proceedings, volume 6715 of Lecture Notes in Com-
puter Science, pages 73–90, 2011.

14. W. Schindler and A. Wiemers. Power attacks in the presence of exponent blinding.
J. Cryptographic Engineering, 4(4):213–236, 2014.

15. W. Schindler and A. Wiemers. Efficient Side-Channel Attacks on Scalar Blinding
on Elliptic Curves with Special Structure. NIST Workshop on ECC Standards,
2015.

16. W. Schindler and A. Wiemers. Generic power attacks on RSA with CRT and
exponent blinding: new results. J. Cryptographic Engineering, 7(4):255–272, 2017.

17. R. Specht, J. Heyszl, M. Kleinsteuber, and G. Sigl. Improving non-profiled attacks
on exponentiations based on clustering and extracting leakage from multi-channel
high-resolution EM measurements. In S. Mangard and A. Y. Poschmann, edi-
tors, Constructive Side-Channel Analysis and Secure Design - 6th International
Workshop, COSADE 2015, Berlin, Germany, April 13-14, 2015. Revised Selected
Papers, volume 9064 of Lecture Notes in Computer Science, pages 3–19. Springer,
2015.

18. Standards for Efficient Cryptography Group (SECG). SEC 2 : Recommended El-
liptic Curve Domain Parameters. Certicom Research, 2000.

19. L. Weissbart, S. Picek, and L. Batina. One trace is all it takes: Machine learning-
based side-channel attack on eddsa. Cryptology ePrint Archive, Report 2019/358,
2019. https://eprint.iacr.org/2019/358.

A Brief Analysis of the Final Vertical Side-channel
Analysis (Attack Step 3)

Assuming that the attacker went succesfully through the overall attack path
described in Section 1.2, we analyse here the success rate of the last step of the
attack: the vertical side-channel attack given a set of noisy blinded scalars (or
exponents in the case of RSA) {d̃l}l<N and their corresponding blinding factors
{rl}l<N . A simple attack algorithm follows:

Set a small window size w (e.g. w = 4), the vertical attack will find each
bit of the secret scalar (resp. exponent) d iteratively with predictions over w



consecutive bits. In the case of ECC, where the order of the elliptic curve E is
public, at iteration i the attacker possesses i−1 bits of d (as well as the blinding

factors {rl}l<N ). Then, for each of the possible next w bits of d (denoted d̂w,
which takes values in F2w), the attacker can predict the ith to (i+w− 1)th bit

of the N real blinded scalars. The attacker can then select the hypothesis on d̂w

that predicts the best13 the observations {d̃l}l<N and only keep the first bit of it

(d̂w mod 2 which becomes the ith bit of d) and then move to the next iteration.
The overall attack complexity is O(2wNK).

In the case of RSA, the value of φ(n) (or φ(p) for a CRT implementation)
is unkwown, the attack will then process similarly but guessing the bits of φ(n)
(resp. φ(p)) simultaneously with the bits of d. Hence, at each iteration, the
attacker will go through all values of the next w bits of d as well as the next w
bits of φ(n) (resp. φ(p)) and, for each of them, predict w bits of the N blinded
exponents and confront them to w bits of the N noisy blinded exponent. The
overall attack complexity is O(22wNK).

Figure 5 shows the average number of correctly guessed bits of d for ECC
(K = 256) and RSA (K = 1024) and for various values of w ∈ {1, 2, 4}. We
conducted these simulations for three bit error rates, up to εb = 0.3, which is
larger than any bit error rate considered in this paper. These results confirm
the claim that few tens of noisy blinded scalars (resp. exponents), given their
blinding factors, are enough to find the secret scalar (resp. exponent).

Fig. 5. Average number of correct bits of d (over 20 trials).

13 in our simulations we simply used the majority rule: the number of matching bits
between the predictions and the noisy blinded scalars. This step will perform even
better by using the side-channel traces in a more classical side-channel attack but
the majority rule was already enough for our needs.


