
HAL Id: lirmm-02313572
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02313572v1

Submitted on 11 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deductive Parsing with an Unbounded Type Lexicon
Konstantinos Kogkalidis, Michael Moortgat, Richard Moot, Giorgos Tziafas

To cite this version:
Konstantinos Kogkalidis, Michael Moortgat, Richard Moot, Giorgos Tziafas. Deductive Parsing with
an Unbounded Type Lexicon. SemSpace 2019 - 3rd Workshop on Semantic Spaces at the Intersection
of NLP, Physics, and Cognitive Science@ESSLLI 2019, Aug 2019, Riga, Latvia. �lirmm-02313572�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02313572v1
https://hal.archives-ouvertes.fr


DEDUCTIVE PARSING

WITH AN UNBOUNDED TYPE LEXICON

KONSTANTINOS KOGKALIDIS

Utrecht Institute of Linguistics OTS, 3512 JK Utrecht, the Netherlands
k.kogkalidis@uu.nl

MICHAEL MOORTGAT

Utrecht Institute of Linguistics OTS, 3512 JK Utrecht, the Netherlands
m.j.moortgat@uu.nl

RICHARD MOOT

LIRMM, Université de Montpellier, CNRS, France
richard.moot@lirmm.fr

GIORGOS TZIAFAS

University of Groningen, 9700 AB Groningen, the Netherlands
g.tziafas@student.rug.nl

Abstract

We present a novel deductive parsing framework for categorial type logics, mo-
deled as the composition of two components. The first is an attention-based neural
supertagger, which assigns words dependency-decorated, contextually informed lin-
ear types. It requires no predefined type lexicon, instead utilizing the type syntax
to construct types inductively, enabling the use of a richer and more precise typing
environment. The type annotations produced are used by the second component, a
computationally efficient hybrid system that emulates the inference process of the type
logic, iteratively producing a bottom-up reconstruction of the input’s derivation-proof
and the associated program for compositional meaning assembly. Initial experiments
yield promising results for each of the components.

Vol. \jvolume No. \jnumber \jyear
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications



KOGKALIDIS, MOORTGAT, MOOT AND TZIAFAS

1 Parsing as deduction

The type-logical strand of categorial grammar is based on a proof-theoretic view on natural
language syntax and semantics: determining whether a phrase is syntactically well-formed
amounts to a process of logical deduction deriving its type from the types of its constituent
parts. The Curry-Howard correspondence between proofs and computations then effectively
turns this logical deduction into a program assembling the meaning of the parsed phrase in
a compositional way [10].

What counts as a valid deduction depends on the type logic used. The type logic we aim
for is a dependency-enhanced version of the simply typed fragment of Multiplicative Intu-
itionistic Linear Logic (MILL, [2]), also known as the Lambek-Van Benthem calculus [1].

The type language then has atomic types, and complex types formed with linear im-
plication. Atomic types are assigned to phrases that are considered ‘complete’, e.g. NP for
noun phrase, PRON for pronoun, etc. Complex types, on the other hand, are binary functors
that compose with an argument phrase to produce a larger one.

Γ ` A ∆ ` A→ B
Γ,∆ ` B → E

Γ, A ` B
Γ ` A→ B

→ I

Table 1: Linear implication: Elimination and Introduction rules

The natural deduction rules for linear implication are shown in Table 1. Judgements
are of the form Γ ` B, with Γ = A1, . . . , An a multiset of type assumptions from which
one derives conclusion B. Computationally, Implication Elimination corresponds to func-
tion application and Introduction to function abstraction on the interpreting meaning spaces.
Notice that no intermediate syntax-semantics homomorphism is required to map the syn-
tactic space onto to the semantic space; our types already constitute the type signatures of
the latter.

In what follows, we will decorate the linear implication with a fixed set of dependency
labels denoting grammatical relations such as subject (su) and object (obj). For instance,
NP

su−→ S corresponds to a functor that consumes a noun-phrase carrying the subject role to
produce a sentence — an intransitive verb. By extending the formula language with modal
operators as in [8], it would be possible to treat A d−→ B formally as 3dA → B. For
the purposes of this paper, we will treat the dependency labels simply as an annotation that
provides useful information for the parser.

2



DEDUCTIVE PARSING WITH AN UNBOUNDED TYPE LEXICON

mannen ` NP
L

vrouwen ` NP
L

NP ` NP
id haten ` NP

obj
−−→ NP

su−−→ Ssub

L

NP, haten ` NP
su−−→ NP

→ E

NP, vrouwen, haten ` Ssub
→ E

vrouwen, haten ` NP
obj
−−→ Ssub

→ I

die ` (NP
obj
−−→ Ssub)

body
−−→ NP

mod−−→ NP

L

die, vrouwen, haten ` NP
mod−−→ NP

→ E

mannen, die, vrouwen, haten ` NP
→ E

Figure 1: Derivation for the object-relative typing of the example sentence “mannen die
vrouwen haten” (men whom women hate). Axiom leaves are either marked L for lexical
type assignments, or id for identities of hypotheses. Ssub is the type of subordinate clauses.

2 Experimental Setup

Our experiments focus on Dutch. The relatively high degree of word order freedom of
the language is a feature that makes our choice for a non-directional type logic pay off.
Our dataset is a treebank of approximately 65000 annotated sentences of written Dutch,
originating from the Lassy-Small corpus [12]. The annotations are DAGs with syntactic
category labels at the nodes and dependency labels at the edges; re-entrancy is used for
the annotation of unbounded dependencies and related phenomena, obviating the need for
phantom syntactic elements (gaps, traces etc).

We extract type annotations by implementing an adaptation of Moortgat and Moot’s al-
gorithm [9] . Atomic types are the result of a translation mapping on the part-of-speech tags
and phrasal category labels of the Lassy DAGs. Phrasal heads are assigned implicational
functor types selecting their dependents. A pre-specified obliqueness hierarchy [5] deter-
mines in which order the arguments are consumed in the case of multi-argument functors.
The algorithm turns an input DAG into a type-sequence for the lexical items at its yield.
The resulting sequences enumerate a total of 5700 unique types, made out of 22 binary
connectives and 30 atomic types.

As remarked earlier, our main deviation from standard categorial practice is to collapse
the directed implication connectives /, \ into a single linear implication. Part of the lost
information is re-encoded by naming each implication in accordance to the label of the de-
pendency it is implementing. In practical terms, this means that resolving dependencies no
longer needs to be solved explicitly by a future parser, as dependencies are now represented
internally within the grammar’s type system. Figure 1 depicts an example derivation of our
grammar.

3



KOGKALIDIS, MOORTGAT, MOOT AND TZIAFAS

3 Supertagging Unbounded Type Lexicons

Our extracted grammar boasts a simple yet rich type system; its fine-grained nature is man-
ifested by the large number of unique types extracted. This has the negative side-effect that
most types occur infrequently, making them hard to learn for standard supertaggers. Su-
pertaggers are usually envisioned as neural sequence labeling systems, which iterate over
a sentence and assign each of its words a type (i.e. a label) from a finite set. They op-
erate under the assumption that the possible set of labels is bounded and known a priori,
thus failing to account for types that are not present in the corpus and struggling with types
for which only a small number of training instances is present. We briefly report on earlier
work1, an architecture that does away with the aforementioned problems by making a subtle
adjustment to the usual problem formulation.

3.1 The Language of Types

We begin by noting that despite their sparsity, our extracted types are characterized by an im-
portant regularity; they are all constructed by a common underlying inductive scheme. This
scheme may be viewed as a context-free grammar, in turn defining a language, the words
of which are types. Even though the set of types is (potentially) infinite, the grammar’s ter-
minal symbols (being either atomic types or binary connectives) are themselves finite, and
known in advance. Taking this into account, we orient our architecture towards learning
how types are dynamically constructed under the context of an input sentence. Successfully
doing so provides the means for supertagging without an explicitly defined lexicon, allow-
ing correct type assignments even for rare and previously unseen types, thereby bypassing
the technical issues caused by larger and sparser lexicons.

3.2 Supertagging is Sequence Transduction

With this new insight, we design a neural architecture that treats the supertagging problem as
sequence transduction, rather than sequence labeling. Essentially, our goal is a system that
accepts a sequence of N words as its input, and produces a sequence of M symbols as output
(with M ≥ N), where the output symbols represent the sequence of formulas (supertags)
using a sequence of atomic types, binary connectives, and an auxiliary separator that marks
full type boundaries (parentheses are discarded by adopting the polish notation). Neural
machine translation architectures naturally lend themselves to this problem specification
(another way of putting this is that we want to accomplish a translation from a source natural
language onto the language defined by our type grammar). Given the combination of short
and long distance dependencies present in the task (stemming from the type-level CFG and

1Citation currently under embargo.

4



DEDUCTIVE PARSING WITH AN UNBOUNDED TYPE LEXICON

Input Sentence Output Sequence

ELMo

Encoder

Embedding

Decoder
Embedding
(transposed)

σα

Output Probabilities

M symbolsN words

Sentence Embedding
RN×1024

Symbol Embeddings
RM×1024

Encoder Keys
RN×1024

Encoder Values
RN×1024

Decoder Values
RM×1024

Class Weights

Figure 2: The supertagger’s architecture, where σ and α denote the sigsoftmax and argmax
functions respectively, grayed out components indicate non-trainable components and the
dotted line depicts the information flow during inference.

the sentence-wide grammar, respectively), we choose to utilize a Transformer network [14]
for the task at hand. Transformers rely on self-attention rather than recurrence, a mechanism
that allows the network to selectively shift its focus over non-contiguous spans of long,
high-dimensional sequences depending on the current context.

Architecture Our model consists of an encoder stack, which is comprised of a frozen
(i.e. pretrained) ELMo [13, 3] followed by a single-layer Transformer encoder. As a whole,
the encoder creates contextually informed, 1024-dimensional word representations; the pre-
trained ELMo’s output have been shown to achieve high performance in parse-related tasks,
and the trainable Transformer encoder accounts for domain adaptation. The model also uti-
lizes a 2-layer Transformer decoder, which processes the atomic symbols produced by the
network (up to the current point) along with the encoder’s representations. The atomic
symbols are vectorized using an embedding layer (again 1024-dimensional), the transpose
of which is reused to convert symbolic vectors back into class weights, from which the final
output probabilities are obtained via application of the sigsoftmax function [6]. A high-level
view of the overall architecture in shown in Figure 2.

3.3 Results

The network was trained on 80% of the type-annotated sentences, validated on half of the
remaining sentences, and tested on the remaining 10%. For training, we employed the
adaptive scheme proposed by Vaswani et al. [14], with slightly stricter regularization. In the
testing phase, the network achieves a competitive overall accuracy, as well as remarkable

5



KOGKALIDIS, MOORTGAT, MOOT AND TZIAFAS

generalization potential over rare types and types missing entirely from the training set.
Table 2 presents our results across different bins of training set occurrence counts: unseen (0
occurrences), rare (1-10), average (10-100) and high-frequency types (> 100 occurrences).

Type Accuracy (%)

Overall Unseen Rare Average High

88.05 19.2 45.68 65.62 89.93

Table 2: Model performance with respect to different bins of type frequencies.

4 Parsing Framework

Considering that a proof is a series of rule applications, we may obtain a proof-faithful
parser by simply modeling the grammar’s logical rules, namely implication elimination and
implication introduction.

With the above in mind, we draw an abstract picture of the main component of our
parsing process in Algorithm 1.

Algorithm 1 Parse Step
. Performs a backward step of the proof reconstruction.

1: procedure PARSESTEP(PREMISES)
2: GOAL ← INFERGOAL(PREMISES)
3: while CANINTRODUCE() do
4: (PREMISES,GOAL)← APPLYINTRO(PREMISES,GOAL)
5: end while
6: (PREMISESLEFT, PREMISESRIGHT)← APPLYELIM(PREMISES,GOAL)
7: return (PREMISESLEFT, PREMISESRIGHT)
8: end procedure

Concretely, the procedure defined above may be decomposed into several subroutines.
First, given the types at the left-hand side of a judgement as assumptions, we may obtain the
conclusion, i.e. the proof’s goal type at the current step. Barring edge cases, this process
is deterministic in virtue of the count invariance property [1] of derivable multiplicative se-
quents that requires balanced numbers of input and output occurrences of atomic subtypes.
The next step involves determining whether an introduction rule may be applied. Gener-
ally, any time the goal type is a complex type, we can safely replace it by its result (i.e.
the type on the right side of the main implication connective) while adding its argument

6



DEDUCTIVE PARSING WITH AN UNBOUNDED TYPE LEXICON

(i.e. the type on the left side of the main connective) onto the list of premises, a function-
ality implemented by the APPLYINTRO routine. This is not the case, however, if the main
connective carries a name corresponding to a modifier label, or the argument to be intro-
duced was just eliminated at the immediately prior step of the backwards proof search (thus
avoiding infinite loops); CANINTRODUCE keeps track of these two conditions and informs
the parser accordingly. Finally, given that our complex types are the signatures of binary
functors, elimination may be treated as the splitting of a sequence (PREMISES) into two
disjoint, possibly non-contiguous, subsequences (PREMISESLEFT and PREMISESRIGHT),
where the elements of the first together form the argument that is to be consumed by the
function formed by the elements of the second.

In practical terms, we first provide our system with a phrase (the full sequence of
premises), out of which the phrasal type is derived. After zero or more introduction applica-
tions, the phrase is split into two disjoint (possibly non-contiguous) sequences of premises.
If any of the resulting sequences has an length of one, it corresponds to an axiom leaf;
otherwise, it is a valid input candidate upon which the same process may start anew. This
iteration progressively yields a binary branching tree, that is in one-to-one correspondence
with the underlying proof constructed bottom-up (with introduction rules telescoped).

4.1 Elimination is Binary Sequence Classification

At this point, recall that our grammar specification assumes associativity and commuta-
tivity as universally holding, a design choice that limits the type system’s complexity and
enhances its learnability. The non-directionality of→ means that the splitting done by AP-
PLYELIM is not deterministic. In practice, the type assignments made by the supertagger
(even if fully correct) may admit more proofs (or parses) than linguistically desired. To
constrain the search space over parses to just those that are linguistically plausible but also
constitute valid proofs, our parser needs to resolve ambiguities by incorporating both lexical
and type-level information. Hence, rather than treating PREMISES as a sequence of types,
we instead expand it to sequence of pairs of words and types. This allows us to distinguish
between elements that share the same type but are anchored to different lexical items — an
addition that, together with our dependency-decorated types, allows for a preferential treat-
ment of particular words with respect to certain dependency roles under different contexts.

With this in mind, we choose to model APPLYELIM as a neural function. Under its cur-
rent specification, the function’s task is to split a sequence into two disjoint subsequences;
or equivallently, to assign a binary label for each item within the sequence. Binary se-
quence classification is an established problem in machine learning literature, which points
to the direct applicability of standard recurrent architectures. Our network is a standard
variant of such an architecture; we allow a bidirectional, two-layer deep Gated Recurrent
Unit (GRU)[4] to iterate over the vectorial representations of the input sequence. A linear

7



KOGKALIDIS, MOORTGAT, MOOT AND TZIAFAS

transformation then converts the high-dimensional vectors of the recurrent unit onto a class
weight vector in R2, which are converted onto class probabilities by the softmax function.

To create vectorial representations of our sequence elements, we first apply the ELMo
used by the supertagger onto each word of a sentence. A word’s vector −→w is then given
by ELMo(word, context), where context refers to the initial sentence (prior to any elimina-
tions). By using a contextual embedding that is informed by the full sentence and letting
it persist unchanged throughout the proof, we can provide the parser with an implicit no-
tion of the proof’s "past" while drastically reducing the computational costs associated with
calculating the word vectors at each step. Next, we convey the type-level information by as-
sociating each unique type with a vector. Recalling that complex types (in Polish notation)
are sequences of atomic types and binary connectives, for which we already have embed-
dings as produced by the supertagger, we construct complex type embeddings by iterating
another GRU over the vector sequences that correspond to each complex type. A word-type
pair’s vector is then simply the concatenation of its word and type vectors. In cases where
an element participating in an elimination is not lexically grounded (i.e. types generated by
prior introduction rules), we simply set its word vector to zeros. Finally, in order to inform
the network of the conclusion type (which we have already derived), we further concatenate
its vector onto each word-type pair, essentially converting the recurrence into a function that
is parametric with respect to the goal type.

A visual presentation of the network is shown in Figure 3.

Training To train the network, we precompute the contextualized vectors for each word
participating in an elimination. Since the word vectors do not change within any single
proof, we may then treat each elimination as an independent data point, allowing multiple
eliminations (possibly from different sentences) to be processed in parallel. This gives us
the ability to avoid complex data structure manipulation during training time, abolishing
the need for CPU instructions that insert computational overhead. In effect, the neural com-
ponent of the parser is based solely on highly optimized tensor operations and requires no
more than a couple of minutes to train, despite its high expressivity. This marks a significant
improvement over modern parsing architectures, which commonly involve a stack contain-
ing partial derivations which is continuously written to and read from, in both the temporal
axis (the parse steps) and the sentential axis (the neural iteration over the words).

Inference The inference process is identical to training, except for the fact that the input
is no longer an independent sample, but rather the production of a previous application of
the network (or, the initial phrase). End-to-end inference has quadratic complexity with
respect to the input length (linear number of eliminations, linear iteration complexity per
elimination).

8



DEDUCTIVE PARSING WITH AN UNBOUNDED TYPE LEXICON

Input Sentence
hond bijt man

ELMo

−→w1
−→w2

−→w3

Input Type Sequences
NP obj−→ NP

su−→ NP Smain NP

−→
t1

−→
t2

−→
t3

TTT TTT TTT

Input Goal Type
Smain

−→g

TTT

−→w1;−→t1 ;−→g −→w2;−→t2 ;−→g −→w3;−→t3 ;−→g

EEE

1 1 0

Figure 3: The APPLYELIM neural architecture, where T refers to the type-level GRU, and
E to the premise-level GRU. Vector concatenation is denoted by ;. For the example word
input “hond bijt man”, “man” is the element to be eliminated, therefore getting the label 0.

4.2 Results

We run preliminary experiments on a subset of our data to evaluate the framework’s po-
tential. We limit our experiments to sentences involving types of at most order 2 and no
conjunctions (more on that in Section 5). The resulting dataset counts 33000 sentences
(approximately half of the original), out of which 340000 instaces of eliminations are gen-
erated. We train on the first 80% of the sentences, and report results on the remaining 20%.
In order to assess the parser in isolation, we use the gold extracted types rather than the
types assigned by the supertagger.

Implementation Details We use a 1-layer unidirectional GRU with an input and hidden
dimensionality of 1024 as our type embedder. For the premise-level GRU, we set its hidden
dimensionality to 256, its number of layers to 2 and apply a recurrent dropout of 0.5 for
regularization. We train our network using a cross-entropy loss and an AdamW optimizer
[7] with a learning rate of 10−3 and a weight decay of 10−4.

Ablations We perform a number of ablations to gain an understanding of the relative
influence of each extra source of information to the model. Table 3 reports our results.

9



KOGKALIDIS, MOORTGAT, MOOT AND TZIAFAS

Model Full Full-g Full-g-t Full-g-w
Accuracy 88.6 85.2 73.82 73.59

Table 3: Percentage of eliminations correctly analyzed by each model, where Full refers
to the model described in 4.1, and -g, -t, -w refer to a model where the goal, type and
word-level inputs have been removed respectively.

Analysis As all other parsing subroutines are largely deterministic, the neural elimination
module is the factor that decides the upper boundary of our system’s performance. Evi-
dently, the model achieves competitive accuracy scores despite its simple formulation and
implementation. Further, it manages to successfully incorporate all informational sources,
as suggested by its increased performance when allowed access to more inputs. When
trained only on word or type information, it still manages adequate accuracy scores, attest-
ing to the high quality of both the word vectors as yielded by the pretrained ELMo, and also
the rich informational content of the atomic embeddings as produced by the supertagger.

5 Conclusion & Future Work

We have presented an end-to-end parsing framework, which allows the construction of type-
logical derivations from input sentences. Our contributions are threefold. First, we have
showcased how non-directional implication types may be enriched with dependency label
information, integrating part of the parser’s overhead into the grammar’s type system. Sec-
ond, we have demonstrated that a reformulation of the supertagging problem significantly
increases the generalization potential of tagging architectures, allowing for larger and more
fine-grained categorial grammars to be efficiently acquired. Finally, we have presented a
novel parsing algorithm capable of resolving the inherent ambiguity of our type system by
incorporating a combination of word and type level information. In reducing the neural
aspect of parsing to an iterated process of binary sequence classification, our system eli-
minates the need for coupling a neural network with complex data structures, significantly
simplifying the overall architecture. As a result, it is remarkably fast to both train and
execute, while still achieving highly competitive results.

Overall, our work proposes a straightforward, pragmatic treatment for languages ex-
hibiting word order freedom. Aside from acting as a competent parser, the system’s output
(being ILL proofs) facilitate large-scale practical experimentation on data-driven semantic
compositionality. Our types have a direct correspondence with simply-typed λ-calculus
terms; given a means of translating these terms onto structured sets (e.g. vector spaces)
and function spaces, proofs may immediately be interpreted into programs of syntactically-
informed meaning assembly and their results practically evaluated.

10



DEDUCTIVE PARSING WITH AN UNBOUNDED TYPE LEXICON

During our experimentation, a few compromises were made to allow for a faster valida-
tion of our methods. These will need to be addressed before a more ambitious expansion is
attempted.

Conjunctions To avoid overpopulating the lexicon with various instantiations of conjunc-
tion types, we have adopted a meta-notation for each polymorphic instance that describes

the union type of all multi-argument functors of the form X
cnj−→ X . . .

cnj−→ X as X? cnj−→ X,
where the star means 2 or more arguments. A proper logical treatment of coordination poly-
morphism would require extension of the type logic with facilities for iteration, as in [11].
Not having to specify the concrete number of arguments of a coordinator eases the supertag-
ging phase, but adds a challenge in the parsing phase. The conjunction type now needs to be
propagated upwards in the proof unchanged, until the point where no more items are valid
arguments for it. This change, if treated carefully, does not have any major implications for
the rest of the framework.

Beyond Second Order Our extraction algorithm produces higher-order types that are of
maximal order three, whereas our current parser implementation may treat only up to second
order types. If at any point during the proof search the goal type is third order, applying an
introduction rule yields a lexically ungrounded second order type. Such types may give
rise to derivational ambiguity; they are not arguments to be consumed, but rather functors
that consume other arguments; if multiple candidate arguments are present, there is no
way of uniquely determining which one they are applied to. This is an intrinsic feature of
higher order types rather than a defect of the parsing algorithm. Resolving the derivational
ambiguity would require either inserting a predefined preference bias to be learned by the
network (either implicitly or using an additional component responsible for deciding the
formula in focus), or decorating the types in question (for instance using unary modalities)
to guide their proof-theoretic behaviour.

Different Networks Aside from considering the above points, there are a few possible
directions that we would be interested in further exploring. The architecture of APPLYELIM

is one of those. An immediate addition which is very likely to further increase performance
would be to incorporate the Transformer encoder (as already trained by the supertagger)
into the word vectorization process, further improving our network’s representations with
no added parameters. More benefits might be reaped if the system is re-purposed as a
structured search over entire proof spans (rather than just elimination steps in isolation);
such a change would output more than one unique proof outputs, each associated with a
different probability score, allowing for multiple syntactic analyses in cases of real (i.e.
non-spurious) ambiguity. Further, a comparison to alternative architectures (i.e. encoder-

11



KOGKALIDIS, MOORTGAT, MOOT AND TZIAFAS

decoder networks) or established parsing practices (i.e. shift/reduce-based parsers) would
shed light on the comparative strengths and weaknesses of our approach.

Evaluation Our parser was trained using gold tags obtained directly from the extraction
process. Realistically, it would need to perform even under the presence of partially erro-
neous tags, as produced by the supertagger. To increase its robustness against wrong tags,
the training process could emulate these by confounding the input types in a controlled
manner (alternatively, the two could be jointly trained on a shared portion of the dataset).
Finally, to estimate concrete high and low bounds for the end-to-end accuracy of proof re-
construction, the supertagger’s output would need to be used directly as the parser’s input.

References

[1] van Benthem, J.: Language in action. J. Philosophical Logic 20(3), 225–263 (1991)
[2] Benton, N., Bierman, G., de Paiva, V., Hyland, M.: A term calculus for intuitionistic linear

logic. In: Bezem, M., Groote, J.F. (eds.) Typed Lambda Calculi and Applications. pp. 75–90.
Springer Berlin Heidelberg, Berlin, Heidelberg (1993)

[3] Che, W., Liu, Y., Wang, Y., Zheng, B., Liu, T.: Towards better UD parsing: Deep contex-
tualized word embeddings, ensemble, and treebank concatenation. In: Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies.
pp. 55–64. Association for Computational Linguistics, Brussels, Belgium (October 2018),
http://www.aclweb.org/anthology/K18-2005

[4] Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
Bengio, Y.: Learning phrase representations using RNN encoder–decoder for statistical ma-
chine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). pp. 1724–1734. Association for Computational Linguistics,
Doha, Qatar (Oct 2014). https://doi.org/10.3115/v1/D14-1179, https://www.aclweb.
org/anthology/D14-1179

[5] Dowty, D.: Grammatical relations and Montague grammar. In: Jacobson, P., Pullum, G. (eds.)
The nature of syntactic representation, pp. 79–130. Reidel (1982)

[6] Kanai, S., Fujiwara, Y., Yamanaka, Y., Adachi, S.: Sigsoftmax: Reanalysis of the softmax
bottleneck. In: Advances in Neural Information Processing Systems. pp. 284–294 (2018)

[7] Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam. arXiv preprint
arXiv:1711.05101 (2017)

[8] Moortgat, M.: Multimodal linguistic inference. Journal of Logic, Language and Information
5(3-4), 349–385 (1996)

[9] Moortgat, M., Moot, R.: Using the spoken Dutch corpus for type-logical grammar induc-
tion. In: Proceedings of the Third International Conference on Language Resources and
Evaluation (LREC’02). European Language Resources Association (ELRA) (2002), http:
//www.lrec-conf.org/proceedings/lrec2002/pdf/209.pdf

12

http://www.aclweb.org/anthology/K18-2005
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179
http://www.lrec-conf.org/proceedings/lrec2002/pdf/209.pdf
http://www.lrec-conf.org/proceedings/lrec2002/pdf/209.pdf


DEDUCTIVE PARSING WITH AN UNBOUNDED TYPE LEXICON

[10] Moot, R., Retoré, C.: The Logic of Categorial Grammars: A Deductive Account of Natural
Language Syntax and Semantics, vol. 6850. Springer (07 2012). https://doi.org/10.1007/978-
3-642-31555-8

[11] Morrill, G., Valentín, O.: Computational coverage of TLG: nonlinearity. CoRR
abs/1706.03033 (2017)

[12] van Noord, G., Schuurman, I., Vandeghinste, V.: Syntactic annotation of large corpora in
STEVIN. In: LREC 2006 Proceedings. 5th Edition of the International Conference on Lan-
guage Resources and Evaluation. European Language Resources Association (ELRA) (01
2006)

[13] Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L.:
Deep contextualized word representations. In: Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers). pp. 2227–2237. Association for Computa-
tional Linguistics, New Orleans, Louisiana (Jun 2018). https://doi.org/10.18653/v1/N18-1202,
https://www.aclweb.org/anthology/N18-1202

[14] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polo-
sukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems.
pp. 5998–6008 (2017)

Received \jreceived

https://www.aclweb.org/anthology/N18-1202

	Parsing as deduction
	Experimental Setup
	Supertagging Unbounded Type Lexicons
	The Language of Types
	Supertagging is Sequence Transduction
	Results

	Parsing Framework
	Elimination is Binary Sequence Classification
	Results

	Conclusion & Future Work

