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Wrist Motion Recognition by Using Electromyographic Signals
Jing Luo1, Chenguang Yang2,*, Chao Liu3, Yuxia Yuan4, Zhijun Li5

Abstract—Wrist motion classification is a very common
research topic in scientific study. However, wrist motion recog-
nition of the surgeon is often neglected in the robot-assisted
surgery or surgical training. Therefore, the objective is to
develop a classification method to recognize wrist motion of the
surgeon. In order to do that, we present a linear discriminant
analysis (LDA) algorithm involving surface electromyography
(sEMG) signals to evaluate the motions in this paper. Firstly,
sEMG signals are collected by using a MYO armband which
can be worn on the forearm of a subject. Root-mean-square
(RMS) and waveform length (WL) feature are extracted from
the sEMG signals and then those features are regarded as input
of the LDA to train the classifier. As a result, we can obtain a
classifier to recognize four kinds of wrist motions. Classification
experiment is performed by two subjects. The experimental
results have been demonstrated by using the proposed approach
and it is shown that the accuracy of wrist motion by using RMS
feature is higher than that of by using WL feature.

I. INTRODUCTION

Recently, motion capture technology (MCT) is very widely
used in many areas involving 3D digital animation, sports
and exercise research, medical applications, and neuroscience
research, etc. [1] [2] [3] [4]. The motion capture covers
position tracking of human, feature extraction, pattern and
recognition [5].

In order to recognize motion pattern, kinematic informa-
tion, such as position, angle, velocity, can be used as input
of MCT. At the same time, physiological signal also can be
applied to evaluate the motion pattern of human [6] [7] [8]. In
general, it cannot acquire neural information of human mo-
tion pattern according to the physical information. However,
the physiological signals, such as surface electromyogram
(sEMG), electroencephalogram(EEG), and electrooculogram
(EOG), can help human to analyse neural pattern of motion
[9] [10]. The sEMG signals indicate the effect of human’s
motor unit action potentials of the muscle fiber. Motion

This work was partially supported by National Nature Science Foundation
(NSFC) under Grants 61861136009 and 61811530281, CNRS-NSFC Grants
PRC2104, and LabEx NUMEV Grant.

1J. Luo is with the Key Laboratory of Autonomous Systems and Net-
worked Control, School of Automation Science and Engineering, South Chi-
na University of Technology, Guangzhou, 510640, China. He was also with
Department of Robotics, LIRMM, UMR5506, University of Montpellier-
CNRS, 161 rue Ada, 34095 Montpellier, France.

2C. Yang is with the Bristol Robotics Laboratory, University of the West
of England, Bristol, BS16 1QY. U.K.

3C. Liu is with Department of Robotics, LIRMM, UMR5506, University
of Montpellier-CNRS, 161 rue Ada, 34095 Montpellier, France.

4Y. Yuan is with the School of Automation Science and Engineering,
South China University of Technology, Guangzhou, 510640, China.

5Z. Li is is with the Department of Automation, University of Science
and Technology of China, Hefei 230026, China.

*Corresponding author. Email: cyang@ieee.org.

intention pattern of the human can be evaluated by using
sEMG signals [11] [12].

Many achievements indicated that feature of the sEMG
signals could further improve the recognition accuracy of the
motion pattern [13] [14] [15]. According to [16], Atoufi et
al. used mean absolute values (MAV) of the sEMG signals
as the feature to evaluate the muscle synergy. Yang et al.
used variety of EMG signal variations to recognize multiple
finger motions [17]. In [18], a five time series features was
presented to compare the performance of motion pattern
by using MYO armband. A common spatial pattern (CSP)
feature showed a better performance in comparison with time
domain (TD) features for classification accuracy [19]. In [20],
Akhlaghi et al. used ultrasound imaging of human arm to
recognize the complex volitional hand motion in real time.
Bhattacharya et al. proposed a hybrid multi-feature method
to control limb prosthses for human computer interfaces
[21]. A top and slope (TAS) feature of sEMG signals were
introduced to detect lower limb human motion and it could
provid high accuracy in the experiments [22]. According to
[23], Daubechies wavelet transform method was presented to
evaluate the performance of the feature extraction.

To improve the recognition accuracy of the motion pattern,
many researchers have concentrated on how to analyse the
motion intention [24] [25]. Chambon [26] et al. proposed a
deep learning architecture with multivariate and multimodal
time series for sleep stage classification. In [27], a hybrid
algorithm involving Bayesian and neural networks method
was developed to motion classification for human-robot in-
terfaces. A fuzzy logic algorithm was presented for wrist
movements classification [28]. Ahsan et al. used an optimized
neural network to evaluate EMG motion pattern [29]. In
[30], a special subject-independent based decoding model
was proposed to decode the wrist motions and hand motions.

Inspired by the feature extraction method and motion clas-
sification algorithms, a LDA method with different features
was developed to recognize the wrist motions of the surgeon.
In this work, we used WL and RMS feature as the input
of classification model. In the process of experiment, we
founded that the RMS feature can be achieved a higher
accuracy in comparison with that of the WL feature. The
feasibility of the proposed wrist motion recognition method
was demonstrated by the experimental results.

The rest paper’s structure is as below. The proposed
method of data acquisition, feature extraction and classi-
fication are presented in Section II. Section III presents
the experimental results which introduce the experimental
setup and wrist motion classification experiment. Section
IV contains the conclusion and the suggestions for future
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research.

II. PROPOSED METHOD

We propose a wrist motion framework as shown in Fig. 1 in
this paper. It can be seen that this framework contains sEMG
signals preprocessing, feature extraction, and classifier.

As shown in Figs. 2(a)-(d), four types of wrist motions are
studied1. In the experiment, the subject is requested to do the
wrist motion with maximal angle.

A. Data acquisition and feature extraction

As shown in Fig. 1, MYO armband (Thalmic Labs Inc.) is
mainly utilized for acquisition of sEMG signals and it wears
on the forearm of the subject2. The collected sEMG signal
is showed in Fig. 3.

Root-mean-square (RMS) and waveform length (WL) are
utilized to describe the features of the collected sEMG
signals.

RMS feature of the sEMG signals is defined as below:

FRMS =

√√√√ 1

Wrms

Wrms∑
i=1

n2
i . (1)

where Wrms represents the length of sampling moving
window for RMS. ni represents the collected sEMG signals.
FRMS represents the feature of sEMG signals for RMS.
Fig. 4 shows the RMS feature.

WL feature of the sEMG signals is defined as below:

FWL =
1

Wwl

Wwl∑
i=1

Δni. (2)

with
Δni = ni − ni−1 (3)

where Wwl represents the length of sampling moving window
for WL. ni represents the collected sEMG signals. FWL

represents the feature of sEMG signals for WL. The WL
feature is presented in Fig. 5.

B. Training and classification

In the training and classification phase, we present a
linear discriminant analysis (LDA) to train the classifier
to recognize the wrist motion based on RMS feature and
WL feature. In the experiment, the subjects train each wrist
motion with two minutes, and then repeat 3 times.

In this work, Ki is the recognition result of the wrist
motion. F is the feature of the collected sEMG signals3.

1The four wrist motion can be described as: wrist to the right (WtR),
wrist to the left (WtL), wrist extension (WE), and wrist flexion (WF).

2The MYO armband collects the raw sEMG signals by using eight
detection electrodes and a nine-axis inertial measurement unit with two
hundreds sampling Hertz.

3In this paper, the features of the collected sEMG signals contain FRMS

and FWL.

According to the features, we can recognize the wrist motion
type.

Based on [31] [32], the wrist motion result Ki can be
defined as below:

p(Ki|F ) =
p(Ki)p(F |Ki)

p(F )
(4)

where p(Ki) represents the prior probability of the wrist
motion. p(Ki|F ) represents the posterior probability of the
wrist motion by using the sEMG signal’s features F . When
the value of posterior probability is maximum for a certain
wrist motion, we can be sure the recognition result by using
the LDA method.

In general, p(F |Ki) represents the contingent probability
of the wrist motion, and it can be defined as below4:

p(F |Ki) =
1√

(2π)Mdet(D)

exp{−1

2
(F − μi)

TD−1(F − μi)}
(5)

where M represents the number of sEMG signal’s feature
vector. μi represents the mean vector of the wrist motion
result Ki. D represent the covariance matrix for four types
of wrist motions.

Logarithm fetch on Eq. 5, we can obtain the maximum
value of the p(Ki|F ). And then the linear discriminant
function (LDF) is defined as below:

δ(k) = FTμg + cg (6)

with
μg = D−1μk (7)

cg = −1

2
μT
kD

−1μk (8)

We maximize the LDF δ(k), the recognition result can be
obtained according to the feature vector.

III. EXPERIMENTS AND RESULTS

In this section, an experiment is performed to recognize
the four kinds of wrist motions (WR, WL, WE, and WF).

The process of this experiment can be presented as in
Fig. 6.

A. Experimental setup

The experimental setup is conducted to evaluate the effec-
tiveness of the wrist motion recognition method.

• Hardware configuration. Hardware configuration con-
tains the MYO armband with 8 sensor (200 Hz), a
work station with i7-3770T CPU (2.50GHz) and 12 GB
internal storage.

• Software configuration. Software configuration includes
MATLAB R2016a, VS 2013, and Windows seven oper-
ation system.

4In this paper, p(fRMS |ck) can satisfy the multivariate probability
distribution (MPD).
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Fig. 1. The wrist motion framework.

Fig. 2. Four kinds of wrist motions and the placement of the MYO armband on a right forearm.

Fig. 3. The collected sEMG signals by using a MYO armband.

Accuracy (ACC) is used to evaluate the feasibility of the
proposed method.

In this experiment, two healthy subjects (age 22-30 years
old, 2 males) are invited to perform the four types or wrist
motion with maximal angle. To minimize the influence of
muscle fatigue for the subject, we request each subject
perform two times with two minutes for each wrist motion,
and then have a rest with thirty minutes. In order to discuss
the impact of the difference features, we utilize the FRMS

and FWL to represent the sEMG signal’s feature. In the
pilot experiment, the moving window size of FRMS and
FWL are set as Wrms = Wwl = 50. We perform two
experiments in this work. The experimental parameters of
the two experiments can be presented as:

TABLE I
THE EXPERIMENTAL PARAMETERS OF THE TWO EXPERIMENTS

Experiment Experiment 1 Experiment 2
Size of training set 250*8 20000*8
Size of testing set 200*8 20000*8

Feature FRMS , FWL FRMS , FWL

Size of moving window 50 50

B. Wrist motion classification experiment

In experiment 1, the classification results are presented in
Tables II-III and Fig. 7. In Table II, WtL and WtR can be
obtained the best performance of classification in comparison
with that of other two wrist motions based on RMS feature.
While, in Table III, the performance of classification of WtL
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Fig. 4. The feature of sEMG by using RMS.

Fig. 5. The feature of sEMG by using WL.

Fig. 6. Experiment process of the proposed wrist gesture classification and wrist stiffness estimation.

is best among four types of wrist motions. It can be concluded
that the signal strength is different for wrist motions (WtL,

WtR,WE and WF) for the same subject. In addition, sEMG
signal for WtL and WtR is relatively strong in experiment 1.
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The average classification accuracy by using the RMS feature
is higher than that by using the WL feature from Fig. 7.

TABLE II
THE RESULTS OF WRIST GESTURE CLASSIFICATION FOR EXPERIMENT 1

BY USING RMS FEATURE.

Gesture WtL WtR WE WF
WtL 1 0 0 0
WtR 0 1 0 0
WE 0 0 0.8 0
WF 0 0 0 0.7

TABLE III
THE RESULTS OF WRIST GESTURE CLASSIFICATION FOR EXPERIMENT 1

BY USING WL FEATURE.

Gesture WtL WtR WE WF
WtL 1 0 0 0
WtR 0 0.7 0 0
WE 0 0 0.8 0
WF 0 0 0 0.8

Fig. 7. Accuracy of wrist motion by using LAD method for experiment 1.

In experiment 2, Tables IV-V and Fig. 8 show the clas-
sification experimental results. In Tables IV and V, the
performance of classification for WF is best in comparison
with WfL, WtR, and WE by using RMS or WL feature. That
is to say, sEMG signal for WF is relatively strong.

Compared with the performance between Fig. 7 and Fig. 8,
accuracy of classification is higher by using RMS feature for
four kinds of wrist motions. What is more, sEMG signal of
the subjects vary from person to person. the variability of
sEMG signals represent the subjects operational characteris-
tics. According to the experimental results from experiment
1 and 2, it can be demonstrated the wrist motions can be
recognized with higher accuracy by using the RMS feature.

TABLE IV
THE RESULTS OF WRIST GESTURE CLASSIFICATION FOR EXPERIMENT 2

BY USING RMS FEATURE.

Gesture WtL WtR WE WF
WtL 0.895 0 0 0
WtR 0 0.8 0 0
WE 0 0 0.85 0
WF 0 0 0 1

TABLE V
THE RESULTS OF WRIST GESTURE CLASSIFICATION FOR EXPERIMENT 2

BY USING WL FEATURE.

Gesture WtL WtR WE WF
WtL 0.88 0 0 0
WtR 0 0.75 0 0
WE 0 0 0.8 0
WF 0 0 0 1

Fig. 8. Accuracy of wrist motion by using LAD method for experiment 2.

IV. CONCLUSION AND FUTURE WORK

A method based on sEMG signals is developed in this
paper to recognize wrist motion of the surgeon. The clas-
sification method recognizes wrist motions by using RMS
feature and WL feature. Compared with the WL feature,
the accuracy of classification is higher when RMS feature
are used as the input of LDA classifier. In the experimental
results, it is showed that the proposed LDA approach can
recognize the wrist motions successfully.

In the future work, several issues should be resolved.
First, the different algorithms of feature extraction can reflect
the different modes for the sEMG signals. The appropriate
combination of feature extraction algorithms can effectively
improve the classification accuracy of the motions. Therefore,
integration of different feature extraction algorithms for the
motion classification should be taken into consideration.
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