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A Framework of Human impedance Estimation for Human-Robot
Interaction

Jing Luo, Chao Liu, Yanan Li, Chenguang Yang*

Abstract—A framework for estimating the human impedance
is proposed in this paper. In physical human-robot interaction
(pHRI), safety and human acceptance are key issues when
humans directly interact with the robots. In order to guarantee
the safety and improve performance in pHRI, it is important to
estimate the dynamics and intention of the human hand. In this
work, we consider that a human subject physically contacts with
a force sensor when a haptic device sets force in the proposed
framework. The measured force, the surface electromyographic
signal and the motion of the hand are used to estimate the
parameters of human forearm’s impedance. The effectiveness
of the proposed framework is demonstrated by experimental
results.

Index Terms—surface electromyographic signal (SEMG),
human intention, physical human-robot interaction (pHRI),
impedance parameters.

I. INTRODUCTION

Human robot interaction (HRI) is becoming an attractive
topic in recent years [1] [2] [3], especially when the human
and the robot perform a collaborative task in a common
space [4] [5]. In this sense, safety is a key issue which is
important to both the robot and human. In general, when
a robot interacts a stiff environment [6] or the intention
between the robot and the human is different [7] [8], the
pHRI system can be unstable.

In order to guarantee the safety of HRI, the dynamics
of both the robot and the human hand should be analysed.
Researchers have proposed many effective robot control
algorithms to achieve a safe HRI [9] [10] [11]. For example,
a parameterized dynamical system was employed to allow
the robots to adapt their motions to the human intention for
physical HRI (pHRI) in [12]. In [13], in order to achieve
seamless pHRI, a human behavior prediction method based
on Gaussian Process was presented to estimate human inten-
tion.

In this paper, we concentrate on the dynamic analysis of
human hand. Considering the human dynamics is closely
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connected to the muscle activation, we analyse the dynam-
ics of human hand from the perspective of bioinformatics.
Recently, electromyography (EMG) signals have been used
to analyse the dynamics of human in pHRI. There are
many achievements for analysis of human hand dynamics
using EMG signals. In [14], a synchronization recognition
method of gripping force and posture with respect to EMG
signals was proposed to explore the relationship between
EMG signal and force. An EMG-based learning method was
developed to decode the grasping intention for controlling
a robotic assistive device in the early stage of reach-to-
grasp motion [15]. In [16], Park er al. proposed a motion
intention decoding method based on convolutional neural
network with human bio-signals. Wang et al. developed
a teaching-learnging-prediction model to learn the human
demonstrations and to predict human intention in human-
robot collaborative tasks [17]. An interactive torque controller
based on K-nearest neighbors algorithm by using EMG was
presented for an exoskeleton robot to predict the moving
direction and to change the behavior of the exoskeleton robot
[18]. In [19], a multimodal framework based on EMG and
mechanomyogram was developed to recognize the multi-
joint motion intention of lower limb. In [20], Peternel et al.
proposed a human-robot cooperation framework to encode
the motion and impedance of human and to provide the
feedback of human motor behaviour in real-time. From the
above-mentioned algorithm, it can be concluded that the
EMG-based method is effective to analyse the dynamics of
human hand and to predict the human intention. Inspired
by it, we present a neural network method to predict the
interactive force between the robot and the human. Based
on predicted force, we analyse the impedance parameter of
human hand in the process of pHRI. The experimental results
will validate the effectiveness of the proposed framework.

The rest of this paper is organized as follows. The proposed
method consisting of system framework, data processing and
feature selection, force prediction and impedance analysis is
presented in Section II. Section III describes experimental
results. Finally, conclusion of this paper is presented in
Section IV.

II. METHODS

A. System framework

The developed framework is presented in Fig. 1. It consists
of three parts: hardware constitution, signal processing, and
human intention estimation.
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Fig. 1. The proposed system framework.
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1) Hardware constitution: This part describes the system’s
structure which consists of signal acquisition instrument,
haptic device, MYO armband, and control computer. The
function of each unit is introduced in the following section
and the section of experiment setup.

2) Signal Processing: This part is mainly used to process
the collected interaction information such as sEMG signal,
interactive force, position/velocity of the endpoint of the hu-
man hand. The data preprocessing unit is used for filtering the
collected information. The feature selection unit is employed
to extract the feature of the SEMG signals and to select proper
features.

3) Human intention estimation: In order to estimate hu-
man intention, we predict the interactive force and use the
predicted results to analyse the variation of impedance in the
process of pHRI.

B. Data processing and feature selection

1) Data processing: In this section, we collect the posi-
tion/velocity of the endpoint of the human hand. Because
the human hand moves with the haptic device, the posi-
tion/velocity can be captured by the haptic device. We collect
the SEMG signals of hand by using the MYO armband. Fig. 2
shows the interactive force analysis. We have calibrated the
haptic device and have compensated for the gravity of the
force sensor with its appendage.

The force analysis of human robot interaction can be
represented as

Fh:G+Fset (1)

where F.; denotes the set force of the haptic device. G is
the gravity of the force sensor with its appendage. F}, is the
interactive force between the human subject and the haptic

Fig. 2. Force analysis of human robot interaction.

device. In this work, G = 0 N after compensating the the
gravity.
The measured force F}, can be represented as

Fi = [fos fy, £17 2
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where f, =
[le7fz27 fzn]
2) Feature selection: In order to extract the proper feature
of the SEMG signals, we utilize three time domains features
(RMS, AR and WL).
The RMS, AR, and WL can be represented as below

(3)
1 le
fu = 37— Zl An; 4)
p
far =) aing_i+ep )
=1

where W;—,,,s 41 represents the length of moving sampling
window. n; is the collected SEMG signal. a; and p represent
the coefficients and order of AR model, respectively. ej
represents the residual white noise.

For convenience, we utilize O; to represent the feature of
SEMG signals, which is defined as

O; = [01,04,...,0,]" (6)
where Oy = [011,012; .., 01n), O2 =
[02170227"'702n]7"'70m = [0m170m2a-~-a0mn]- m is

the number of input channels of sSEMG signals and n is the
number of sample data.
By collecting the interactive force and the feature of SEMG
signals, the sample data set Sqmpie can be defined as
Ssample = [017 Fh]T (7N

C. Force prediction

In this section, we explore the relationship between the
SEMG signal and the interactive force. In the stage of force
prediction, we assume that there is a potential relationship
of sEMG-force and the schematic diagram is presented in
Fig. 3. The process of force prediction is shown in Fig. 4.
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Fig. 4. The sEMG-force model by using the neural-network-based incre-
mental learning algorithm.

Based on the above analysis, we employ a neural network
method to predict the interactive force. The framework of
neural network can be seen in Fig. 5.

By using the neural network method, the predicted force
is presented as

F=[Z,...,Zy,Hy,....H)] W] ®)
where F denotes the predicted force. Z;,7 = 1, 2, ..., p
indicates the sum of feature mode. H;,7 = 1, 2, ..., p and

W, are the outputs of the enhancement layer and the weight
matrix, respectively.

D. Impedance analysis

The impedance of human in the HRI can be expressed as

F = KpP.+ BpP. + MpP, 9)

where Kp, Bp and M are the stiffness matrix, the damping
matrix and the inertia matrix, respectively. P, Pe and ]56
are the position, velocity and acceleration of human hand.
Because the human hand moves with the haptic device, the
position/velocity/acceleration can be captured by the haptic
device.

In order to analyse the impedance of human hand, a
nonlinear least squares method (LSM) is utilized in this
paper.

Fig. 6 shows the process of impedance analysis, which
consists of two stages: virtual impedance estimation and
actual impedance estimation.

e Virtual impedance estimation. In this stage, we first
to estimate the predicted force by using the proposed
neural network method, and then employ LSM method
to estimate the virtual impedance parameters based on
).

e Actual impedance estimation. We can directly estimate
the actual impedance parameters by collecting the mea-
sured interactive force and sSEMG signals. By comparing
the virtual impedance and actual impedance, we can
evaluate the effectiveness of the proposed framework.
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Fig. 6. The process of impedance analysis.

ITI. RESULTS
A. Experimental setup

To evaluate the performance of the proposed framework,
the experimental platform is configured as presented in Fig. 7.

e Hardware equipment. The hardware equipment contains
Omega 7 (haptic device), the MYO armband, and a
FT16498 force sensor.

o Software environment. Visual Studio 2013 and MAT-
LAB run on the Window 7 operation system. Universal
Serial Bus is used for communication between the force
sensor and the control computer. The MYO armband
sends the sEMG signals to the control computer by
employing Bluetooth technology.

In the process of HRI, the Omega 7 can set the force
according to the requirement and can capture the position,
velocity and acceleration at the same time. A 3-D printed
mounting is used to fix the force sensor. We have calibrated
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Fig. 5. Framework of force prediction algorithm. This network contains training data set (O, F},) and p feature mappings ®. Z, is the sum of feature
mode. ¢ is the activation function. W is the weight matrix. O and 3 are the input and bias terms, respectively. F' is the output of learning algorithm,
and it can be represented as F' = [Z1, ..., Zp, H1, ..., Hq) Wg. This algorithm needs time-consuming training to learn the neural network’s parameters
for learning a deep structure. Incremental learning method is used to remodel the network without a retraining process when needed to expand the neural

network [21] [22] [23].
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Fig. 7. The overall system.

the force sensor and the Omega 7 to compensate for the
influence of its gravity. Therefore, the measured force is the
interactive force.

As shown in Fig. 2, a human subject puts his finger to
contact the force sensor. When we set a constant downward
force for the Omega 7, human hand follows the motion of
Omega 7. This system allows the hand to move in a vertical
direction. In this process, we capture the sEMG signals,
the interactive force and position/velocity/acceleration to
estimate the impedance of hand.

B. Feature selection and force prediction

In order to properly select the SEMG feature, we utilize the
RMS, AR and WL as the features to estimate the predicted
force. Fig. 8 shows the RMS, AR and WL features of sSEMG
signals.

The predicted forces by using the proposed neural network
algorithm are shown in Figs. 9-11. It can be seen that the
interactive forces have been accurately predicted.

The error of predicted force by using RMS, AR and WL is
presented in Fig. 12. The RMS-based performance achieves
minimum error in comparison with that of AR and WL. In
order to further evaluate the performance of predicted force
with using different features, average error is used in this
paper. From Tab. I, the average error for RMS, AR and WL
are 3.3906 x1076 N, 16.453 x107¢ N, and 6.6297 x10~¢
N, respectively.

====Predicted Force b
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Fig. 9. Predicted force by using the proposed neural network algorithm with
RMS feature.

TABLE I
AVERAGE ERROR OF FORCE PREDICTION WITH RMS, AR, AND WL
FEATURES
Average error RMS AR WL
Unit (x107% N) 3.3906 16.453 6.6297

C. Stiffness analysis

In this experiment, we assume that the forces in X and
Y directions are zero, so we just perform the experiment in
Z-direction. In order to obtain the virtual stiffness, we first
estimate the force based on the force prediction algorithm.
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Fig. 8. Fig. 8(a) shows the raw sEMG signals. Fig. 8(b) shows the sEMG signals feature with RMS. Fig. 8(c) shows the SEMG signals feature with AR.

Fig. 8(d) shows the SEMG signals feature with WL.
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Fig. 10. Predicted force by using the proposed neural network algorithm
with WL feature.

Then, the virtual stiffness can be evaluated according to the
estimated force and actual position using LSM method.

From Fig. 13, it can be seen that the virtual stiffness curves
almost overlap with that of actual stiffness. In Fig. 14, it can
be seen that the error between virtual stiffness and actual
stiffness is very small. In Table II, the values of virtual
stiffness and actual stiffness are 11.0890 N/m and 11.0518
N/m, respectively. With these results, it can be concluded that
the virtual stiffness can represent the actual stiffness.

IV. CONCLUSION

In this paper, we proposed a novel framework to estimate
the impedance of human hand in pHRI. We utilized three
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Fig. 11. Predicted force by using the proposed neural network algorithm
with AR feature.

TABLE II
AVERAGE STIFFNESS.

Average stiffness Actual Virtual
stiffness stiffness
Unit (N/m) 11.0890 11.0518

features (RMS, AR and WL) to estimate the interactive force
and the RMS-based prediction achieved the minimum error.
According to the experimental results, the virtual impedance
were in accordance with the actual impedance. In this sense,
the proposed framework was effective for estimating inten-
tion of human hand.
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