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Optimal Feature Selection for EMG-Based Finger Force Estimation
Using LightGBM Model

Yuhang Ye1, Chao Liu∗2, Nabil Zemiti2, Chenguang Yang∗3

Abstract— Electromyogram (EMG) signal has been long
used in human-robot interface in literature, especially in the
area of rehabilitation. Recent rapid development in artificial
intelligence (AI) has provided powerful machine learning tools
to better explore the rich information embedded in EMG
signals. For our specific application task in this work, i.e.
estimate human finger force based on EMG signal, a LightGBM
(Gradient Boosting Machine) model has been used. The main
contribution of this study is the development of an objective and
automatic optimal feature selection algorithm that can minimize
the number of features used in the LightGBM model in order
to simplify implementation complexity, reduce computation
burden and maintain comparable estimation performance to
the one with full features. The performance of the LightGBM
model with selected optimal features is compared with 4 other
popular machine learning models based on a dataset including
45 subjects in order to show the effectiveness of the developed
feature selection method.

I. INTRODUCTION

Human-robot interaction (HRI) has been an active research
topic during past few decades as the advances in robot
technology and artificial intelligence (AI) have enabled the
robotic systems to work side-by-side or in a collaborative
fashion with humans. The applications have extended beyond
traditional industrial domain to new areas such as service,
health care, etc [1].

Efficiency and safety are of paramount importance in
practical HRI applications. As indicated in [2], one principle
of efficient HRI is to “Directly Manipulate the World”,
meaning interfaces should allow the task to be done without
drawing attention to the robot and the interface per se.
Conventional human-robot interfaces (such as cameras, force
sensors) are not sufficient due to their limitations in working
condition requirements, cost, flexibility, level of intelligence,
etc. Myoelectric or Electromyogram (EMG) signal has been
used as a complementary source of information for HRI since
it originates from the eletrophysiological and mechanical ac-
tivation of muscle fibers in vivo and hence can be considered
as a natural pathway to detect human motion intention from
the nervous system without constraining human motion. This
signal has been especially and almost exclusively used in the
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domain of robotic rehabilitation in order to control artificial
limb prosthesis and exoskeleton system since early literature
[3], [4]. In rehabilitation literature, the EMG signal has been
mainly used for motion and posture control of artificial limbs
prostheses and hands. Much less but recent research efforts
have also been made for force control of artificial hands using
EMG signal [5].

During the past few years, along with the booming
development of artificial intelligence, new research results
indicate that plain and traditional EMG signals can be further
explored in a better way by improving the signal analysis
methods. Except conventional motion and posture control of
upper limb prostheses and hands, recent research works have
been able to derive new biomechanical information such as
arm stiffness and to study finer scale such as hand fingers
with the aide of new machine learning methods [6]. And the
applications of EMG is no longer limited to rehabilitation
devices, and they also find wider potential applications in
HRI such as teleoperation of robots, haptic devices, and so
on. In these new HRI applications, human-robot interaction
force is of increasing importance in successful completion of
task, with the haptic teleoperation as a good example [7]. An
increasing number of researchers have been attracted to work
on improving the performance of surface EMG (sEMG)-
based force estimation from various aspects. In literature,
numerous models have been proposed to map the EMG-
force relationship, including the Hill model [8], polynomial
fitting model [9], fast orthogonal search (FOS) [10], and
parallel cascade identification (PCI) [11]. As state-of-the-
art, models of two main groups are widely used: the ones
based on neural network (NN) [12] and the ones based on
decision tree [13]. Both kinds of methods can be effective
for different estimation tasks, and both have their advantages
and limitations.

In this work, the specific application is to estimate in
real time the finger force of intact subject based on forearm
surface EMG signal measurement. Although not new, this
serves as the first step towards our study on the effects
of surgeons’ arm and hand muscle activation on their skill
performances in both robot-assisted surgical training and
operation, where the force and motion generated by sur-
geon’s hand finger and wrist are the decisive factors. To
achieve accurate and efficient finger force estimation, the
proper estimation model is to be first decided. Considering
the requirement of generalisability due to large number of
potential users, NN-based methods may not be the best
choice as neural networks are usually hard to train and tune
due to the subject-dependant cost for training and optimizing



the models [14]. A LightGBM (Gradient Boosting Machine)
model [15] under the general class of Gradient Boosting
Decision Tree (GBDT) methods has been chosen for this esti-
mation task with its wide generalisability, robustness against
signal noises and less proneness to overfitting. However,
it is noticed that the estimation/regression performance of
LightGBM model depends on the features extracted from the
sample datasets. The feature(s) selection is often empirical
and hence cannot guarantee the best performance. Generally,
the performance is better with more features used. On the
other hand, more feature extraction implies more computa-
tion cost and therefore longer computation time, which is
critical for real time application.

Therefore, in this study, we develop a method to auto-
matically select the optimal features among various time-
domain and frequency-domain features to be used in the
LightGBM model for the specific aforementioned application
scenario. The number of selected optimal features should be
minimal in order to save the calculation burden but do not
cause noticeable performance deterioration at the same time.
The feature selection is performance-based and therefore is
not affected by the designer’s experience. The comparisons
of the finger force estimation performance obtained from
the LightGBM with optimal features are made to the one
of LightGBM with full features and also to the estimation
performances of 4 other popular models (linear regression
(LR), support vector regression (SVR), convolutional neural
network (CNN), and Multilayer Perceptron (MLP)) with all
features available in order to confirm the effectiveness of the
selected optimal features and the automatic selection method.

II. MATERIALS AND METHODS

A. Experimental Setup

In this work, we use the online open dataset ”putEMG-
Force” 1 [16] provided by the Biomedical Engineering and
Biocybernetics Team of Poznan University of Technology,
Poland, to serve as the basis for evaluation of the method
we propose. The putEMG Dataset is a database of surface
electromyographic activity recorded from forearm which
allows the development and evaluation of algorithms for both
gesture recognition and hand finger force estimation. The
essential information on the experiment platform setup and
data collection is provided in following, and more details can
be found on the putEMG website and [16].

The experiment platform is illustrated in Fig. 1. The
system is dedicated to sEMG signal acquisition of forearm
muscle activity for a single subject. In this work, we use
the EMG signals recorded from 24 electrodes fixed around
subject right forearm and the finger forces measured by
tensometer sensors as shown in Fig. 2. The dataset includes
experiment data collected from 45 healthy, fully-abled sub-
jects (8 females, 37 males) aged 19 to 37 years old. It
should be noted that the value of measured force from
the tensometer has no unit of physical meaning, since the

1http://biolab.put.poznan.pl/putemg-dataset/

conversion has not been done yet according to the dataset
provider.

Fig. 1: putEMG experiment platform

(a) EMG band
placement

(b) Hand
dynamometer

(c) Sensor
numeration

Fig. 2: EMG electrodes placement and finger force sensors

B. Background

EMG signal is a non-stationary signal containing a variety
of noises and artifacts. These noises will deteriorate the mod-
els in performance if the raw EMG data is used as the input
for classification or regression. Therefore, features extraction
is very important in EMG signal processing. The widely
used features can be summarized into three categories: time
domain (TD) features, frequency domain (FD) features and
time-frequency domain (TFD) features.

Time-domain statistical analysis is the most commonly
used method for EMG signal processing because they are
faster and smaller than other features, and this is very impor-
tant for real-time systems. In 1993, Hudgins et al. proposed
five TD feature of sEMG, including mean absolute value
(MAV), mean absolute value slope (MAVSLP), slope sign
changes (SSC), waveform lengths (WL) and zero crossings
(ZC) [18], [19], [20]. Zardoshi et al. extracted the features
of integral of absolute value (IVA), zero crossing (ZC),
variance(VAR), Willison amplitude (WAMP) to control the
artificial limb by EMG signal [17]. Also for the applica-
tions of prosthetic hand, Ahmad and Chappel adopted the
skewness (Skew), Kurtosis (Kurt) and moving approximate
entropy (mApEn) as the TD feature for the first time [21].
In order to investigate the stability of time-domain EMG
features on a task of low and high forces classification by
EMG, Dennis Tkach et al. [22] used 11 TD features in



their experiment and they found the classifier performance
could be improved by the use of at least four combined
EMG features and the multi-dimensional features, such as
autoregression coefficients (AR) and cepstrum coefficients
(CC), could get the best performance.

Although time-domain features are easy to extract, a lot
of studies have shown that when the muscle contraction
force changes slightly, the frequency-domain description of
EMG signals is relatively more stable than the time-domain
features [23]. The frequency domain analysis of EMG mainly
applies power spectrum analysis methods. As early as the
late 1980s, Christensen used Fourier transform to analyze
the power spectrum of surface EMG signals [24]. The
difference of power spectrum between normal individuals
and patients with neuromuscular diseases was revealed by
the amplitude ratio of high frequency to low frequency.
The features of power spectrum extraction mainly include
peak frequency (PKF), mean power frequency (MNP), Mean
frequency, median frequency (MDF) and so on, which have
been successfully used as muscle force, fatigue and geometry
indices [25]. To further improved the EMG performance, Al-
Timemy et al. [26] considered the time-frequency character-
istics of EMG and proposed a set of TD-PSD feature for
hand movement classification with three force levels.

Traditional Fourier transform can better depict the signal
characteristics in global frequency but can hardly provide
the frequency information in the time domain, which is
insufficient for the analysis of the non-stationary EMG sig-
nal. The time-frequency analysis methods combine both the
time and the frequency information for EMG signal analysis
and thus received wide research attention. At present, the
main time-frequency analysis methods used in EMG anal-
ysis are short-time Fourier transform (STFT), Wigner-Ville
transform (WVD), Choi-Williams distribution (CWD) and
wavelet transform (WT). Veer et al. used Short-time Fourier
transform and wavelet transform for the recognition of arm
movements and their result showed that wavelet transform
performs better [27].

Benefiting from the improved computation power and
the development of big data, deep learning algorithms have
been studied and applied in the fields of image recognition,
speech recognition, and intelligent robots. It has a strong
capability to automatically extract features by end-to-end
learning. In recent years, many researchers have tried to
apply deep learning to the field of sEMG signal recognition.
Atzori et al. [28] used the proposed CNN architecture for
hand movement recognition based on the EMG signal. After
the preprocessing of sub-sample and low-pass filter, EMG
data are fed into the CNN model which is composed of
convolutional, pooling, and softmax layers. They compared
the CNN method with other classical classification methods
and got the conclusion that the classification accuracy of
CNN’s is higher than the average results of classical methods
but lower than the best reference methods using random
forests algorithm with the features of discrete wavelet trans-
form (DWT), histogram (HIST), waveform length (WL) and
root mean square(RMS). Therefore, CNN is not always

superior in feature extraction, and how to extract the well-
performed features and find optimal feature combination is
very important in EMG recognition field, which is also the
focus in this work.

C. Optimal Features Selection Strategy

1) Data preprocessing and feature extraction: In order
to extract the effective signal of EMG and reduce noise, a
bandpass filter of 10-350Hz is used on the 24-channels EMG
data while a 50Hz low pass filter is adopted on the force
data. Taking the accuracy and real-time requirements of force
estimation into consideration synthetically, we use a sliding
window with the length of 256 sample points (50 ms) and
move across 32 sample points (6.25 ms) for each step to
segment the EMG and the force signals. The segmenting
process is illustrated in Fig. 3.

Fig. 3: EMG segmentation with 50ms sliding window

To evaluate the feature importance and find the best feature
combination, we consider the most commonly used features
both in time and frequency domain and most of them have
been introduced in subsection II-B. We do not select the
time-frequency domain feature because our features were
extracted in a 50ms window so the Fourier transform can be
seen as a Short-time Fourier transform which contains the
time and frequency information. The features we consider is
shown in Table I.

After data filtering and feature extraction, EMG raw
data of one sample is transformed into a feature vector
{x1, x2, ..., xd}. Because the features are calculated by dif-
ferent methods as shown in Table I, their scale are different
which will affect the convergence speed and precision of
the algorithm. A min-max scaled normalization method was
adopted here to convert the features to the same scale,

x̂i =
xi − xmin

xmax − xmin
(1)

where x̂i is the normalized features. xmin and xmax are the
minimum and maximum value of this feature. After that, all
the features will be normalized to a range from 0 to 1.

2) Measure of the Feature importance: Gradient Boosting
Decision Tree (GBDT) [37] is an ensemble learning algo-
rithm that utilizes decision or the regression trees as weak
classifiers. It continuously adds new regression trees by the
method of gradient descent, so that the total model residuals
are continuously reduced.

Supposed that we have a training set with n samples of
EMG data after normalization represented as {x1, x2...xn},



TABLE I: List of Features

Features Abbreviation References
1 Integral Absolute Value IAV [22], [29]
2 Average Amplitude Change AAC [30], [29]
3 Auto-Regressive Coefficients AR [22], [29]
4 Cepstral Coefficients CC [30], [29]
5 Kurtosis Kurt [31], [29]
6 LOG Detector LOG [30], [29]
7 Maximum Amplitude MAX [36], [29]
8 Mean Absolute Value MAV [22], [30], [29]
9 Mean Absolute Value Slope MAVSLP [30], [29]
10 Multiple Hamming Windows MHW [30], [29]
11 Myopulse Percentage Rate MYOP [30]
12 Skewness Skew [32], [29]
13 Slope Sign Change SSC [30], [29]
14 Absolute Temporal Moment TM [30]
15 Variance VAR [30], [29]
16 Willison Amplitude WAMP [30], [29]
17 Waveform Length WL [30], [22], [29]
18 Zero Crossing ZC [30], [22], [29]
19 Mean Frequency MNF [34], [30], [29]
20 Median Frequency MDF [34], [30], [29]
21 Mean Power frequency MNP [33], [29]
22 Frequency Ratio FR [30], [29]
23 Variance of Central Frequency VCF [30], [29]
24 Power Spectrum Ratio PSR [30], [29]
25 Signal-to-Noise Ratio SNR [34], [29]
26 Maximum-to-minimum Drop

in Power Density Ratio
DPR [35]

and each xi ∈ Rd is a feature vector with d dimensions
extracted using the methods in Table I. {g1, g2, ..., gn} are
the negative gradients with respect to the output of the GBDT
model which are calculated to select the most informative
features for the tree node split. The most informative features
can split samples in the largest information gain so that the
tree can converge faster. The information gain of GBDT is
usually measured by the variance after splits. In each itera-
tion, we calculate the information gain of each segmentation
point (j, s) by traversing each feature j and the split value
s in turn. The information gain is formulated in following
form:

V (j, s) =
1

n


(∑

xij≤s gi

)2
njl (s)

+

(∑
xij>s gi

)2
njr(s)

 (2)

where n is the number of the data in training set. xij denotes
the feature j of the ith sample. njl (s) and njr(s) are the
numbers of the samples split into left and right child node, so
njl (s) =

∑
I[xij ≤ s], njr(s) =

∑
I[xij > s] and I[·] is the

indicator function. For each feature j, the GBDT algorithm
selects the best split value by s∗j = argmaxs V (j, s) and
calculates the largest gain V (j, s∗j ). Then the algorithm will
select the best feature and split value for the data split.

Here, we make full use of the advantages of GBDT
algorithm in feature selection and measure the importance of
a feature by calculating the number of times this feature is
used for data split. Obviously, those features that can achieve
greater information gain often provide better discrimination
because they always put similar samples together and sepa-

rating different samples in data split.
3) Features selection: From the above subsection, the im-

portance of each feature can be easily caculated by counting
the number of times the features used in data split for the
tree growth. To select the optimal feature combination, the
root mean square error (RMSE) is used here to measure the
regression performance, which is defined as below:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − pi)2 (3)

where n is the number of the EMG samples, yi is the
label of the force signal and pi is the predict output of xi.
Firstly, the result of RMSE using all the features by GBDT
model is set as a baseline performance. Then, an iterative
algorithm is used and drop the last 10% or 20% features
according to the feature importance in each time. Perfor-
mance of the remaining features is tested in GBDT model
and the feature importance is re-evaluated. If the performance
loss (compared with the baseline performance) is less than
certain threshold after deleting the feature, the algorithm will
continue to drop the last features based on the new feature
importance until the performance loss exceeds the threshold
or the number of features is less than the preset minimum,
and the last feature combination will be the optimal feature.
It should be noted that for a specific application the feature
selection is expected to be conducted in advance to accelerate
the online EMG signal processing, thus the calculation time
for the offline feature selection phase is not demanding. The
algorithm is outlined in Algorithm 1.

III. EXPERIMENTAL EVALUATION

In robot-assisted surgical operation, surgeons usually use
their thumb and index finger to control the joystick, so the
muscle activation related to the index finger shows more
potential in surgeons’ skill performances analysis. Therefore,
force 4 (channel 4 in the force sensor shown in Fig.2c)
estimation of index finger is used for experimental evaluation
in this work. For the putEMG database, there are five
kinds of trajectories consisting of varying combinations of
pressure magnitude, duration and shape, and the trajectories
of “repeats long”. Each trial of “repeats long” contains 5
action blocks (each block for 70s and 350 seconds in total)
where thumb, index, middle, ring+small and all fingers take
turns. For each block, press action repeated 11 times with
varying parameters. The press action of the index finger is
mainly applied between 70 and 140 seconds in a trial, which
was selected for our experiment. For each trial, We divided
the data into three parts: the last 20% data for testing, the
randomly select 20% of the first 80% data for validation, and
the rest for training. Force prediction for multiple channels
and subject-independent estimation are our future works and
thus not considered in this paper.

In the experiment, the proposed optimal features selection
strategy is tested in six randomly selected subjects from
the all 45 subjects. The GBDT model we choose is the
LightGBM (LGB), which performs extremely well in both



Algorithm 1 Automatic Algorithm for Optimal Feature
Selection
Input: Training data with high dimension features xi; Label
of the training data yi; The percentage of features retained for
each iteration P%; Performance loss threshold θ. Minimum
feature numbers k
Output: The optimal features combination best.
Initial: The number of iteration t = 0; The features selected
are all the features Feature = all; The RMSE performance
of the all the features in validation set R0.
Repeat:

1: t = t + 1.
2: The best feature combination best = Feature.
3: Train the GBDT model by gradient boosting. Use the

variance as shown in eq.2 for the informative gain
measure and split the data by the best feature and best
split value.

4: Caculate the feature importance by computing the num-
ber of time for each features using in data split. And sort
the feature by feature importance.

5: Use the RMSE to evaluate the performance in validation
set and get the result of R

6: Select the top P% feature tp according to the feature
importance, Feature = tp. And len(tp) is the number
of the feature in top P%. Update the training set.

7: Until : R−R0 > θ or len(tp) < k

performance and speed [15]. For the hyper parameters, the
threshold is set to 10% performance loss in the validation
set compared with the result using all the features. The
Minimum feature number is 1 and the percentage of features
retained for each iteration is 80%. These features will be
evaluated by the LGB and the feature importance will be
calculated again for the next iteration until the performance
loss exceeds the threshold or the number of the retained
features is less than or equal to 1. Our experiments show
that the algorithm for all 6 subjects was stopped when
the number of features reduced to 1. The feature selection
results and performances of subject 35 and 39 are shown
in Fig. 4 and Fig. 5 respectively. It should be noted again
that the unit of ”Force” has no physical meaning as the
tensometer measurements were not yet converted to real
force in Newton.

From the subgraph (e) of Fig. 4 and Fig. 5 we can see
that the importance of different feature varies greatly but
the top important features are similar in subject 35 and 39.
Features that have the best importance at the beginning of the
iterations don’t stay at the top all the time. The importance
of the features changes slightly because the combination
of features keeps changing during the process of feature
selection. So, in subject 37 we can see that the AAC feature
is at the top in iteration 1 but the TM feature finally won.
Similar conclusions can be drawn from other subjects and
the best features selected by the six subjects were shown in
Table II.

(a) Prediction with all
features for train&valid

sets

(b) Prediction with one
final selected feature for

train&valid set

(c) Prediction with all
features for test set

(d) Prediction with one
final selected feature for

test set

(e) Features importance in
iteration 1 (Top 3 features:

TM, AAC, VAR)

(f) The best feature in final
iteration 12: TM

Fig. 4: The force estimation performance with the selected
features and all features for subject 35

TABLE II: The selected feature of the six subjects

Subject s12 s14 s15 s35 s37 s39
Selected feature AAC AAC AAC TM TM AAC

From Table II, it is seen that AAC and TM both appear
as the best feature depending on different subject, and we
can therefore conservatively draw a conclusion that AAC
and TM features may be considered as the optimal feature
combination in the total 26 features.

To further evaluate whether the selected features contain
enough information for force estimation with small perfor-
mance loss, the results of selected optimal features (AAC and
TM) in lightGBM model are compared with 4 widely used
models using all the features. The 4 models are linear regres-
sion (LR), support vector regression (SVR), convolutional
neural network (CNN), and Multilayer Perceptron (MLP).
The CNN model contains 6 convolution layers, 3 pooling
layers, and 1 fully-connected layer. The activation function of
scaled exponential linear units (SELU), batch normalization,
and dropout are also used in CNN models. There are 3 hidden
layers in MLP model and the activation function is rectified



(a) Prediction with all
features for train&valid

sets

(b) Prediction with one
final selected feature for

train&valid set

(c) Prediction with all
features for test set

(d) Prediction with one
final selected feature for

test set

(e) Features importance in
iteration 1 (Top 3 features:

AAC, TM, LOG)

(f) The best feature in final
iteration 12: TM

Fig. 5: The force estimation performance with the selected
features and all features for subject 37

linear units (RELU). The results of comparisons are shown in
Table III. From Table III, we can see that the performances
for models of LR, SVR, and MLP are much worse than
that of the LGB in terms of RMSE even though the LGB
only uses the two selected features. It is not surprising
that CNN has comparable performance because it has been
proven to be very effective in the field of recognition. The
selected two-feature LGB is slightly worse than the full-
feature LGB medel, but compared with the models of LR,
SVR, MLP and even the CNN its performance is still very
competitive and the small performance loss is acceptable.
The comparison results fully demonstrated that the proposed
features selection method has potential to accelerate the
processing of real-time EMG signal by reducing the number
of involved features with marginal estimation performance
loss.

IV. CONCLUSIONS

In this paper, an optimal feature selection method is
presented for EMG-based finger force estimation. The force
estimation resorts to the LightGBM model which represents
one of the most successful state-of-the-art machine learning

TABLE III: Comparison result of the five models evaluated
by RMSE. Models of LR, SVR, MLP, and CNN use all the
features while LGB are tested on all and the selected two
feature. In the column of LGB, on the left side of ”/” are
the all features and on the right side the selected features.

Subject LR SVR MLP CNN LGB
s12 45.89 49.16 43.69 43.03 38.54/38.33
s14 53.83 44.25 43.82 29.00 37.91/40.34
s15 38.29 30.69 26.42 22.75 25.04/25.32
s35 45.77 43.68 44.85 37.88 36.31/36.64
s37 21.54 26.25 23.62 24.69 21.41/21.47
s39 46.79 43.69 38.20 40.23 39.15/38.49

Average 42.01 39.62 36.77 32.93 33.06/33.43

algorithms. Since the EMG signal is complex and noisy,
various features can be used in the force estimation using
LightGBM model and hence may lead to real time computa-
tion issue. The developed optimal feature selection method is
demonstrated capable of minimizing the number of important
features without causing noticeable performance degradation.
This result provides an efficient tool towards more complex
real time hand motion and force estimation using EMG
signals, which is part of our future research on robot-assisted
surgical training and operation augmented with surgeon’s
muscle activation state information.
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