M. Goodrich and A. C. Schultz, Human-Robot Interaction: A Survey, Foundations and Trends in Human-Computer Interaction, vol.1, issue.3, pp.23-275, 2007.

M. A. Goodrich and D. R. Olsen, Seven principles of efficient human robot interaction, Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp.3943-3948, 2003.

L. Mclean and R. N. Scott, The early history of myoelectric control of prosthetic limbs (1945-1970), Powered Upper Limb Prostheses, pp.1-15, 2004.

D. S. Andreasen, S. .-alien, and D. A. Backus, Exoskeleton with EMG based active assistance for rehabilitation, 9th International Conference on Rehabilitation Robotics, pp.333-336, 2005.

C. Castellini, P. Van-der-smagt, G. Sandini, and G. Hirzinger, Surface EMG for Force Control of Mechanical Hands, IEEE Int. Conf. Robotics and Automation, pp.725-730, 2008.

C. Yang, J. Luo, C. Liu, M. Li, and S. Dai, Haptics Electromyogrphy Perception and Learning Enhanced Intelligence for Teleoperated Robot, IEEE Transactions on Automation Science and Engineering, 2018.

J. Guo, C. Liu, and P. Poignet, A Scaled Bilateral Teleoperation System for Robotic-Assisted Surgery with Time Delay, Journal of Intelligent and Robotic Systems, 2018.
URL : https://hal.archives-ouvertes.fr/lirmm-01866495

A. V. Hill, The Heat of Shortening and the Dynamic Constants of Muscle, Proc. R. Soc. Lond. Ser. B, vol.126, pp.136-195, 1938.

E. A. Clancy and N. Hogan, Relating agonist-antagonist electromyograms to joint torque during isometric, quasi-isotonic, nonfatiguing contractions, IEEE Trans. Biomed. Eng, vol.44, pp.1024-1028, 1997.

F. Mobasser, J. M. Eklund, and K. Hashtrudi-zaad, Estimation of ElbowInduced Wrist Force with EMG Signals Using Fast Orthogonal Search, IEEE Trans. Biomed. Eng, vol.54, pp.683-693, 2007.

J. Hashemi, E. Morin, P. Mousavi, K. Mountjoy, and K. Hashtrudi-zaad, EMG-Force Modeling Using Parallel Cascade Identification, J. Electromyogr. Kinesiol, vol.22, pp.469-477, 2012.

J. Schmidhuber, Deep Learning in Neural Networks: An Overview, vol.61, pp.85-117, 2015.

T. Chen and C. Guestrin, Xgboost: A Scalable Tree Boosting System, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.785-794, 2016.

L. Xu, X. Chen, S. Cao, X. Zhang, and X. Chen, Feasibility Study of Advanced Neural Networks Applied to sEMG-Based Force Estimation, Sensors, vol.18, issue.10, p.3226, 2018.

G. Ke, Q. Meng, and T. Finley, Lightgbm: A highly efficient gradient boosting decision tree, Advances in Neural Information Processing Systems, pp.3146-3154, 2017.

P. Kaczmarek, T. Ma?kowski, and J. Tomczy?ski, putEMGa surface electromyography hand gesture recognition dataset, and under review of MDPI Sensors, 2019.

M. Zardoshti-kermani, B. Wheeler, and K. Badie, EMG feature evaluation for movement control of upper extremity prostheses, IEEE Transactions on Rehabilitation Engineering, vol.3, issue.4, pp.324-333, 1995.

B. Hudgins, P. Parker, and R. N. Scott, A new strategy for multifunction myoelectric control, IEEE Transactions on Biomedical Engineering, vol.40, issue.1, pp.82-94, 1993.

K. Englehart, B. Hugdins, and P. Parker, Multifunction control of prostheses using the myoelectric signal. Intelligent systems and technologies in rehabilitation engineering, pp.153-208, 2000.

K. Englehart and B. Hudgins, A robust, real-time control scheme for multifunction myoelectric control, IEEE transactions on biomedical engineering, vol.50, issue.7, pp.848-854, 2003.

S. Ahmad and P. Chappell, Surface EMG pattern analysis of the wrist muscles at different speeds of contraction, Journal of Medical Engineering & Technology, vol.33, issue.5, pp.376-385, 2009.

D. Tkach, H. Huang, and T. A. Kuiken, Study of stability of timedomain features for electromyographic pattern recognition, Journal of NeuroEngineering and Rehabilitation, vol.7, issue.1, p.21, 2010.

P. Doerschuk, D. Gustafon, and A. Willsky, Upper extremity limb function discrimination using EMG signal analysis, IEEE Transactions on Biomedical Engineering, issue.1, pp.18-29, 1983.

J. Ronager, H. Christensen, and A. Fuglsang-frederiksen, Power spectrum analysis of the EMG pattern in normal and diseased muscles, Journal of the Neurological Sciences, vol.94, issue.1, pp.283-294, 1989.

S. Thongpanja, A. Phinyomark, and C. Limsakul, Application of mean and median frequency methods for identification of human joint angles using EMG signal, Information Science and Applications, pp.689-696, 2015.

A. Khushaba, R. Bugmann, and G. , Improving the performance against force variation of EMG controlled multifunctional upper-limb prostheses for transradial amputees, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.24, issue.6, pp.650-661, 2016.

K. Veer and R. Agarwal, Wavelet and short-time Fourier transform comparison-based analysis of myoelectric signals, Journal of Applied Statistics, vol.42, issue.7, pp.1591-1601, 2015.

M. Atzori, M. Cognolato, and H. Muller, Deep learning with convolutional neural networks applied to electromyography data: A resource for the classification of movements for prosthetic hands, Frontiers in neurorobotics, vol.10, issue.9, 2016.

N. Nazmi, A. Rahman, M. Yamamoto, and S. , A review of classification techniques of EMG signals during isotonic and isometric contractions, Sensors, vol.16, issue.8, p.1304, 2016.

A. Phinyomark, P. Phukpattaranont, and C. Limsakul, Feature reduction and selection for EMG signal classification. Expert systems with applications, vol.39, pp.7420-7431, 2012.

K. Nazarpour, A. Bugmann, and G. , A note on the probability distribution function of the surface electromyogram signal, Brain research bulletin, vol.90, pp.88-91, 2013.

R. Khushaba, A. , A. , A. , and A. , Orthogonal fuzzy neighborhood discriminant analysis for multifunction myoelectric hand control, IEEE Transactions on Biomedical Engineering, vol.57, issue.6, pp.1410-1419, 2010.

M. Oskoei and H. Hu, Support vector machine-based classification scheme for myoelectric control applied to upper limb, IEEE transactions on biomedical engineering, vol.55, issue.8, pp.1956-1965, 2008.

C. Kendell, E. Lemaire, and Y. Losier, A novel approach to surface electromyography: an exploratory study of electrode-pair selection based on signal characteristics, Journal of neuroengineering and rehabilitation, vol.9, issue.1, p.24, 2012.

C. Altin and O. Er, Comparison of different time and frequency domain feature extraction methods on elbow gestures EMG, European journal of interdisciplinary studies, vol.2, issue.3, pp.35-44, 2016.

W. Daud, A. Yahya, and C. Horng, Features extraction of electromyography signals in time domain on biceps Brachii muscle, International Journal of Modeling and Optimization, vol.3, issue.6, p.515, 2013.

H. Jerome and . Friedman, Greedy function approximation: a gradient boosting machine, Annals of statistics, pp.1189-1232, 2001.