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Haptics Electromyogrphy Perception and Learning
Enhanced Intelligence for Teleoperated Robot

Chenguang Yang , Senior Member, IEEE, Jing Luo , Student Member, IEEE,

Chao Liu , Senior Member, IEEE, Miao Li, and Shi-Lu Dai , Member, IEEE

Abstract— Due to the lack of transparent and friendly
human–robot interaction (HRI) interface, as well as various
uncertainties, it is usually a challenge to remotely manipulate
a robot to accomplish a complicated task. To improve the teleop-
eration performance, we propose a new perception mechanism by
integrating a novel learning method to operate the robots in the
distance. In order to enhance the perception of the teleoperation
system, we utilize a surface electromyogram signal to extract
the human operator’s muscle activation. As a response to the
changes in the external environment, as sensed through haptic
and visual feedback, a human operator naturally reacts with
various muscle activations. By imitating the human behaviors in
task execution, not only motion trajectory but also arm stiffness
adjusted by muscle activation, it is expected that the robot
would be able to carry out the repetitive tasks autonomously
or uncertain tasks with improved intelligence. To this end,
we develop a robot learning algorithm based on probability sta-
tistics under an integrated framework of the hidden semi-Markov
model (HSMM) and the Gaussian mixture method. This method
is employed to obtain a generative task model based on the
robot’s trajectory. Then, Gaussian mixture regression based
on HSMM is applied to correct the robot trajectory with the
reproduced results from the learned task model. The execution
procedures consist of a learning phase and a reproduction phase.
To guarantee the stability, immersion, and maneuverability of the
teleoperation system, a variable gain control method that involves
electromyography (EMG) is introduced. Experimental results
have demonstrated the effectiveness of the proposed method.

Note to Practitioners—This paper is inspired by the limitations
of teleoperation to perform a task with unfriendly HRI and
lack of intelligence. The human operators need to concentrate
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on the manipulation in the traditional setup of a teleoperation
system; thus, it is quite a labor intensive for a human operator.
This is a huge challenge for the requirement of increasingly
complicated, diverse tasks in teleoperation. Therefore, efficient
ways of the robot intelligence need to be urgently developed
for the telerobots. In this paper, we develop a robot intelligence
framework by merging robot learning technology and perception
mechanism. The proposed framework is effective where the task
performed with repeatability and rapidity in a teleoperated mode.
The proposed method includes three following ideas: 1) remote
operation information can be actively sensed by infusing muscle
activation with a haptics EMG perception mechanism; 2) the
robot intelligence can be enhanced by employing a robot learning
method. The developed approach is verified by the experimental
results; and 3) the proposed method can be potentially used for
telemanufacturing, teletehabilitation, and telemedicine, and so
on. In our future work, more interactive information between
humans and telerobots should be taken into consideration in the
telerobot perception system to enhance the robot intelligence.

Index Terms— Gaussian mixture model (GMM), haptics elec-
tromyogrphy (EMG) perception, hidden semi-Markov model
(HSMM), human–robot interaction (HRI), robot intelligence,
teleoperated robot learning.

I. INTRODUCTION

PROPELLED by sensor technologies, computer tech-
nologies, control technologies, and mechatronic design,

the intelligent robots have made a breakthrough over the
past three decades [1], [2]. Nowadays, the robots have been
widely used in industry because of its high versatility and
adaptability [3], [4]. With the expansion of its application
in various areas, the collaborative working environments of
robots are being more complicated, and the complexity level
of tasks has also greatly increased [5], [6]. However, the devel-
opment of robot technology has not been broadly consistent
with human expectations. Related studies demonstrate that
the autonomous robot system cannot accomplish a task in
an unknown or a complicated environment in the foreseen
future with the limitations of sensor, control, artificial intel-
ligence, and mechanism. Therefore, the telerobot based on
human–robot interaction (HRI) is a realistic option to manip-
ulate a complex task by allocating the human intelligence and
robot’s capabilities to enhance the robot intelligence [7]–[9].
As shown in Fig. 1, a possible human-in-the-loop teleop-
eration system consists of the following modules: human
operator, information perception interface, task learning, and
task reproduction. The human operator is the main factor for
the telerobot [10], [11]. The information perception module
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Fig. 1. Information perception and robot learning for the teleoperation
system.

is used to provide a perception platform for information
deliver between the human operator and the robot [12]. The
operator’s physical or physiological information [i.e., motion,
electromyogrphy (EMG), etc.] can be used to enhance the
capability of HRI. When the human operator receives the
feedback from the external environment, the human operator
can actively adjust muscle activation via EMG signals to cope
with the change in the external environment. The task learning
module is mainly used to learn a specific skill through HRI.
The robot reproduction module recognizes the current task
initial situations and updates the generative task model to
improve the manipulation performance.

Given the precise information, including work environments
and mission scenarios, the telerobots can be programed by
the means of code by an expert or an experienced oper-
ator in industrial fields for tasks such as automatic spray-
ing, automatic welding, and automatic guided vehicle. This
programing method is widely applied in many areas that
require high precision, high speed, and high repeatability.
Alternatively, the robot learning is a method that the robot
can learn to perform a certain task via HRI and to reduce
the burden of the operator to meet the demand of efficiency
in the industrial field. This learning method is also called
programing by demonstration or learning from demonstration.
Generally speaking, the robots learn a specific task through
direct demonstration of human teleoperating a robot, 3-D
vision teaching, virtual demonstration, and so on. The human
operators teach the robots to exploit a specific skill by using
the interaction information, such as interaction force, position,
visual images, voice, physiological signals of the human, and
so on. There are a number of algorithms dedicated to the study
of the topic of robot learning. Robot learning methods can
be divided into two groups: the perception system level and
the learned task level. The perception system involves vision
and perceptible motion, while the learned task level comprises
the task trajectories or hidden state information (position,
velocity, force, and human intention) [13], [14]. Vision per-
ception system is an effective way to capture the information
of HRI [15]–[19]. Chalodhorn et al. [15] proposed a learned
sensory-motor model for a humanoid robot to learn human
gait via motion capture system. Grollman and Jenkins [17]
used a perception system to collect the data for the purpose of
the robot imitation. In addition, many researchers employed

motion sensors to capture human motion to teach the robots
to manipulate a specific task [18], [19].

In addition, by extracting the information from a
demonstrated trajectory could also facilitate robot learning.
Field et al. [20] presented a method by learning a joint space
trajectory model for robot programing. In [21], a complex tra-
jectory reproduction method is used to transfer the knowledge
of a human to a robot by demonstration. A similar learning
model was presented in [22]. Especially, Deniša et al. [23]
developed a compliant movement primitives method to encode
the position trajectory for robot learning. In order to improve
the performance of robot programing, related researchers
have proposed a number of methods at the robot learning
phase. Racca et al. [24] proposed a method integrated hid-
den semi-Markov model (HSMM) with Cartesian impedance
control to perform the complex tasks like opening a door or
manipulating a button. In [25], a parametric hidden Markov
model (HMM) was used to encode the data from the demon-
strations in the training phase. Tanwani and Calinon [26], [27]
developed a task-parameterized HSMM to copy with the
environmental situations in the process of manipulation tasks.
From the above-mentioned works, the robot learning can
be regarded as a problem of feature extraction from the
demonstrated training data for a specific skill in the process
of HRI. By using robot learning, the robot can obtain a task
model which embeds human intention. Khokar et al. [28]
used HMMs to recognize human motion intention by an
expert with offline training. Stefanov et al. [29] extracted
features from the haptic device and adopted HMM algo-
rithm to achieve human intention recognition through clas-
sification. In [30], an Intention-Driven Dynamics Model was
presented to infer human intentions from observed motions.
Maeda et al. [31] developed an interaction learning method
to generate a collaborative trajectory from human move-
ment observations. Ravichandar and Dani [32] proposed an
adaptive-neural-intention estimator method to recognize the
operator’s motion intention by using the observations via
offline training and online intention estimation. For tele-
operated robots, a human operator is regarded as a factor
to perform tasks cooperatively [28], [33], [34]. The human
performance greatly decides the accomplishment of the task.
Pervez et al. [35] presented a learning method based on
dynamical movement primitives to manipulate the peg-in-hole
task with a three DOF master-slave robot. However, influenced
by an uncertain environment, it is difficult to utilize the
human cognition for the manipulation of the task. In addition,
the motion and command of the operator involve his/her per-
ception and intention in the process of task collaboration [36].

In this paper, we combine the human intelligence with
the robot’s capability to ensure the performance of the task
and to enhance the robot intelligence of the teleoperated
robot. In the information perception interface, surface elec-
tromyogram (sEMG) signal is applied to detect the opera-
tor’s muscle activation when the operator manipulates the
haptic device to adapt to the external environments. For a
specific skill, the muscle activation varies with the opera-
tor’s movements/commands. In addition, representations of
human-telerobot collaboration, such as trajectories of the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YANG et al.: HAPTICS EMG PERCEPTION AND LEARNING ENHANCED INTELLIGENCE FOR TELEOPERATED ROBOT 3

Fig. 2. Block diagram of a teleoperation system.

task/robot’s end-effector, motion of the human, and variation
of muscle activation, indicate a specific skill and human
intention. First, by introducing a combined scheme of HSMM
and Gaussian mixture model (HSMM-GMM), we can obtain
a generative model in the learning phase. Similarly, in the
reproduction phase, a task reproduction model is executed
based on HSMM and Gaussian mixture regression (HSMM-
GMR). Second, in the learning and reproduction phase, based
on our previous work [37], a sEMG signal is embedded into
control strategy to indicate the intentions of human control
gain and movement. For the telerobot, it can learn how to
actively use a suitable control gain to perform a task which
is inspired by the human muscle activation according to
the external environments. Finally, experimental studies are
performed to show the effectiveness and superiority of the
developed algorithms.

Section II presents preliminaries to introduce the teleop-
erated system and the sEMG signal processing. Section III
presents the proposed task generative model in learning and
reproduction phase. Section VI describes system dynamics
and control strategy. The experimental setup and results are
presented in Section V. Finally, Section VI concludes the work
in this paper.

II. PRELIMINARIES

A. Teleoperation System Description

As shown in Fig. 2, a novel teleoperation system is devel-
oped in this paper. It includes three main modules: a biological
signal perception interface module, a telerobot module, and a
robot learning module.

1) Biological Signal Perception Interface Module: The bio-
logical signal perception interface module consists of
sEMG electrodes, preprocessing unit, and a variable gain
unit. This module is used to sense the human operator’s
muscle activation. The sampled sEMG information indi-
cates the electrical activity of the hand muscle in the
process of HRI. Through the signal processing module,
an envelop line of the sEMG signal can be obtained.
In this module, the obtained variable gain is used to
control the motion of the slave.

Fig. 3. Muscle activation descriptor based on sEMG signal.

2) Telerobot Module: The telerobot module is the main part
of the frame which employs a master-slave structure.
It can be observed in Fig. 2 that the slave device follows
the master’s motion generated by the human operator.

3) Robot Learning Framework Module: The robot learn-
ing module is responsible for both task learning and
reproduction. In the learning phase, the telerobot obtains
a priori knowledge task model to learn a specific skill
from the human operator by using statistical learning
theory. In the reproduction phase, the task model is
updated according to the current situations, and the robot
executes the updated task.

B. Muscle Activation Descriptor

Generally, the EMG signal is a result of the comprehensive
effect of motor unit action potential of muscle fiber both in
time and in space for surface muscle [38], [39]. The sEMG
signals can be used in three applications: indicator of the
muscle activation, representation of the force based on human
muscle, and a descriptor of the fatigue for the muscle [38].
In this paper, we use the sEMG signal as the muscle activation
descriptor. The process of sEMG signals preprocessing can be
seen in Fig. 3.

In this paper, an MYO armband (Thalmic Labs Inc.) with
N = 8 detection channels is used to sample the EMG signal
by employing bluetooth communication technique

u =
N∑

i

uraw(i), N = 1, 2, 3, . . . 8 (1)

where uraw(i) and u are the raw sEMG signals and the sEMG
signal, respectively.

Generally, the sEMG signal (blue) u involves noise. In order
to extract the muscle activation from the sEMG as filtered as
possible, the root mean square (rms) of the sEMG signal is
applied in this paper as follows:

rms =
√√√√ 1

Lwin

Lwin∑

i=1

u2
i i = 1, 2, . . . Lwin (2)

where Lwin is the size of sampling moving window, rms
presents the rms of the sEMG signal or the muscle activation
of descriptor. The value of the rms represents the instantaneous
electric power of the sEMG signal and reflects the effective
value of the muscle surface electrodischarge. The size of the
moving window is a parameter to tune according to experience
for many times.
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Fig. 4. Proposed task generative model.

III. ROBOT LEARNING MODEL

In the teleoperated systems, the performance of teleopera-
tion is highly correlated with the human operator’s skill. When
the human operator performs a task through the teleoperated
robot, the completion of task may be affected by the rela-
tionship with the external environment, the telerobot, and the
human subjective initiative. In order to enhance the capability
of HRI, a novel method is utilized to obtain a task model for
the teleoperation.

In this paper, we select the end-effector of a slave device to
perform a specific task trained with different initial conditions,
e.g., different initial locations. We then obtain a task learning
model by using the HSMM method.

The proposed task generative frame1 is shown in Fig. 4.
In the learning phase, based on the collected data of task
from demonstrations, HSMM-GMM is used to obtain the task
model parameters. In the reproduction phase, the telerobot
behavior is reproduced based on HSMM-GMR according to a
given task parameter set.

A. Parameters of Task Generative Model

The input data is collected by the positions x and velocities
ẋ of the robot end-effector.2

Because the performance of task is demonstrated by the
robot manipulator through the human operator, we define the
pose of the slave device ξ ∈ R

D as an observation sequence
with ⎧

⎪⎨

⎪⎩
ξ =

[
ξ I

t

ξ O
t

]

x = xs

(3)

1As seen in Fig. 4, in the reproduction phase, T is equal to T in the
equations.

2To guarantee the accuracy of these data for task learning, we use the pose
of end-effector of the slave device as input signals rather than the one of the
master device.

where ξ I is the pose of manipulator of the slave with the input
components and ξ O are out components, respectively. xs ∈ R

3

represents the position of the slave.
The task generative model incorporates six elements that

are presented as follows:
1) State of Model: Suppose that there are N states or N

hidden states in the HSMM, i.e., S = [S1, S2, S3, · · · , SN ].
At time t , the hidden state is qt ∈ [S1, S2, S3, · · · , SN ].

2) Number of Observations: M indicates the number
of observation. A set V incorporates M observations is
V = [v1, v2, v3, · · · , vM ]. At time t , the observation is
ot ∈ [v1, v2, v3, · · · , vM ].

3) Initial Probability Distribution Vector: π = [π1, π2,
π3, · · · , πN ] represents the initial probability distribution of
model, it defines the probability distribution of each hidden
state at the beginning of calculation πi = P(qt = Si ) ≥ 0,
(1 ≤ i ≤ N) and satisfies

∑N
i=1 πi = 1.

4) Transition Probability Distribution Matrix: A =
[ai j ]N×N is the transition probability distribution matrix for
hidden state i at time (t − 1) to hidden state j at time t ,
i.e., ai j = P(qt+1 = Sj | qt = Si ), (1 ≤ i, j ≤ N).
It satisfies

∑N
j=1 ai j = 1, (1 ≤ i ≤ N).

5) Gaussian Mixture Parameters and Observation Prob-
ability Matrix: We use the Gaussian joint probabilities to
represent the output probability distribution for observa-
tion, i.e., μ = (μ1, μ2, μ3, · · · , μi , · · · , μN ) and σ =
(σ1, σ2, σ3, · · · , σi , · · · , σN ), where i ∈ [1, N]. Therefore,
the observation probability at time t for state Si is pi (t) =
N (t; μi , σi ). B = bi(k)N×M indicates the observation prob-
ability matrix in state Si , and bi (k) = P(ot = vk, qt = Si )
(1 ≤ i ≤ N, 1 ≤ k ≤ M),

6) Probability Density Function for State Dwell Time:
We train the model c times in a set c ∈ {1, 2, · · · , C},
and we have μC = (μC

1 , μC
2 , μC

3 , · · · , μC
N ) and σC =

(σC
1 , σC

2 , σC
3 , · · · , σC

N ), where μC and σC are the mean values
and variances of the Gaussian duration probability distribution,
respectively. The state duration probability density function
pC

i (t) of state i is pC
i (t) = N (t; μC

i , σC
i ).

Therefore, the proposed model with N states is parametrized
by

λ = {π, A, {μ, σ }, {μC , σC }}N
i, j . (4)

B. Initialization of Task Generative Model

According to the above-mentioned specification, we need
to initialize the model λ, i.e., the given values of parameters
which are of reevaluation. Generally, the form of a Markov
chain is determined by the parameters of model π and A.
However, the initial values of both π and A have little impact
on the final convergence effect of the model under the case of
certainty for the Markov chain. In the parameters of the actual
model, the initial value of the state duration probability density
function pC

i (t) does affect the final results, but the influence
is very limited. Therefore, the parameters of {π, A, pC

i (t)}
can be initialized to be random or equal numbers. However,
the parameters {μ, σ } have a big impact on the convergence
property. We set the initial values of μ, σ with the K -means
method [27], [40].
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Fig. 5. Training of the model.

C. Training Method

The purpose of model training is to acquire the model
parameters λ = {π, A, {μ, σ }, {μC , σC }} according to a given
observation sequence V = [v1, v2, v3, · · · , vT ] through the
expectation-maximization algorithm [41]. We suppose that
the observation obeys an independent Gaussian probability
distribution in this paper. The process of training model is
shown in Fig. 5.

According to the given observation sequence to evaluate the
probability γt (Sj ) of state Sj at time t

γt (Sj ) = P(S(t) = s j | V , λ) = p(V , S(t) = s j | λ)

p(V | λ)
. (5)

According to γt (Sj ) to reevaluate the parameters of model λ
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ̂ j =
∑T

t=1 γt (Sj )vt∑T
t=1 γt (Sj )

σ̂ j =
∑T

t=1 γt (Sj )(vt − μ̂ j )(v − μ̂ j )
T

∑T
t=1 γt (Sj )

.

(6)

D. Observation Constituent

We define the pose of the slave device ξt as an observation
sequence with

ξt =
[
ξ I

t
ξ O

t

]
(7)

μi =
[
μI

i
μO

i

]
=

[
μx

i
μẋ

i

]
(8)

σi =
[

σ I
i σ I O

i
σ O I

i σ O
i

]
=

[
σ x x

i σ x ẋ
i

σ ẋ x
i σ ẋ ẋ

i

]
(9)

where ξt includes the input variable ξ I
t and the output vari-

able ξ O
t . μi and σi are the mean and variance related to the

input and output.

E. Probability Calculation

According to the given model λ = {π, A, {μ, σ }, {μC , σC }}
and observation sequence V = [v1, v2, v3, · · · , vM ],
the probability of observation sequence V in the model λ can
be calculated by using the forward algorithm as [26]

αi,t = P(v1, v2, v3, · · · , vt , it = qi | λ). (10)

For t = 1, 2, 3, · · · , T − 1, it can be obtained as

αi,t =
N∑

j=1

min(cmax,t−1)∑

c=1

α
j
t a j i pC

i (c)
t∏

s=(t−c+1)

N (ξc | μ̂i , σ̂i )

(11)

where i = 1, 2, 3, · · · , N . αi,t is the forward probability
P(V | λ) in state i at time t and V = (v1, v2, v3, · · · , vt ).
a j i is the transition probability from the state j at time t to
the state i at time t .

F. Reproduction

Based on the probability calculation of HSMM-GMR, a nor-
malized parameter hi to describe the influence of state i is
defined as

hi,t = αi,t∑N
k=1 αk,t

(12)

αk,t =
(

N∑

k=1

αk,t−1aki

)
N (ξt | μ̂i , σ̂i ) (13)

where αk,t is defined in (11).
From (12) to (13), we have

hi,t = αi,t∑N
k=1 αk,t

= N (ξt | μ̂i , σ̂i )∑N
k=1 N (ξt | μ̂k, σ̂k)

. (14)

Inspired by the work in [24], [42], and [43], the current
target variable ẋ (velocity) can be obtained as

ẋ∗ =
N∑

i=1

hi,t
{[Ai bi ][xt 1]T }

(15)

with

Ai = σ x x
i

(
σ x x

i

)−1 (16)

bi = μ̂x
i − σ x x

i

(
σ x x

i

)−1
μx

i . (17)

According to (15)–(18), we can compute the velocity of the
end-manipulator.

It is assumed that the position is known at time t . Motivated
by the work in [24], the position can be computed at time t +1
by integration

x∗|i=t+1 = x∗|i−1=t + T ẋ∗

= x∗|i−1=t +
N∑

i=1

hi,t
{[Ai bi ][xt 1]T }

(18)

where T is a length of the single iteration time step.

IV. TELEOPERATION CONTROL DESIGN

A. System Dynamics

In this paper, the dynamics of the teleoperation system are
described as [44]

{
Mm(qm)ẍm + Cm(qm, q̇m)ẋm + Gm(qm) = Fm

Ms(qs)q̈s + Cs(qs, q̇s)q̇s + Gs(qs) = τs
(19)

where {Mm(qm) ∈ RNm ×Nm , Cm(qm, q̇m) ∈
RNm ×Nm , Gm(qm) ∈ RNm }, and {Ms(qs) ∈ RNs ×Ns ,
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Fig. 6. (a) sEMG signal processing process with Lwin = 10. (b) sEMG signal processing with Lwin = 20. (c) Length of moving window for sEMG signal
is Lwin = 30.

Cs(qs, q̇s) ∈ RNs ×Ns , Gs(qs) ∈ RNs } are the inertia matrix,
Coriolis and centrifugal matrix, and gravitational matrix for
the master and the slave in the joint space, respectively.
qm and qs are the joint angle vector for the master and the
slave. Fm ∈ RNm is the force of the master in the process of
human operation. τs ∈ RNs is the control torque of the slave
device. Nm and Ns are the DOFs of the master and the slave.

B. Control Strategy

1) Basic Control: The potential difference (PD) control
methods are both applied in the system for the master and
the slave, which are described in

{
τm = K pmem + Kdmėm

τs = K pses + Kdsės
(20)

where em = xmd − xm , es = xsd − xs . {K pm, Kdm} and
{K ps, Kds} are the proportional term and the differential term
of the controller for the master and the slave, respectively.

2) Task Space Control: Based on the Denavit–Hartenburg
(D–H) parameters of the slave device, the closed-loop inverse
kinematics method is introduced to avoid kinematic singular-
ities and numerical drifts for the Cartesian position task. The
slave joint velocity qs can be presented as [44]

qs =
∫

Ksp J T
s (qs)es (21)

with

es = xm − xs = xsd − xs

where Ksp and J T
s (qs) are the positive definite matrix and the

Jacobian matrix for the slave, respectively. es is the position
error.3

3) Variable Gain Control: When the human operator
manipulates a telerobot to perform a task, the muscle activation
of hand will change according to the feedback from the
robot. Thus, a variable gain control method based on the
muscle activation is used to enhance the telerobot control
performance [37], [44], [45]

K α = (
K α

max − K α
min

)
(
αk

i − αk
max

)
(
αk

min − αk
max

) + K α
min (22)

3For simplicity, we just describe the control strategy in the Learning phase.
The variables xsd , xs indicate the status of the teleoperated robot in the
Learning phase.

Fig. 7. Experimental setup for a pulling the cotter pin task.

where a(i) = (eAemgu(i) − 1)(eAemg − 1), u(i) are sEMG
signal. Aemg represents the parameter of muscle activation.
K α

max indicates the maximum of K α and K α
min represents the

minimum of K α , i.e., K α
min ≤ K α ≤ K α

max. αk
min and αk

max are
the upper bound and the lower bound of the muscle activation,
respectively.

4) Tracking Force: In the process of task execution,4 the
tracking force Ftr varies with the position error of the slave.
A PD controller is used to compute the tracking force

Ftr = Kptr
(
xg − x∗) + Kdtr ẋ

∗ (23)

where Kptr and Kdtr are the parameters of the PD controller.
x∗ and ẋ∗ are the position and velocity of the end-effector of
the slave. xg is the given desired position.

V. RESULTS

A. sEMG Signal Preprocessing

In this paper, the length of moving window Lwin is used
to evaluate the performance of the rms based on muscle
activation.

As shown in Fig. 6(a)–(c), the length of the sampling
window has greatly affected the envelope of the sEMG signal.5

4In the reproduction phase, x∗ is used as the reference signal for the salve.
The parameters of the controller are the same in the reproduction phase and
Learning phase.

5It is natural that more samples are used in the moving window the smoother
signal will be got. But large computing time and high-frequency information
loss as the tradeoff in the process of sEMG signal precessing. Therefore,
it needs more investigation on the choice of window size in the future.
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Fig. 8. (a) Recorded position from four demonstrations. (b) Velocity by human operator demonstration. (c) HSMM component activation for the pulling
the cotter pin task. Reproduction phase based on the learned task model. (d) Reproduced position in the reproduction phase. (e) Velocity in the reproduction
phase. (f) Tracking force in the reproduction phase for the pulling the cotter pin task.

In Fig. 6(a), the envelop curve (red) involves high-frequency
characteristic and brings disturbance in the applications. When
Lwin = 30, the rms is of a smooth trend as shown in Fig. 6(c);
however, the computing time is relatively longer for rms
and it cannot meet the requirement for a real-time classifier.
Compared with Fig. 6(a) and (c), the curve of the rms is
of suitable smoothness and reasonable computing time with
Lwin = 20.

B. Semi-Physical Experiment: Pulling the Cotter Pin Task

1) Semi-Physical Experiment Setting: In this paper, the pro-
posed method is presented to show the process of robot
learning and human intention insertion for the teleoperation
system which utilizes a master-slave structure. As shown
in Fig. 7, the experimental platform consists of a 6-DOF
Touch X haptic device as the master and a virtual Baxter
robot as the slave. The experimental facilities communica-
tions through a single computer with Windows 7, MATLAB,
and Visual Studio 2013. The first part of the experiment
is the trajectory tracking to verify the motion performance
for a heterogeneous master-slave robotic system. The slave
device follows the motion of the master through a commu-
nication channel. The second part of the experiment is the
pulling the cotter pin task. In the learning phase, the task
workspace trajectories are recorded as demonstrated obser-
vation. Observations are obtained by remotely manipulating
the six degrees of freedom slave device. Through manipula-
tion task group, a generative model {π, A, {μ, σ }, {μC , σC }}
is obtained by using HSMM-GMM. In the reproduction
phase, the robot reproduction trajectory can be corrected
based on the learned model (HSMM-GMR). In the exper-
iment, the designed controller parameters are presented
in Table I. The sampling time for the teleoperated system

TABLE I

DESIGNED CONTROLLER PARAMETERS FOR
THE TELEOPERATED SYSTEM

t = 0.01 s, the parameter involves muscle activation is chosen
as Aemg = −0.6981.

2) Learning Model Through Demonstrations: This exper-
iment aims at learning a task model to enhance the robot
intelligence for the teleoperation system. The trajectory obser-
vations of the slave are collected from several demonstration
(C = 4) by the same human operator using the haptic
device. Then, HSMM-GMM method is applied to encode the
demonstrations. The number of Gaussian is chosen according
to the task segmentation. The hidden states for a pulling the
cotter pin task are set N = 4.

As shown in Fig. 8(a)–(b), the recorded trajecotries of posi-
tion and velocities of the robot end-effector are demonstrated
by the human operator with four demonstrations in the task
space. According to (14) and Fig. 8(c), the HSMM component
activation curves are computed for pulling the cotter pin task
in the learning phase.

3) Reproduction Based on Learned Task Model: A learned
task model can be obtained in learning phase. In reproduction
phase, the learned task model can adapted according to the
task initial conditions. From (15) to (18), the current posi-
tion/velocity of the robot end-effector can be computed based
on the learned task model. Fig. 8(d)–(e) shows the position and
the velocity of reproduction for the pulling the cotter pin task.
It can be seen that a relative smooth trend in the reproduction
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TABLE II

RMSEs FOR THE PULLING THE COTTER PIN TASK INVOLVES
HUMAN OPERATOR DEMONSTRATIONS

Fig. 9. Experimental setup for a drawing task.

Fig. 10. (a) Position of the robot in x-coordinate during the drawing task.
(b) Position of the robot in y-coordinate during the drawing task. (c) Position
of the robot in z-coordinate during the drawing task. (d) Stiffness of the human
during the drawing task.

phase in comparison with the human operator demonstrations.
As shown in Fig. 8(f), the tracking force is computed in (23).

The root-mean-square errors (RMSEs) show the accuracy of
the proposed method in reproduction phase in Table II. The
RMSEs value indicates that the superiority of the proposed
reproduction method based on the learned task model.

C. Experiment: Drawing Task

The purpose of this experiment is to evaluate the perfor-
mance of the presented method in a simple task.

1) Experiment Setting: In this experiment, a typical drawing
task is performed by the teleoperation system as presented
in Fig. 9. In this experiment, a green pen is attached onto the

Fig. 11. Robot execution for a drawing task.

endpoint of the slave right arm as a drawing tool. A human
operator manipulates the master device to teleoperate the
end-effector of the slave to perform a drawing task. We collect
C = 3 demonstrations and train N = 18 states of the HSMM
in the learning phase. We then perform a drawing task in a
210 mm × 297 mm (A4) 2-D space.

2) Results and Analysis: The motion trajectories and stiff-
ness profile of the drawing task are shown in Fig. 10(a)–(c).
The gray curves indicate the demonstration results. The red
curve represents the result of preproduction. The reproduction
phase can be divided into six steps (I–VI). In steps I and II,
the robot begins to perform a subtask drawing task 1.
In steps II and III, the end-effector of the slave leaves from
the paper for another drawing operation. Similarly, subtask
drawing task 2 and subtask drawing task 3 are performed in
steps III and IV and steps V and VI, respectively. During the
learning phase, humans’ stiffness is variable which follows
with the drawing operation. As shown in Fig. 10(d), humans’
stiffness maintains a high level in steps I and II, III and IV,
and V and VI.

In Fig. 11, the telerobot performs the drawing task by
using a reproduced stiffness. From Fig. 11(a)–(f), it can be
concluded that the drawing tasks are successfully performed
by employing the proposed method.

VI. CONCLUSION

The purpose of this paper is to explore a mapping of
relationship to represent the task model between the percep-
tion information and the robot learning method. This paper
proposed a novel algorithm integrating the haptics EMG
perception mechanism and robot learning based on HSMM
and GMM/GMR. The human operator could adjust the mus-
cle activation according to the HRI environment and this
muscle activation process could be observed and recorded.
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By utilizing the recorded sEMG signal and a task learning
framework, the teleoperation system could naturally interact
with the external environment and encode the demonstra-
tions and reproduction of the HRI task to enhance the robot
intelligence, respectively. Experimental results have demon-
strated the effectiveness of the proposed haptic feedback with
sEMG-based variable gain control mechanism and the robot
learning method. In the future work, we will introduce the
force information of the robot’s end-effector and vision infor-
mation into the telerobot perception system to construct the
multimodal information fusion platform. Moreover, we will
exploit the more effective task learning model for the enhance-
ment of the robot intelligence in the teleoperated areas.
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