Electromagnetic Fault Injection: How Faults Occur
Mathieu Dumont, Mathieu Lisart, Philippe Maurine

To cite this version:

HAL Id: lirmm-02328109
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02328109
Submitted on 31 Mar 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Electromagnetic Fault Injection: how faults occur?

Authors: Mathieu DUMONT [1,2], Philippe MAURINE [2], Mathieu LISART [1]

[1] STMicroelectronics, Rousset, France
[2] LIRMM, University of Montpellier, Montpellier, France
Introduction

• Context :

• Objectives :
 ➢ Modelling : impact of an EMFI on IC supply voltage
 ➢ SPICE simulation : impact of an EMFI on IC operation
 ➢ Experimental validation
➢ Modelling: Impact of an EMFI on IC supply voltage

➢ Spice Simulation: impact of EMFI on IC operation

➢ Experimental Validation
EMFI induces parasitic currents mostly in the power and ground networks. Metal wires from the power/ground networks form many loops! Interconnect logic wires don’t form loops.

Modelling: Impact of an EMFI on IC

- EM Induction: hypothesis?

- EM induction induces currents variation on closed loops.

Probe IC
Modelling: Impact of an EMFI on IC

- Impact of EMFI on supply voltage.

\[
\begin{align*}
 m_{gnd} &= k_{gnd} \sqrt{L_{\text{probe}} \times L_{\text{gnd}}} \\
 m_{vdd} &= k_{vdd} \sqrt{L_{\text{probe}} \times L_{\text{vdd}}}
\end{align*}
\]
Modelling: Impact of an EMFI on IC

- Impact of EMFI on supply voltage.

\[m_{vdd} = m_{gnd} \]

\[Swing = Vdd - Gnd \]

\[m_{vdd} \neq m_{gnd} \]

Swing is negative for few ns!
➢ Modelling: Impact of an EMFI on IC supply voltage
➢ Spice Simulation: impact of EMFI on IC operation
➢ Experimental Validation
Modelling: Impact of an EMFI on IC

• Testbench Simulation

\[\text{Swing} = V_{dd} - Gnd \]

\[\text{Swing}_{width} \]

\[\text{Swing}_{V} \]

\[\text{Time (s)} \]

\[\text{CLK-REF} \]

\[\text{CLK} \]

\[\text{D} \]

\[\text{Q} \]

\[\text{CP} \]

\[\text{IN-REF} \]

\[\text{CLK-REF} \]

\[\text{CK2E} = +0.7\text{ns} \]

\[\text{CK2E} = -0.8\text{ns} \]

\[\text{CK2E} = 0\text{ns} \]

\[\text{QIN-REF} \]

\[\text{20.0n to 40.0n} \]

\[\text{Time (s)} \]
Modelling: Impact of an EMFI on IC

- Logic simulation: Swing amplitude impact on IC operation

Fault criterion F:

$$F = \frac{(CK2Q)_{ref}}{(CK2Q)_{inj}}$$

- $F = 1$ Normal Operation
- $0 < F < 1$ Delay
- $F = 0$ Sampling Fault
Modelling: Impact of an EMFI on IC

- Sampling Fault explanation

Normal Operation

Q = '1'

NO FAULT
Modelling: Impact of an EMFI on IC

- Sampling Fault explanation

<table>
<thead>
<tr>
<th>Swing</th>
<th>CLK_REF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q = '0'

TIMING FAULT

D

Q = '0'

CP
Modelling: Impact of an EMFI on IC

- Sampling Fault explanation

\[Q = '0' \]
- Modelling: Impact of an EMFI on IC supply voltage
- Spice Simulation: impact of EMFI on IC operation
- Experimental Validation
EMFI experimental validation

- **Effect of F_{CLK} variations**
 - Target: AES 128bits.
 - EM pulse sweeps, for few periods, with a pulse delay step of 100ps.
 - 50 EMFI shots are performed at each sweep to determine fault probability P_f ($0 < P_f < 1$).
 - As expected Sampling Fault Windows appear with a period equal to that of the IC.
 - Their width are independent of the frequency.
EMFI experimental validation

- **Effect of V_{pulse} variations**
 - Determine the evolution of the Sampling Fault Window width in function of V_{pulse} variations.
 - The width of Sampling Fault Windows increases with V_{pulse}.

![Graph showing the effect of V_{pulse} variations on the Sampling Fault Window width.](graph)
EMFI experimental validation

- **Effect of PW variations**

 - Determine the evolution of the *Sampling Fault Window* width in function of *PW* variations.
 - The Pulse Width does not affect much the sampling fault window.
• Conclusion

- Modelling simulations show that EMFI induces a voltage **bounces or drops** on power networks **Vdd** and **GND**. That could induce a **Swing drop**.

- Sampling Fault occurs when **EM Field** is applied during IC operation around rising CLK edge. In **simulation** and **experimentally**.

• Perspective

- More accurate **coupling model**.

- Experimental validation and parallel on **one register** only.
Thank you

Electromagnetic Fault Injection: how faults occur?

Authors: Mathieu DUMONT[1,2], Philippe MAURINE[2], Mathieu LISART[1]

[1] STMicroelectronics, Rousset, France
[2] LIRMM, University of Montpellier, Montpellier, France
Modelling: Impact of an EMFI on IC

- Logic simulation: Swing amplitude impact on IC operation

Fault criterion F:

$$F = \frac{(CK2Q)_{ref}}{(CK2Q)_{inj}}$$

- $F = 1$ Normal Operation
- $0 < F < 1$ Delay
- $F = 0$ Sampling Fault
Modelling: Impact of an EMFI on IC

• Sampling Fault explanation

![Diagram showing a sampling fault in a flip-flop circuit with EMFI impact]
Modelling: Impact of an EMFI on IC

Sampling Fault explanation

- **CLK = 0**
 - V1 is disrupted during the D recovery

- **CLK = 1**
 - If CLK edge occurs during V1 alteration: wrong value is sampled and stored in Master loop.

V1 depends on D when CLK = 0

If CLK edge occurs during V1 alteration: wrong value is sampled and stored in Master loop.