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Abstract. In this article, we address the problem of genome lineariza-
tion from the perspective of Polynomial Local Search, a complexity class
related to finding local optima. We prove that the linearization problem,
with a neighborhood structure, the neighbor slide, is PLS-complete. On
the positive side, we develop two exacts methods, one using tree decom-
positions with an efficient dynamic programming, the other one using an
integer linear program. Finally, we compare them on real instances.

1 Introduction

Motivation. This problem was introduced to resolve conflicts in the production
of genomic sequences, due to repeats occurring in those sequences. When infer-
ring genome sequences from high-throughput sequencing (HTS) data, we obtain
(after assembly) fragments of the target sequence called contigs.3 In order to
improve the amount of positional information, the fragmented contain datasets
constituted of contigs have to be improved by an operation called scaffolding.
Herein, contigs are linked together using external information (usually a read-
pairing included in the HTS data), yielding a graph called scaffold graph, whose
vertices are contig extremities and edges are either contigs or links between them.
The scaffolding operation aims to select the best paths in this graph in order to
produce longer genomic sequences called scaffolds. Previous work focuses on the
production of sequences by solving the so-called Scaffolding problem in this
graph [4, 14, 16]. Scaffolding is a widely studied problem in bioinformatics and
can be modeled by numerous, mostly heuristic, methods [8].

Unfortunately, genomes escape the relative simplicity of previous models
(that still lead to NP-complete problems). A particular problem is modeling con-
tigs occurring multiple times in the target genome. Such “repeats” and their “mul-
tiplicity” (or “copy numbers”) vary depending on the species and individual [2].
Due to the conservatism of some assembly methods, a repeat may cover an en-
tire contig which is separated from the other genomic side fragments [11]. Recent
methods address this problem and avoid the reef of chimeric reconstruction by
using long reads as additional data [3, 13]. Unfortunately, most projects on ge-
nomic databases are still constituted of short-reads only and are not intended to
be resequenced with long-reads technologies in the near future. One motivation
3 Contigs are words on a genomic alphabet, usually {A,C,G, T}.



of our work it to take care of these kind of projects, and improve assemblies using
only the original available short-read (though paired-end) data. In this context, a
solution to the Scaffolding problem may not be a collection of distinct paths,
but rather a graph, called solution graph (which is a particular scaffold graph
with multiplicities). Transforming such a graph into genomic sequences turns
out to be a challenging task. The aim of the present work is to study the prob-
lem consisting of removing ambiguities in the solution graph in order to provide
longer and non-erroneous genomic sequences with minimal loss of information.

2 Notation and description of the problem

Let G be a graph, we denote by V (G) and E(G) the sets of vertices and edges
of G, respectively. A scaffold graph (G,M∗, ω,m′) is an edge-weighted, simple,
undirected graph G equipped with 1. a perfect matchingM∗ that corresponds to
the contigs, 2. non-contig edges uv whose weights ω(uv) indicate the likelihood
that the contig-extremity u is adjacent to the contig-extremity v in the target
genome and 3. a multiplicity m′ on contig edges which indicates the desired
number of their occurrences. An alternating walk (u0, . . . , u2`−1) is a sequence
of vertices such that for each i < `, u2iu2i+1 ∈M∗ and u2i+1u2i+2 ∈ E(G)\M∗.
If u0 = u2`−1, the walk is said closed. The Scaffolding with Multiplicities
problem is stated as follows:

Scaffolding with Multiplicities (SCAM)
Input: a scaffold graph (G,M∗, ω,m′) and σp, σc, k ∈ N
Question: Is there a multiset S of at most σc closed and at most σp

non-closed alternating walks in G such that each e ∈ M∗ occurs
m′(e) times in across all walks of S and

∑
e∈E(S)\M∗ ω(e) ≥ k?

A solution graph (G∗,M∗, ω,m) is a subgraph of a scaffold graph, induced by the
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Fig. 1. A scaffold graph and its solution graph obtained with an optimal solution
of SCAM. The matching edges are bold and the plain edges are part of the solution
graph. Edge cd has multiplicity two. Other contigs have multiplicity one. Edges of the
solution graph have also multiplicity one. Links between contigs are labeled by their
weight. Because of the presence of the ambiguous path cd, two optimal solutions are
possible for SCAM by taking σc = 0 and σp = 2: {(a, b, c, d, e, f), (c, d, g, h)} and
{(a, b, c, d, g, h), (c, d, e, f)}.
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choice of some of its non-contig edges during the scaffolding operation. That is,
given a scaffold graph (G,M∗, ω,m) and a solution S of SCAM (G∗,M∗, ω,m)
is obtained by removing the edges that do not belong to S. The multiplicity
function m defined on all the edges of the solution graph is the number of times
that an edge occurs in S. Note that for each matching edge e, we have m(e) =
m′(e). It turns out that, in presence of repeated contigs, a solution graph implies
a unique set of sequences if and only if it does not contain so called ambiguous
paths [15].

Definition 1 (Ambiguous path). Let p be a path with extremities u and v in
a solution graph. If, for all vertices x of p, p also contains the matching edge
containing x, we call p alternating. If all edges of p have the same multiplicity µ
(that is, m(e) = µ for all e ∈ p), then p is called µ-uniform (or simply uniform
is µ is unknown). If p is alternating, uniform, and both of u and v are incident
with a non-matching edge of multiplicity strictly less than µ, then p is called
ambiguous.

An example of ambiguous path is shown in Figure 1. To destroy ambiguous
paths, we remove some non-contig edges from the solution graph, thereby los-
ing information, and our goal is to minimize this loss. Definition 1 implies that
minimal solutions remove all incident non-contig edges from a selected set X of
vertices. The “cost” of such a set X can be defined by the following scorings:

Cut score. Pay one per vertex in X: score(X) := |X|.
Path score. Pay one for each multiplicity that is removed:

score(X) :=
∑
{m(uv) | uv ∈ E \M∗ ∧ uv ∩X 6= ∅}.

Weight score. Pay the total cost of edges that are removed:
score(X) :=

∑
{m(uv) · ω(uv) | uv ∈ E \M∗ ∧ uv ∩X 6= ∅}.

Since the Path score and the Weight score are very similar, we study in this pa-
per only the Cut score and the Weight score. The following reduction rules sim-
plify a given instance (solution graph) without changing the solution set X.

Rule 1 ([15]) Let p be a µ-uniform alternating path with extremities u and v.
Remove p and add a new contig edge uv with multiplicity µ.

Rule 2 ([15]) Let uv ∈M∗ be a contig edge not appearing in ambiguous paths
and let u and v have degree at least two. Then, remove uv, add new vertices u′
and v′ and add the contig edges uv′ and vu′ with multiplicity m(uv).

Let (G∗,M∗, ω,m) be a solution graph and let u ∈ V (G∗). We let NG∗(u) =
{v |uv ∈ E(G∗) \M∗} denote the set of neighbors of u linked to u with a non-
matching edge. We say that a vertex u is clean if NG∗(u) = ∅ and a match-
ing edge uv ∈ M∗ is clean if at least one of its extremities is clean. In the fol-
lowing, we assume that all solution graphs are reduced with respect to Rule 1,
and we observe that, in this case, all uniform alternating paths have length one.
Thus, we use the term “ambiguous edges” (resp. “non-ambiguous edges”) when
we speak of ambiguous (resp. non-ambiguous) paths. With Rule 2, we can fur-
ther assume that matching edge e is ambiguous if and only if e is not clean.
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Hence, disambiguating a solution means to render all matching edges clean. We
can now formulate our problem Semi-Brutal Cut as follows.

Semi-Brutal Cut (SBC)
Input: A solution graph (G∗,M∗, ω,m) and some k ∈ N
Question: Is there a set X of extremities of ambiguous edges in G∗

such that removing all non-matching edges incident to vertices of X
renders all matching edges clean, and score(X) ≤ k?

For a vertex u of G∗, we let ω(u) denote the sum of the weights of all non-
matching edges incident to u. For a solution X of Semi-Brutal Cut, we let
ω(X) :=

∑
u∈X ω(u). We say that u is cut if u ∈ X. Since we are not limited in

number of cuts for the weight score, we suppose that in a solution X for Semi-
Brutal Cut under the weight score, each ambiguous edge of (G∗,M∗, ω,m)
contains exactly one vertex in X.

3 Related works.

Problems similar to the linearization of scaffolds are studied in the context of
guided, multiple-source assembly problems [12]. However, the model does not
integrate multiplicities as a constraint on the structure of the desired paths. In
previous work, we show that the variants of Semi-Brutal Cut according to
all presented scoring functions are NP-complete [15]. In [10], we explore spe-
cial classes of graphs, namely bipartite, planar with bounded degree, analyzing
complexity and approximability, showing that even in very restricted cases, the
problem is hard to solve. We also proposed a 2-approximation algorithm under
the weight score and a 4-approximation under the cut score. In the present work,
we consider general instances, showing that even finding a locally optimal solu-
tion is hard, but propose effective exact methods to linearize genomes.

4 Hardness using PLS-reduction

This section is devoted to determine the complexity using the PLS class (Poly-
nomial Local Search) which models the difficulty of finding a locally optimal so-
lution to an optimization problem [5]. Schäffer and Yannakakis [9] proved several
classic combinatorial optimization problems are PLS-complete. In the following,
we propose a new neighborhood structure called the neighbor slide adapted to
Semi-Brutal Cut. We recall first some definitions related to the class PLS. A
neighborhood structure N is a function that associates to each solution S a set
of solutions N(S). A local search problem is a combinatorial optimization prob-
lem P for which, given a neighborhood structure N , we want to find a solution
S, called local optimum, such that no solution in N(S) has a better score. In the
following, we designate by P/N a local search problem where P is a combinato-
rial optimization problem and N a neighborhood structure.

Definition 2 (PLS). A local search problem P/N is in PLS if:
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(a) There is a polynomial-time algorithm AL that, for each instance x, gives an
initial solution Sinit.

(b) There is a polynomial-time algorithm BL that, for each solution s, deter-
mines the score of a solution S.

(c) There is a polynomial-time algorithm CL that, for each solution s, deter-
mines if S is a local optimum, and if it is not, gives a solution with the best
score in N(S).

To show that finding a local optimum for a problem P1/N1 is at least as difficult
as finding a local optimum for a problem P2/N2, we use a PLS-reduction defined
as follows:
Definition 3 (PLS-reduction). A local search problem P1/N1 is PLS-reducible
to a local search problem P2/N2 if there are polynomial-time computable func-
tions f and g such that:
(a) If x1 is an instance of P1, then f(x1) is an instance of P2.
(b) If S2 is a solution for f(x1), then g(x1, S2) is a solution for x1.
(c) If S2 is a local optimum for f(x1), then g(x1, S2) is a local optimum for x1.

As the NP-complete class, we define the PLS-complete class: a local search
problem P/N is PLS-complete if P/N is PLS and if every problem in PLS can
be PLS-reduced to P/N . We now introduce the Max W2SAT problem and the
Flip neighborhood structure.

Max W2SAT
Input: A boolean formula ϕ in conjunctive normal form where each

clause Ci has a weight ω(Ci) and contains exactly two variables.
Task: Find an assignment maximizing the total weight of satisfied clauses.

Definition 4 (Flip). Let S be a solution for ϕ. A solution S′ is in N(S) if
there exists a unique variable xi such that the assignment of xi is different in S
and S′. We say that S′ is obtained by flipping the value of xi in S.

In [7], it is shown that Max W2SAT/Flip is PLS-complete. Let ϕ be an instance
of Max W2SAT and let S a solution of ϕ. We let ω(ϕ) denote the sum of the
weights of all clauses of ϕ and we let ω(S) denote the total weight of all clauses
that are not satisfied by S. From an instance of Max W2SAT, we build an
instance of SBC using the following construction.
Construction 1 Let ϕ be an instance of Max W2SAT with n′ variables xi
and m′ clauses Cj and let occ(xi) denote the number of occurrences of xi in ϕ.
We construct the following solution graph (G∗,M∗, ω,m).
1. Construct a matching edge s1s2 with m(s1s2) = 2m′.
2. For each xi, construct a matching edge uiui such that m(uiui) = occ(xi) + 1

( variable edge).
3. For each clause Cj, construct a matching edge v1j v2j such that m(v1j v

2
j ) = 2

( clause edge).
4. For each clause Cj, let xk be the tth variable of the clause. If xk occurs posi-

tively in the clause, then add the edge vtjuk with m(vtjuk) = 1 and ω(vtjuk) =
ω(Cj). Otherwise, add the edge vtjuk with m(vtjuk) = 1 and ω(vtjuk) = ω(Cj).
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s1s2

v11 v21 v12 v22 v13 v23

u1 u1 u2 u2

Fig. 2. Left: The graph produced by Construction 1 and on input ϕ = (x1 ∨ x2) ∧
(¬x1 ∨x2)∧ (¬x1 ∨¬x2) (each clause has weight one). Matching edges are bold and all
non-matching edges have weight one. A solution S with ω(S) = 6 is highlighted in gray.
In S, v11v21 is satisfied, v12v22 is unsatisfied and v13v23 is neither satisfied nor unsatisfied.
Right: A Solution of weight 5 produced by a neighbor slide of u1u1.

5. Finally, for each matching edge uiui, if ω(ui) < ω(ui), add an edge s1u1 with
m(s1u1) = 1 and ω(s1u1) = ω(ui) − ω(ui). If ω(ui) > ω(ui), add an edge
s1u1 with m(s1u1) = 1 and ω(s1u1) = ω(ui)− ω(ui).

Note that for each variable edge uiui, we have ω(ui) = ω(ui). All matching edges
except s1s2 are ambiguous. If a cut in a clause edge v1j v2j is adjacent to a cut in a
variable edge, then we say that the clause edge v1j v2j is satisfied. If no extremity of
a clause edge v1j v2j is adjacent to a cut vertex in a variable edge, we say that the
clause edge v1j v2j is unsatisfied. Note that a clause edge can be neither satisfied
nor unsatisfied. An example of a graph produced by Construction 1 is given in
Figure 2.
In a graph produced by Construction 1, we simulate the flipping operation with
the neighbor slide operation defined as follows:

Definition 5 (Neighbor Slide, see Figure 2). Let S ⊆ V (G∗) be a solution
for (G∗,M∗, ω,m) and let uv be an unclean matching edge of G∗ with u ∈ S.
The neighbor slide operation applied to uv produces a new solution S′ as follows:
1. S′ ← (S ∪ {v}) \ {u},
2. for each neighbor nu 6= s1 of u: S′ ← (S′ ∪ {M∗(nu)}) \ {nu}, and
3. for each neighbor nv 6= s1 of v: S′ ← (S′ ∪ {nv}) \ {M∗(nv)}.
Thus, a solution S′ belongs to N(S) if S′ can be produced by applying a neighbor
slide operation on S.

Definition 6. Let ϕ be a Max W2SAT instance, let (G∗,M∗, ω,m) be the
graph produced by Construction 1, and let X be a solution for it. A solution S for
ϕ corresponds to X if, for all matching edges uiui, we have ui ∈ X ⇒ S(xi) = 1
and ui ∈ X ⇒ S(xi) = 0.

Note that after a neighbor slide of a variable edge, all adjacent clause edges are
either satisfied or unsatisfied, and that if a clause edge v1j v2j is satisfied (resp.
unsatisfied), then the corresponding clause Cj is satisfied (resp. unsatisfied).

Lemma 1. Let X be a solution for (G∗,M∗, ω,m), produced by Construction 1
and let S be the corresponding solution for ϕ.
1. If X is a local minimum, then all clause edges are satisfied or unsatisfied.
2. If all clause edges are satisfied or unsatisfied by X, then ω(X) = ω(ϕ)+ω(S).
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Proof. 1. Suppose there is a clause edge v1j v2j that is neither satisfied nor un-
satisfied. Thus, it exists a cut vertex adjacent to v1j v2j that is not adjacent
to the cut vertex of v1j v2j . By neighbor-slidding the clause edge v1j v2j we can
produce a solution with a smaller weight, contradicting the fact that X is a
local minimum.

2. Let uiui be a variable edge and ψi be the list of the clauses where the variable
xi occurs. We have ω(ui) = ω(ui) =

∑
Cj∈ψi

ω(Cj).
Thus, the sum of the weights removed by the cuts in the variable edges is
equal to

∑
i≤n′

∑
Cj∈ψi

ω(Cj) = ω(ϕ). Let v1j v2j be a clause edge. If v1j v2j
is satisfied, then its cut does not increase the weight of X since the non-
matching edge incident to this cut is already removed by the cut in the
variable edge. If v1j v2j is unsatisfied, then it cut increases the weight of X
by the weight of Cj . Since the sum of weights removed by the cuts in the
unsatisfied clauses edges correspond to the weight of S, we have ω(X) =
ω(ϕ) + ω(S).

Theorem 1. SBC/Neighbor slide is PLS-complete for the weight score.

Proof. It is easy to see that SBC/Neighbor slide is PLS. We propose a PLS-
reduction from Max W2SAT/Flip to SBC/Neighbor slide. Let ϕ be an instance
of Max W2SAT. The function defined by Construction 1 produces an instance
(G∗,M∗, ω,m) of Semi-Brutal Cut and the function defined in Definition 6
produces a solution in ϕ from a solution of in (G∗,M∗, ω,m). It remains to show
that if a solution X is a local minimum of Semi-Brutal Cut in (G∗,M∗, ω,m),
then its corresponding solution S is also a local minimum. By Lemma 1 (Point
1) and Lemma 1 (Point 2), we have ω(X) = ω(ϕ) + ω(S). Suppose that S
is not a local minimum, then it exists a variable xi in S such that flipping
its value produces a solution S′1 with a smaller weight. Let S′2 be the solution
produced by the neighbor-slidding of the variable edge uiu1 in X. Note that,
the corresponding solution of S′2 is S′1. By Lemma 1 (Point 1), all clauses edges
in X are either satisfied or unsatisfied and since the clauses edges modified by
a neighbor-slidding are either satisfied or unsatisfied, all clauses edges in S′2 are
either satisfied or unsatisfied. Thus, by Lemma 1 (Point 2), ω(S′2) = ω(ϕ) +
ω(S′1) < ω(X), contradicting the fact that X is a local minimum.

5 Exact methods

5.1 Integer Linear programming

In this section, we propose an integer linear program modeling Semi-Brutal
Cut for all scores.

Variables. For each non-matching edge ek, we define a binary variable xk which
equals 1 if and only if one of its extremities is in the solution, that is, ek is
removed from the graph. For each extremity ui of an ambiguous edge p, we
define two binary variables ci and ni. ci = 1 iff ui is in the solution and ni = 1
if and only if all neighbors v 6=M∗(ui) of ui are in the solution.
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Constraints.
(1) For any ambiguous matching edge uiuj , we force one of the extremities to

have degree one by adding the constraint ni + nj + ci + cj ≥ 1.
(2) If any extremity ui is adjacent to a non-ambiguous matching edge, then not

all neighbors of ui can be cut. In this case, we add the constraint n` = 0.
(3) To force all neighbors of ui (except M∗(ui)) to be cut if ni = 1, we add the

constraint
∑

u`∈N(ui)

c` − ni · |N(ui)| ≥ 0.

(4) For each extremity ui of a non-matching edge ek, we force that ek is removed
from the graph if ui = 1 by adding the constraint xk − ci ≥ 0.

Objective function. For the cut score, we want to minimize the number of vertices
in the solution, that is, the number of variable ci with value one. Thus, the
objective function for the cut score is min

∑
i ci. For the weight score, we want

to minimize the total weight of the edges removed from the graph. Thus, the
objective function for the weight score is min

∑
ek∈E(G)\M∗ xk · ω(ek).

5.2 Dynamic Programming on Tree Decompositions

We show that Semi-Brutal Cut can be solved in linear time on classes of
graphs that exhibit a constant bound on the treewidth, such as series-parallel or
outerplanar graphs. To this end, we present a dynamic programming algorithm,
working on nice tree decompositions, that finds an optimal solution in O(2tw ·
|E(G)|) under the weight score and in O(5tw · |E(G)|) under the cut score, where
tw is the treewidth of the input graph.

Definition 7 ([6]). Given a graph G, a tree decomposition for G is a pair
(T,X ) where T is a tree and X = {Bi | i ∈ V (T )} is a multiset of subsets of
V (G) (called “bags”) such that
(a) for each uv ∈ E(G), there is some i with uv ⊆ Bi and
(b) for each v ∈ V (G), the bags Bi containing v form a connected subset of T .
The width of (T,X ) is maxi |Bi| − 1. Further, (T,X ) is called nice if
(c) T is rooted at node Br, with Br = ∅ and each node has at most two children.
(d) Each node Bi of T has one of the four types:

– Leaf bag: i has no children and Bi = ∅.
– Join bag: i has two children j and k and Bi = Bj = Bk.
– Introduce u bag: i has only one child j and Bj = Bi \ {u}.
– Forget u bag: i has only one child j and Bj = Bi ∪ {u}.

For any node Bi of T , we let Gi denote the subgraph of G induced by the vertices
of G that are introduced “below” Bi (that is, in a bag of the subtree of T that is
rooted at i).

Note that for each vertex u of G, (T,X ) contains exactly one forget u bag.
Further, the root r of a nice tree decomposition is a forget bag and we let r′
denote the vertex forgotten by r.

Tree Decompositions Introducing Matching Edges. Let (G∗,M∗, ω,m) be a so-
lution graph and let Bi ∈ X . In our algorithm, we need M∗(u) ∈ Bi for each
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a1 a2 b1 b2

c1 c2 d2 d1

⇒

(a1, a2) (b1, b2)

(c1, c2) (d1, d2)

Fig. 3. Application of the contraction. Left: a solution graph G∗, the matching edges
are in bold. Right: graph resulting of the contraction of the matching edges in G∗.

u ∈ Bi. For this reason, we contract all matching edges in (G∗,M∗, ω,m), yield-
ing a graph G′ with V (G′) =M∗. We compute a nice tree decomposition (X , T )
of G′, then the vertices of G′ are expanded, that is, we replace the vertices of
G′ in the tree decomposition by their corresponding matching edges. Each intro-
duce u bag now introduces the matching edge uM∗(u). We call such a tree de-
composition for G∗ M∗-preserving. In the following, G′ refers to the graph with
contracted matching edges and G∗ refers to the original solution graph. See Fig-
ure 3 and Figure 4 for an example.

Signatures. To every (X,V ′) where X is a solution of a subgraph H and V ′ is a
subset of vertices of H, we associate a signature describing how the vertices of
V ′ are cut in X. The signature of a vertex u can be ”×”, ”N”, or ”∅”, depending
on whether, respectively, u is cut, all neighbors of u are cut, or u is not cut.
Definition 8 (see Figure 5). Let H be a subgraph of G∗ such that, for each
u ∈ V (H), we have M∗(u) ∈ H. Let X ⊆ V (H) be a solution for (G∗,M∗, ω,m)
in H and let V ′ ⊆ V (H). A mapping Y : V ′ → {”N”, ”×”, ”∅”} with
(i) Y (u) = ”×”⇔ u ∈ X and,
(ii) Y (u) = ”N”⇒ NH(u) ⊆ X
is called signature of X in V ′ and T (Y ) = {u | Y (u) = ”×”} is called trace of Y .

Note that a solution X can be associated to many signatures. Likewise, two
different solutions X and X ′ of H such that X ∩ V ′ = X ′ ∩ V ′ are associated
to the same signatures. In order to minimize the number of signatures, we add
some restrictions on the mappings. The main idea is that sub-solutions with the
same signature are equivalently suited to construct a complete solution. Thus,
for a vertex set V ′, we define a set of signatures Y(V ′) as follows.
Definition 9. Let V ′ be a vertex set. We define Y(V ′) as the set of all Y : V ′ →
{”∅”, ”N”, ”×”} such that, for all u ∈ V ′, the three following conditions hold:
1. uM∗(u) is clean ⇔ Y (u) = Y (M∗(u)) = ”∅”

(no cut occurs in an already clean matching edge).
2. if the considered scoring function is the weight score, then:

– Y (u) 6= ”N” and,
– Y (u) = ”∅”⇔ Y (M∗(u)) = ”×”

(each ambiguous edge contains exactly one cut).
3. if the considered scoring function is the cut score, then:

– Y (u) = ”∅”⇒ Y (M∗(u)) 6= ”∅”
(an ambiguous edge must be clean) and,
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∅

(a1, a2)

(a1, a2)

(c1, c2)

(a1, a2)

(c1, c2) (d1, d2)

(a1, a2)

(d1, d2)

∅

(a1, a2)

(a1, a2)

(b1, b2)

(a1, a2) (b1, b2)

(d1, d2)

(a1, a2)

(d1, d2)

(a1, a2)

(d1, d2)

(a1, a2)

∅

∅

a1 a2

a1 a2

c1 c2

a1 a2

c1 c2 d2 d1

a1 a2

d2 d1

∅

a1 a2

a1 a2
b1 b2

a1 a2

d2 d1

b1 b2

a1 a2

d2 d1

a1 a2

d2 d1

a1 a2

∅

Fig. 4. Nice tree decomposition of the graph given in Figure 3. Left: Nice tree decom-
position of the graph after applying the contraction operation. Right: Same nice tree
decomposition after replacing the vertices by their corresponding matching edges.
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a b c d

e f

Fig. 5. A subgraph G∗
i with Bi = {a, b, c, d} (matching edges

in bold). Let Y1 = {(a, ”∅”), (b, ”∅”), (c, ”×”), (d, ”×”)}, let
Y2 = {(a, ”∅”), (b, ”N”), (c, ”∅”), (d, ”∅”)}, and let Y3 =
{(a, ”N”), (b, ”×”), (c, ”∅”), (d, ”∅”)}. No set vertex set X
is eligible for (Y1, Bi) and (Y2, Bi) but {b, e} is eligible for
(Y3, Bi). The trace of Y3 is T (Y3) = {b}.

– Y (u) = ”N”⇒ Y (M∗(u)) = ”∅”
(no need to store a neighbor cut if M∗(u) is cut or has a neighbor cut).

Note that if V ′ contains a single ambiguous edge, then |Y(V ′)| = 2 under the
weight score and |Y(V ′)| = 5 under the cut score.

Definition 10. Let Yi : Vi → {”∅”, ”N”, ”×”} for i ∈ {1, 2} be two signatures
such that V1∩V2 = ∅. The union of Y1 and Y2 is the mapping Y1∪Y2 : V1∪V2 →
{”∅”, ”N”, ”×”} with

(Y1 ∪ Y2)(v) =

{
Y1(v) if v ∈ V1
Y2(v) otherwise.

For each bag Bi of a given, M∗-preserving tree decomposition of G∗, we will
compute solutions for G∗i . To this end, we introduce the following definition.

Definition 11 (see Figure 5). Let (X , T ) be a nice tree decomposition of G∗,
let X ⊆ V (G∗i ), let Bi ∈ X , let Y ∈ Y(Bi), and let u ∈ Bi. Further, let
(i) Y be the signature of X in Bi and,
(ii) X be a solution for (G∗i ,M

∗, ω,m).
Then, we call X eligible with respect to (Y,Bi).

If there is no set eligible for a pair (Y,Bi), we say that the signature Y is
incompatible with G∗i .
Lemma 2. Let Bi ∈ X and let Y ∈ Y(Bi). Y is incompatible with G∗i if and only
if there are u, v ∈ Bi with uv ∈ E(G∗i ) \M∗ and Y (u) = ”N” and Y (v) 6= ”×”.

Proof. “⇒”:
uv ∈ E(G∗i ) \M∗, Y (u) = ”N” and Y (v) 6= ”×”. In this case, Definition 8(i)

cannot be verified, then there is not set X with Y as signature.
“⇐”: We show that any other signature Y can have a set X eligible with

respect to the tuple (Y,Bi). Let S = {u |Y (u) = ”×”} ∪ V (G∗i ) \Bi. Let u ∈ Bi
and uv ∈ E(G∗i ) \ M∗. Suppose that Y (u) = ”N”. If v /∈ Bi, then v ∈ X,
otherwise Y (v) = ”×” and then v ∈ X. Thus, the conditions of Definition 8
are verified and Y is the signature of X in Bi. For each matching edge uv,
dG∗(u) = 1, dG∗(v) = 1 or {u, v} ∩ X 6= ∅, then uv is clean and then X is a
solution of Semi-Brutal Cut in G∗i . Thus, X is eligible with respect to (Y,Bi).

Semantics: Let Y : V (G∗i ) → {”×”, ”N”, ”∅”}. A table entry [Y ]i is some
minimum-score solution X that is eligible with respect to (Y,Bi) (and [Y ]i = ⊥
if no such X exists).
We set score(⊥) =∞ and ⊥ ∪X = ⊥, for any set X.

11



The Algorithm. Let (G∗,M∗, ω,m) be a solution graph. We compute a M∗-
preserving tree decomposition (X , T ) of G∗ as described previously. We then
traverse (X , T ) from the leaf bags to the root Xr. We compute the table entry
for each signature Y ∈ Y(Bi) of each bag Bi. Then, we obtain the minimum
solution for (G∗,M∗, ω,m) from [Y ]r. Let Bj and B` the children of Bi (if they
exist). We compute [Y ]i depending on the type of the bag Bi:

leaf bag: Since Bi = ∅, the only table entry is [∅]i and we set [∅]i = ∅.
introduce uv ∈M∗ bag: We apply the following routine:

1. First consider that uv is isolated. We copy the table entries of the child
Bj and complete them such that all signatures in Y(Bi) are instantiated:

[Y ]i = argmin
Y ∈Y(Bj)

argmin
Y ′∈Y({u,v})

{score([Y ]j ∪ T (Y ′))}.

2. Then, we introduce successively the non-matching edges incident to uv.
If a signature is incompatible with G∗i , then we set its table entry to ⊥.
Let E′ be the set of incident edges to the matching edge uv. For each
xx′ ∈ E′ and all Y ∈ Y(Bi), we set [Y ]i = ⊥ if
- if Y (x) = ”N” and Y (x′) 6= ”×” (Lemma 2),
- if Y (x′) = ”N” and Y (x) 6= ”×” (Lemma 2).

join bag: For all Y ∈ Y(Bi), we set [Y ]i = [Y ]j ∪ [Y ]`.
forget uv ∈M∗ bag: For all Y ∈ Y(Bi), we set [Y ]i = argmin({score([Y ′]j) |

Y ′ ∈ Y(Bj) ∧ ∃Y ′′∈Y({u,v})Y ′ = Y ∪ Y ′′}).

Lemma 3. The described algorithm is correct, that is, the computed value of
[Y ]i corresponds to the semantics.

Proof. The proof is by induction on the height of Bi in the tree decomposition.
In the induction base, Bi is a leaf of (X , T ) and Bi = ∅. Thus, the only table
entry is [∅]i and since ∅ is the only solution, [∅]i = ∅ corresponds to the defined
semantics. For the induction step, we distinguish the possible bag types of Bi
with children Bj and B` (j = ` if Bi is not a join bag).

Introduce matching edge uv bag: We prove that each step of the algorithm
is correct. We introduce the non-matching edges only in the second step. In
the first step, we consider that uv is isolated in G∗i .
1. When an isolated matching edge uv is introduced, if X is a solution of
G∗j , then each vertex set X ′ such that X ⊆ X ′ is also a soluton G∗i .
For each Y ∈ Y(Bj), since [Y ]j is the solution with a minimum score
and with the signature Y in Bj , for each Y ′ ∈ Y({u, v}) we have that
[Y ]j ∪ T (Y ′) is a minimum-score solution with signature Y ∪ Y ′ in Bi.
Thus, [Y ∪ Y ′]i = [Y ]j ∪ T (Y ′) corresponds to the semantics.

2. We now introduce successively each non-matching edge. Let E′ be the set
of incident edges to the matching edge uv. For each xx′ ∈ E′ and each
Y ∈ Y(Bi),
- if Y (x) = ”N” ∧ Y (x′) 6= ”×” or Y (x′) = ”N” ∧ Y (x) 6= ”×”, then, by
Lemma 2, there is no solution eligible with respect to the tuple (Y,Bi)
and, thus [Y ]i = ⊥ is valid.
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If [Y ]i 6= ⊥, then by Lemma 2, there is a solutionX eligible with respect to
the tuple (Y,Bi). We show that [Y ]i contains a minimum-score solution.
Suppose that there is a solution X ′ with the signature Y in Bi such that
score(X ′) < score([Y ]i). Let Y ′ ∈ Y(Bj) and Y ′′ ∈ Y({u, v}) such that
Y = Y ′∪Y ′′. Since X ′∩T (Y ) = [Y ]i∩T (Y ), we have score(X ′ \ (T (Y )∩
{u, v})) < score[Y ′]j , contradicting the induction hypothesis.

Join bag: Let Y ∈ Y(Bi) and u ∈ Bi. Notice that G∗j ∩ G∗` = Bi. Thus, a
cut in the solution [Y ]j \ Bi can not remove an edge incident to a vertex
of G∗` \ Bi. Without loss of generality, if there is no solution eligible for
the pair (Y,Bj) (that is, [Y ]j = ⊥), then there is no solution eligible for
(Y,Bi). If [Y ]j cleans all matching edges in G∗j and [Y ]` cleans all matching
edges in G∗` , then [Y ]j ∪ [Y ]` cleans all matching edges in G∗j ∪ G∗` . Thus,
[Y ]j ∪ [Y ]` is eligible for (Y,Bi). Suppose that there is a solution X ′ eligible
with respect for (Y,Bi) such that score(X ′) < score([Y ]j∪ [Y ]`) in G∗i . Then,
score(X ′) ∩ V (G∗j ) < score([Y ]j) in G∗j or score(X ′) ∩ V (G∗` ) < score([Y ]`)
in G∗` . Both cases contradict the induction hypothesis. Thus, [Y ]i ∪ [Y ]j has
a minimum score and [Y ]i = [Y ]j ∪ [Y ]`.

Forget matching edge uv bag: Since G∗i = G∗j , each solution in G∗j is also a
solution in G∗i . Since, for each Y ∈ Y(Bi), all solutions of S = {[Y ′]j | ∀Y ′′ ∈
Y({u, v}), Y ′ = Y ∪ Y ′′} have the signature Y in Bi, we store a minimum-
score solution ofX in the table entry [Y ]i. Thus, [Y ]i = argmin({score([Y ′]j) |
Y ′ ∈ Y(Xj) ∧ ∃Y ′′ ∈ Y({u, v}), Y ′ = Y ∪ Y ′′}) is valid. ut

In each bag Bi, we have to iterate over all signatures in Y(Bi). The number of
possible values for an ambiguous edge is equal to two under the weight score and
to five under the cut score. Thus, the number of signatures in a bag containing
tw matching edges is equal to 2tw under the weight score and to 5tw under the
cut score. Since the number of bags depends on the number of non-matching
edges, we obtain a complexity of O(2tw · |E(G′)|) under the weight score and a
complexity of O(5tw ·|E(G′)|) under the cut score. To obtain an optimal solution,
we just have to take the value of [∅]r computed by the algorithm.
Corollary 1. Given a M∗-preserving nice tree decomposition with width tw,
Semi-Brutal Cut can be solved in O(2tw · |E(G∗)|) time under the weight score
and in O(5tw · |E(G∗)|) time under the cut score.

Optimization As no non-ambiguous matching edge will contain a cut, we can
remove these matching edges from the graph before computing the tree decom-
position, yielding a reduction of the treewidth. However, we must ensure that
each vertex stores its adjacency to a removed matching edge.

6 Experiments

The contribution of the paper being mainly theoretical, we propose implemen-
tation and tests on real instances. In order to compare the performance of both
algorithms, we tested them on datasets already used in [14]. Statistics on se-
quences selected for experiments are given in Table 2. We can observe that se-
lected instances have a small treewidth. A real instance of SBC is generated
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Table 1. Results statistics. Times are given in seconds.

Cut Score Weight Score
data Score ILP Tree Dec. Score ILP Tree Dec.
anopheles 1093 4.63 5.10 1387 4.76 4.22
anthrax 12 0.42 0.32 17 0.41 0.31
gloeobacter 39 0.44 0.36 67 0.46 0.36
lactobacillus 13 0.19 0.15 18 0.19 0.14
pandora 5 0.25 0.19 6 0.25 0.18
pseudomonas 36 0.54 0.42 51 0.53 0.42
rice 3 0.01 0.00 3 0.01 0.00
sacchr3 3 0.03 0.02 5 0.03 0.02
sacchr12 12 0.10 0.07 18 0.09 0.07

from a collection of alternating paths and alternating cycles, thus we may think
that such instance has a small treewidth, or at least a small amount of bags
with a big cardinality. Our implementation of the tree decomposition based al-
gorithm relies on the HTD library [1] for tree decomposition construction. We
use ILOG CPLEX to provide a solution to our integer linear programming for-
mulation. We compare results for both scores, statistics on produced solutions
are presented in Table 1. We can see that the tree decomposition algorithm is
faster under the weight score, which can be explained by the difference of the
theoretical complexity. Tree decomposition algorithm is slightly faster than the
ILP. One exception occurs for the anopheles genome where the tree decomposi-
tion algorithm is slower under the cut score. Since the real instances seem to have
a small treewidth and the tree decomposition algorithm uses more the internal
structure of the problem, we may think that it remains faster than the ILP.

Table 2. Sequences selected for experiments

data #UME1 #CME2 total weight avg. deg.3 max / min deg. treewidth
anopheles 1523 7695 14937 2.43598 6 / 2 3
anthrax 13 260 329 2.65385 4 / 2 2
gloeobacter 44 432 694 2.84091 6 / 2 2
lactobacillus 15 135 225 2.63333 5 / 2 2
pandora 5 183 210 2.5 4 / 2 1
pseudomonas 47 413 650 2.59574 5 / 2 2
rice 6 9 29 2.08333 3 / 2 2
sacchr3 5 25 54 2.7 4 / 2 2
sacchr12 23 74 190 2.43478 4 / 2 4

1. unclean matching edges 2. clean matching edges 3. average degree of extremities of
amb. paths
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7 Conclusion

In this paper, we present a novel point of view of a problem dedicated to the
production of genomic sequences. The previous exploration of the frontier be-
tween tractable and hard cases did not provide a satisfactory polynomial-time
algorithm, thus we explore here two resolution possibilities: The first is to posi-
tion the problem relative to the PLS class, aiming to decide whether local search
is easier than global search. The second is to consider natural exact methods. In
this context, we studied and implemented a simple and efficient ILP and a tree-
decomposition based method, yielding an FPT algorithm with respect to the
treewidth of the input graph. Interesting open questions include the existence of
polynomial-time approximation algorithms, and whether alternative tools, such
as color coding, multilinear detection, or kernel techniques, allow designing more
efficient FPT algorithms. As a more practical perspective, we intend to perform
further tests on these algorithms and previous ones, to explore the ability of each
method to perform well on various kinds of genomes.
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