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Abstract—Machine Learning (ML) has become essential in
several industries. In Computational Science and Engineering
(CSE), the complexity of the ML lifecycle comes from the large
variety of data, scientists’ expertise, tools, and workflows. If
data are not tracked properly during the lifecycle, it becomes
unfeasible to recreate a ML model from scratch or to explain to
stackholders how it was created. The main limitation of prove-
nance tracking solutions is that they cannot cope with provenance
capture and integration of domain and ML data processed in the
multiple workflows in the lifecycle, while keeping the provenance
capture overhead low. To handle this problem, in this paper we
contribute with a detailed characterization of provenance data in
the ML lifecycle in CSE; a new provenance data representation,
called PROV-ML, built on top of W3C PROV and ML Schema;
and extensions to a system that tracks provenance from multiple
workflows to address the characteristics of ML and CSE, and
to allow for provenance queries with a standard vocabulary. We
show a practical use in a real case in the O&G industry, along
with its evaluation using 48 GPUs in parallel.

Index Terms—Machine Learning Lifecycle, Workflow Prove-
nance, Computational Science and Engineering

I. INTRODUCTION

Machine Learning (ML) has been fundamentally changing
Computational Science and Engineering (CSE) in various
ways [1]. Techniques, such as statistical relational learning and
deep learning, have been used to extract knowledge from data,
with application domains ranging from Computational Physics
to Agriculture and Oil and Gas (O&G) [2–5]. Obtaining
reliable ML models involves a complex ML lifecycle [6],
which is critical in large-scale CSE projects [2, 7]. The ML
lifecycle in CSE depends on transforming raw data into trained
models, which requires multiple, distributed workflows that
use a wide variety of algorithms, data, data processing tools
and data stores; demands execution in machines ranging from
standalone servers to cloud or HPC clusters; and is carried
out by multidisciplinary teams, including domain scientists,
computational scientists and engineers, and ML specialists.
Given the heterogeneous nature of the lifecycle, it is difficult
to track, in an integrated way, the data transformations that
occur throughout the lifecycle while keeping the execution
overhead low, which is a major concern among CSE users. In
practice, tracking the data in the data transformations is often
done manually, which is time consuming and error prone. This
is problematic for several reasons, ranging from scientific (e.g.,
jeopardizes reproducibility) to business (e.g., users may be less

likely to apply a trained model, even with best performance,
if they do not understand the transformations in the lifecycle).

Data lineage (i.e., data provenance) helps reproducing, trac-
ing, assessing, and understanding data and their transformation
processes [8]. Solutions for provenance data tracking for ML
have been proposed [9–11], but with focus on learning phases
only, thus limiting an integrated view of domain-specific data,
processed in the early phases of the lifecycle, with ML data.
Besides, users need to migrate their workflows to a different
software ecosystem or change the way they develop, which
may compromise adoption in CSE. Another approach is to
add provenance tracking to workflows, reducing the need
to change the development practice [12–16]. Nonetheless,
solutions following this approach do not support the lifecycle,
which requires three main capabilities: provenance tracking in
multiple workflows that use heterogeneous data and stores; a
provenance data representation with ML-specific vocabulary;
and providing for integrated data analysis through provenance
while keeping the capture overhead low. Another solution
following this approach is ProvLake [17], which has low
capture overhead in multiple workflows that use heterogeneous
data stores. However, similarly to the other solutions, its
provenance data representation is based on W3C PROV only,
thus lacking ML-specific vocabulary, limiting its support for
the ML lifecycle in CSE. Allowing for such provenance
analysis that integrates both ML data and domain-specific data
while keeping capture overhead low in HPC workflows is hard.

In this paper, we propose an end-to-end solution for tracking
data transformations that occur in the ML lifecycle in CSE,
from the curation of raw data until the generation of trained
models, by providing efficient provenance capture and data
analysis through provenance queries. Our approach is to model
the lifecycle as multiple workflows interconnected with data
and to track provenance as the workflows execute. By adding
provenance capture calls in the workflows, users can perform
ML monitoring (e.g., the evolution of model performance
as the training iterates) and more comprehensive provenance
analyses that join domain-specific data with ML data generated
in the lifecycle. The main contributions of the paper are:

(i) a characterization of provenance data in the ML lifecycle
in CSE (Sec. II);

(ii) PROV-ML: a new data representation, which combines
W3C PROV [18] with W3C ML Schema [19], for prove-
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nance of the ML lifecycle in CSE (Sec. III);
(iii) extensions of the ProvLake [17] to support provenance

tracking and analysis following the PROV-ML (Sec. IV).
Experiments show its practical use in a real O&G case
in a testbed of 48 GPUs (Sec. V).

II. WORKFLOW PROVENANCE FOR ML IN CSE

This work focuses on provenance in workflows formed by
chained data transformations composing the ML lifecycle in
CSE, aiming at supporting the data analysis in a large-scale
CSE project. Before we characterize the data analysis through
provenance (Sec. II-C), we first characterize the lifecycle’s
personas (Sec. II-A) to provide for analysis addressing the
users’ needs, then we describe the lifecycle (Sec. II-B).

A. Personas in the ML Lifecycle in CSE

Large-scale CSE projects are often multidisciplinary, with
collaborating users with different skills on the domain data,
e.g., mathematics, physics, statistics, computational methods,
and ML. These users perform distinct types of analysis and
have different provenance requirements. In order to position
the personas and their primary activities in the ML lifecycle
in CSE, we adapt background work on traditional scientific
workflows [20] and ML [6]. Fig. 1 illustrates how expertise,
representative personas, and primary activities fall under an
expertise spectrum ranging from scientific-domain only (fully
white on the left) to ML only (fully black on the right).

Main Expertise Domain ML

Representative 
Persona

Domain 
Scientist Computational Scientist or Engineer ML Scientist 

or Engineer

Primary Activity Data Curation ML Model 
Validation

ML 
Management

ML Model 
Training

ML Model 
Design

Fig. 1: Spectrum of expertise and personas in the lifecycle.

Domain scientists. They have in-depth knowledge of the
domain data and use specialized tools to interpret, visualize,
and clean the scientific data [16], thus playing an important
role to curate the raw scientific data, specify domain matters,
and validate results. Examples are geoscientists, agronomists,
experimental physicists, etc. They can validate ML models
qualitatively, i.e., they can check if results are reasonable given
the characteristics of the domain. Oftentimes, such validations
contradict the numeric results obtained by ML algorithms.
They are also paramount in hypothesis definition and in
verifying simplifications made about domain’s problems. They
contribute by collecting domain-specific annotations from
technical reports and articles, and link such annotations to the
raw scientific data, augmenting the possibilities for enhanced
analyses, contributing to the training. They are critical to pro-
viding labeled scientific data to supervised learning algorithms.

Computational scientists and engineers. They have high
computational skills, often with abilities to develop parallel
scripts and execute them in HPC clusters. Examples are
computational physicists, engineers. They are highly knowl-
edgeable in the domain, although not as in-depth as the

domain scientists. They are familiar with traditional numerical
simulations that require HPC, which need complex scientific
data analyses to guide the fine-tuning of parameters [1, 16, 21].
In the lifecycle, they are often the ML model trainers, who tune
parameters, a very usual task when training ML models. They
use their knowledge on the domain to make decisions, e.g., to
filter relevant parts of the training datasets that are guaranteed
to respect the physical constraints of the problem. Some users
with more in-depth knowledge of ML techniques, i.e., those
who are more towards the black portion of the spectrum in
Fig. 1, can design new ML models. They can, for instance,
design Physically-informed Neural Networks (PINNs) [3],
which embed domain-specific physical constraints in the ML
models. These users can be responsible for validating the ML
model and, more experienced users with considerable ML
and domain knowledge, help in the overall analyses of the
produced models, their quality, how they were used, etc.

ML scientists and engineers. They have in-depth knowledge
of statistics, ML algorithms, and software engineering. They
design new ML models and develop scripts typically using ML
libraries like TensorFlow, PyTorch, and Scikit Learn. They are
familiar with software engineering techniques (e.g., continuous
integration, test-driven development, cloud deployment) and
can use different kinds of DBMSs to store data. They often
train the ML models they design, often in HPC clusters.
Moreover, to be able to develop effective models, they also
have some domain knowledge.

Provenance specialists. In addition to those three main per-
sonas, Provenance specialists play an essential role in a CSE
project by managing data provenance in the lifecycle. They
design the provenance schema for applications and guide other
users to add provenance capture calls to the workflows. Thus,
they need knowledge in the scientific domain and ML. They
also support other personas to analyze provenance, domain-
specific, execution, and ML data.

B. The ML lifecycle in CSE

We can divide the ML lifecycle in CSE into three major
phases: data curation, learning data preparation, and learning
(Fig. 2 — dashed arrows are data flows and solid arrows
are interactions between phases). Our view of the lifecycle
is inspired by Polyzotis et al.’ survey [6]. Although they
proposed a generic view, which can be applied to CSE,
there remains the need for a focused view on the problems
inherent to CSE. We grouped the inner phases into major
phases, organizing the activities according to the scientific data
manipulated and the personas involved in the major phases.

Data curation. It is the most complex phase of the lifecycle,
especially because of the nature of the scientific data. To
achieve automated knowledge extraction from scientific data
promoted by ML, much manual and highly specialized work
is performed by the users (mainly domain scientists). There
is a huge gap between raw scientific data and useful data for
consumption (e.g., data to serve as input to train ML models).
Datasets are typically large, up to terabytes in a single file.
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Fig. 2: The ML lifecycle in CSE.

They may contain geospatial-temporal data, stored as huge
matrices in well-known scientific formats, like HDF5. Also,
some files are stored using domain-specific formats, e.g., SEG-
Y format for seismic data, widely used in the O&G industry.
Specialized formats in CSE domains may require industry-
specific software and domain-specific knowledge to inspect,
visualize, and understand the data. In addition, users can use
metadata and textual reports to annotate the data with extra
domain-specific knowledge, without which would be nearly
impossible to make the data useful for ML algorithms.

Considering the heterogeneous nature of the data, “it is
unreasonable to assume that data lives in a single source”
(e.g., a single file system or DBMS) [6]. For instance, raw files
can be stored in file systems or cloud stores, domain-specific
annotations can be stored in a Semantic Graph DBMS (e.g.,
Triple Store) with domain ontologies, and curated data can be
stored in a NoSQL DBMS, such as Document DBMSs. Then,
computational scientists and engineers write data-intensive
workflow scripts to clean, filter, and validate the data. For
instance, they check if the geolocalization of the data files is
consistent. These scripts transform the raw data into curated
data by consuming and generating data from those data stores.
Each of these inner phases inside the data curation phase is
highly interactive, manual, and may execute independently. In
other words, users may run different scripts to execute these
phases, several times, in an ad-hoc way and any order. Also,
they run these scripts in different machines, such as in an HPC
cluster or in the cloud, or even on the users’ desktop. These
phases occur in a cycle, which stops when the users consider
the data “curated”. These curated data are significantly more
organized and easier to analyze and understand. In the context
of ML, it is ready to be transformed into training data.

Learning data preparation. Model trainers select relevant
parts of the curated data to be used for learning. For instance,
if the ML task is to classify geological structures [5], seismic
images will need to be correlated with annotations -seismic
interpretation-, creating annotated samples. After selecting the
data, model designers develop scripts that transform the data
into training datasets. Typical transformations include image
crop, quantization, scale, among others. In this phase, users
frequently use domain-specific libraries to manipulate raw
scientific data. Due to data complexity, oftentimes data need
to be manually inspected before it can be used as input for
the learning phase.

TABLE I: Examples of provenance queries in ML for CSE.

Q1
Given a trained model, what are the geographic coordinates, oil
basin and field, and the number of seismic slices of the seismic in
the training dataset?

Q2
Given a trained model, what is the tile size, the noise filter threshold,
and the ranges of seismic slices that were selected to generate the
training set used to adjust this model?

Q3
Given a training set, what are the values for all hyperparameters
and the evaluation measure values associated with the trained model
with least loss?

Q4
What are the average, min, and max execution times of each batch
iteration inside each epoch of the deep neural network training,
given a training dataset?

Q5
What is the execution time on average per batch iteration, per epoch,
and what are the evaluation metrics of the trained models that used
the training dataset generated for a given range of seismic slices?

Q6 Given the training dataset used in Q5, what was the seismic data file
used, along with its number of slices, related oil basin, and field?

Learning. In this phase, model trainers select the input
training datasets, optionally they choose validation datasets,
and choose training parameters (e.g., in deep learning they
can choose ranges of epochs and learning rates) that will
be optimized in the training process. Trainers can use their
domain knowledge to discard input training datasets that will
unlikely provide good results. The training process is compute-
intensive, typically executed as a job submitted in an HPC
cluster. One single training process often generates multiple
trained models, among which one is chosen as the “best”
depending on evaluation metrics (e.g., MSE, accuracy, or any
other user-defined metric). Moreover, as the training process
takes a long time, trainers need to monitor it by, e.g., inspecting
how the evaluation metrics are evolving while the training
process iterates. They can wait until completion or interrupt
the training process, change parameters, re-submit the training
in an iterative way until satisfied with results.

C. Characterizing Provenance Analysis in ML for CSE

Provenance data in workflows contain a structured record
of the data derivation paths within chained data transforma-
tions, along with the parameterization of each transformation
[15, 21]. Provenance data are usually represented as a directed
graph where: vertices are instances of entities (typically data)
or activities (typically the data transformations) or agents
(typically the users); and, edges are instances of relationships
between vertices [18]. Scientists use provenance data for re-
producibility and result understanding [8]. This kind of prove-
nance consumption, which often occurs post mortem, i.e., after
workflow execution, is characterized as offline provenance
analysis. A characterization of provenance analysis to leverage
ML in support of workflows is surveyed by Deelman et al. [7].
We propose here a taxonomy to classify provenance analysis in
support of ML, by considering three classes: data, execution
timing, and training timing. We provide the characterization
based on the data being analyzed, using query examples (listed
in Table I) in our use case in O&G.

Use case. The use case addresses seismic surveys, which
are indirect measures of the earth subsurface that can be



organized into slices (images). These surveys cover hundreds
of square kilometers and help to interpret the geology and find
possible hydrocarbons accumulations. The seismic data have a
very complex workflow and can suffer from many problems,
like noise and shadows (regions with low signal). Also, the
geological structures vary from point to point in the earth,
imposing significant challenges to the ML algorithms. Next,
we characterize the data involved in the lifecycle.

Data class includes domain-specific, machine learning, and
execution. Provenance data may be augmented with these data,
increasing the scope of provenance analysis.

Domain-specific data are the main data processed in the
data curation phase (Sec. II-B). Approaches to add domain
data into provenance analysis include, e.g., raw data extraction
[15] and utilization of semantic domain databases associated to
provenance databases [17]. For raw data extraction, quantities
of interest are extracted from large raw data files, and for
domain databases, domain scientists may provide relevant
information and metadata about the raw data and store them
in knowledge data graphs (e.g., in Triple Stores).

Machine learning data include training data and generated
trained models, which are more related to the learning data
preparation (e.g., Q1) and learning (e.g., Q2 and Q3) phases
(Fig. 2). These queries exemplify that the parametrization
within the data transformations and relevant metadata of the
generated data (both training data and trained model) are
important for provenance analysis.

Execution data. Besides model performance metrics (e.g.,
accuracy), users need to assess execution time and resources
consumption of their workflows. They need to inspect if a
critical block in their workflow (e.g., the one that demands
high parallelism) is taking longer than usual or if other parts
are consuming more memory than expected. For this, prove-
nance systems can capture system performance metrics and
timestamps (e.g., Q4). Metadata such as data store metadata
(e.g., host address), HPC cluster name and nodes in use, etc.
can be captured and associated with the provenance of the data
transformations for extended analysis.

Hybrid. Users can combine these data. For instance, in
Q5, the analysis queries data processed in workflows in the
learning data preparation and learning phases, whereas Q6 uses
the same data generated in the learning data preparation to
analyze the raw files curated in the data curation phase.

Execution timing refers to if the analysis is done online, i.e.,
while at least a workflow is running, or offline.

Offline analysis. The typical use of offline provenance
analysis is to support reproducibility and historical results
understanding, e.g., understand the data curation phase of
raw scientific files and relate with the generated trained ML
models. The queries Q1–Q6 can be executed offline.

Online analysis. Users can use online provenance analysis to
monitor, debug or inspect the data transformations while they
are still running (e.g., see the status, see how the intermediate
results are evolving as the input parameters vary). The problem
of adding low provenance data capture overhead is more

challenging for provenance systems that allow for online
analysis [17]. Queries Q3–Q5 exemplify queries that can be
executed online, e.g., while a training process is running.

Training timing refers to whether the analysis performs intra-
training—i.e., to inspect one training process, e.g., a training
job running on an HPC cluster, or inter-training—i.e., analyses
comprehending results of several training processes.

Intra-training. In an offline intra-training analysis, users are
interested in understanding how well trained models generated
in a given training process perform. All queries, Q1–Q6, could
be executed either online or offline, but Q3 and Q4 are more
likely to be performed as online intra-training analysis.

Inter-training. This analysis refers to comprehensive queries
to understand multiple training processes, e.g., how each of
them performed, which training datasets were used, how the
training processes were parameterized. This is very important
in the lifecycle, as it supports activities like Model Validation,
Management, Training, and Design. Usually, they are used
offline, but may also be performed online. Queries Q1–Q6 fit
this class when analyzing multiple trained models generated
in different training processes.

Further characterization. Other classes worth mentioning
for provenance analysis for ML in CSE are: data store—data
are distributed onto multiple stores, like file systems, cloud
stores (e.g., IBM Cloud Object Storage), Relational or NoSQL
DBMSs [17]; provenance data granularity—provenance of
files (i.e., references to files consumed and generated in a
script), functions calls (arguments and outputs), blocks of
code, and stack traces [14]; and provenance analysis direction:
forward or backward—generally, forward queries analyze
from raw scientific files or training datasets to trained models
(e.g., Q3–Q5), whereas backward queries analyze from trained
models to training datasets or raw files (e.g., Q1, Q2, Q6).

III. ML PROVENANCE DATA REPRESENTATION

There are many workflow provenance tracking solutions
[12, 13, 15, 17], but they are often based on W3C PROV [18]
(and extensions) only. Thus, they are too generic in terms of
provenance data representation and analysis, which makes the
adoption for ML more difficult. An existing work on ML data
representation is the W3C ML Schema (MLS) [22]. Although
the MLS has some provenance representation, a MLS-based
only representation does not meet the needs either. It does not
have a clear distinction between prospective and retrospective
provenance data, which compromises query capabilities be-
cause prospective provenance provides the abstraction layer to
specify provenance analysis over data generated in workflows’
execution (i.e., retrospective provenance). Also, MLS does
not separate the learning stages (training, validation and test),
which would enable finer analysis based on specific stages.
Finally, it is not designed to allow for representation of
domain-specific data generated at early phases of the lifecycle
(e.g., data curation).

To address these problems, this section introduces PROV-
ML. To the best of our knowledge, it is the first provenance
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Fig. 3: PROV-ML: a W3C PROV- and W3C ML Schema-compliant workflow provenance data representation.

data representation for workflows in the ML lifecycle in CSE.
It is compliant with both W3C PROV and MLS, and extends
ProvLake’s workflow provenance data representation [23],
which is an extension of PROV.

PROV-ML provides detailed support for the learning and
learning data preparation phases of lifecycle. It inherits the
benefits of ProvLake, enabling the integration of provenance
of domain-specific data processed by workflows in the curation
phase. PROV-ML is depicted in Fig. 3, where Fig. 3(A) shows
the relation of the learning phase with the input data and the
goal of a ML workflow (i.e., a workflow in the learning phase);
and Fig. 3(B) represents the relation of the learning phase with
its technique and parameters. Classes in white background
represent prospective provenance; light gray, retrospective; and
dark gray represents specific concepts inherited, as is, from
MLS. PROV-ML classes are described on Table II. Further
details on PROV-ML are online [23].

IV. PROVLAKE IN THE ML LIFECYCLE IN CSE
To address provenance tracking and analysis throughout

the ML lifecycle in CSE, our approach is to model it as
multiple workflows with chained data transformations, where
the workflows are interconnected through data. Provenance
tracking comprises provenance capture, the creation of the
provenance relationships (e.g., associations between the pro-
cesses and the consumed and generated data), and storage
of the provenance data. In our view, provenance tracking
systems that can be coupled to workflows [12, 13, 15, 17]
provide the flexibility needed in large-scale CSE projects, as
opposed to moving workflows’ executions and data to be
managed by a single orchestration system, like a Workflow
Management System. Workflow provenance capture systems
usually address scripts as workflows with chained functions,
method, or library calls that execute data transformations,
while capturing input arguments and output values from these

calls. Among these solutions, ProvLake [17] has been applied
to capture provenance from multiple distributed workflows that
consume and generate data from and to heterogeneous data
stores, while keeping provenance capture overhead low. While
these workflows execute, provenance data are captured and
stored in a single provenance database, available for integrated
analysis of the data generated throughout the lifecycle. This
section describes ProvLake architecture and deployment in
support of the lifecycle.

Architecture. It has five main components (Fig. 4): ProvLake
Library (PLLib); ProvTracker; ProvManager; PolyProv-
QueryEngine; and Prov DBMS (the DBMS that manages the
provenance database).
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Fig. 4: ProvLake architecture on an exemplary deployment on
two clusters: for data preprocessing and for learning.

The workflows are instrumented with PLLib, imported as
a library in the scripts, which is responsible for the prove-
nance data capture. In an offline manner and following the
methodology described in a previous work [17] to specify the
workflows using prospective provenance data standards [8],
users add provenance data capture calls using the PLLib. A
provenance capture task happens when a data transformation
executes, which typically occurs in a function call, in a



TABLE II: PROV-ML data representation classes.

Class Description

Study Investigation (e.g., research hypothesis)
leading ML workflow definitions.

Experiment The set of analyses (e.g., research ques-
tions), that drives the ML workflow.

LearningProcessExecution

An ML workflow execution. This is
equivalent to mls:Run and was renamed
to explicitly preserve the aspects of
retrospective provenance, which are not
explicitly handled in MLS.

LearningTask and
LearningTaskValue

Defines the goal of a learning process,
i.e., the ML task (e.g., LearningTask:
Classification; LearningTaskValue:
Seismic Stratigraphic Classification).

LearningStageType A stage in the learning process. It is one
of: training, testing or validation.

LearningDatasetReference

Defines the dataset to be used by a
LearningStage and LearningDatasetRe-
ferenceValue is the dataset reference
used in a LearningStageExectution.

DatasetCharacteristic and
DatasetCharacteristcValue

Defines metadata about the Learning-
DatasetReference (e.g., #instances), and
DatasetCharacteristcValue relates with
a LearningDatasetReferenceValue (e.g.,
#instances =8).

FeatureSet and
FeatureSetData

Defines the features FeatureExtraction
to generate over LearningDatasetRefer-
ence and, FeatureSetData is the gener-
ated values in the execution.

FeatureSetCharacteristic
Defines the set of metadata that de-
scribes the FeatureSet (e.g., number of
features, features’ type).

FeatureExtraction and
FeatureExtractionExecution Defines the features retrieval process.

Software Defines a collection of ML techniques’
implementations (e.g., Scikit-Learn).

Algorithm
ML technique with no associated tech-
nology, software or implementation
(e.g., k-means clustering technique).

Implementation

Defines the retrospective aspect of an
Algorithm, i.e., an ML technique’s im-
plementation in a software (e.g., Scikit-
Learn’s k-means implementation).

ImplementationCharacteristic Defines the implementation’s set of
metadata, (e.g., version, git hash).

LearningHyperParameter Defines the prior parameter of an Algo-
rithm used by a LearningStage.

LearningHyperParameter
Setting

Defines the parameter values of an ex-
ecution (e.g., the k value in a k-means
clustering technique, range of epochs in
a neural network training).

ModelSchema The scope of the resulting model.

ModelReference and
ModelReferenceValue

The resulting model of a LearningStage
should generate and the generated value
(e.g., the trained model after the train-
ing stage).

ModelHyperParameter and
ModelHyperParameterValue

Hyperparameters a LearningStage gen-
erates and the resulting model with their
values (e.g., the epoch which the result-
ing model was generated), respectively.

DataStoreInstance Resulting model (i.e., ModelReference-
value) storage.

EvaluationMeasure and
ModelEvaluation

A measure a LearningStage should
evaluate and its associated value gen-
erated in execution (e.g., the precision
of classifier model).

EvaluationSpecification and
EvaluationProcedure

Classes directly inherited from MLS,
with their semantics preserved.

program execution, or in an iteration in an iterative workflow.
As shown in a simplified pseudocode of a deep learning
training (Algorithm 1), a provenance task is delimited within
blocks of code in the scripts, illustrated with prov.in() and
prov.out(), each generating a provenance capture event.

PLLib design has two goals: (i) to keep execution overhead
low and (ii) to avoid major modifications in the user code while
preserving the provenance data analytical capabilities. Because
of the workflow specification using prospective provenance
data, kept external to the workflow scripts and loaded only
once at the beginning (Line 2 in Algorithm 1), the code
modification and data to be sent to ProvTracker are reduced.
Design principles such as queuing provenance requests, asyn-
chronicity (i.e., the workflow scripts do not wait for the prove-
nance requests to be fully processed—the pipeline from the
PLLib to ProvTracker, ProvManager, and Prov DBMS), and
reduction of system calls help reducing capture overhead [17].
Provenance capture requests are queued and the maximum
queue size is a configurable parameter. Moreover, users choose
to store provenance data on disk only, rather than sending to
ProvTracker, but in this case, online provenance analysis is not
supported. Then, if disk only is not specified, when the scripts
execute, provenance data are captured and sent to ProvTracker.

ProvTracker uses prospective provenance data to provide
for the tracking by creating the relationships of retrospective
provenance data being continuously sent by PLLib, from
multiple distributed workflows. ProvTracker gives unique iden-
tifiers to every data value captured by the PLLib, so when
a data transformation consumes data produced by another,
ProvTracker will track such relationship and populate the
data graph. When the data values are data references (e.g.,
references to files or identifiers in a database table or any
analogous data reference), it creates an edge between the data
value and the data store [17]. Data transformations that are
specific and standard in ML workflows, e.g., training, vali-
dation, and testing are defined beforehand following PROV-
ML (III). ProvTracker also allows users to specify, in the

Algorithm 1: Provenance capture in a training script.
Input: training hyperparameters, input data sets

1 import PLLib as prov
2 prov.init(prospective provenance)
3 ...
4 prov.in(′training′, training hyperprms,

input data references)
5 for e = 1 .. max epochs do
6 prov.in(′epoch′, e)
7 ...
8 for batch id in data batches do
9 prov.in(′batch′, batch id)

10 ...
11 prov.out(′batch′, loss value)

12 prov.out(′epoch′, confusion matrix,
model hyperprms, model perf , model ref )

13 prov.out(′training′)
14 prov.close()



prospective provenance specification, that certain parameters
or output values have ML-specific semantics, following PROV-
ML, to be stored in the provenance database. Moreover,
ProvTracker has work queues to group provenance requests
before sending retrospective provenance data to ProvManager.
ProvManager is a RESTful service that receives provenance
data using PROV-ML vocabulary, and transforms the data into
RDF triples (the data model of the DBMS in use by ProvLake
in this current implementation) and inserts them in a bulk.

Provenance queries are provided by the PolyProv-
QueryEngine. The characterization (Section II-C) and typical
queries (e.g., Q1–Q6) are used to influence the implementation
of parameterized RESTful endpoints using PROV-ML terms.
Variations of this endpoint, using terms available in PROV-
ML, are used to specify the inputs for the queries. If an
endpoint is not implemented for a specific query, users can still
write raw queries and submit them to PolyProvQueryEngine
directly, which redirects the query to the Prov DBMS.

Execution Strategies on HPC Clusters. ProvLake uses a
microservice architecture to achieve high flexibility when
specifying how the components are deployed to reduce per-
formance penalties. Fig. 4 shows a deployment of ProvLake
onto two clusters, one for I/O-intensive workflows like the data
processing ones (Data Proc. Workflows in the figure—used for
the data curation and learning data preparation phases of the
lifecycle) and the other for compute-intensive workflows, like
the training workflows (for the learning phase). PLLib is the
only component in direct contact with the users’ workflows
running in the clusters, shielding the workflows from possible
slowness from other components. To reduce communication
cost between the users’ workflow and the PLLib, ProvTracker
is deployed inside the cluster. To avoid competition (which
increases overhead) with the users’ workflows, ProvTracker is
started on a separate node in the cluster. The other architectural
components are deployed externally to the clusters because
they are not in direct contact with the PLLib, thus not
increasing the communication cost in the workflow scripts.
This avoids using extra computing resources only for prove-
nance tracking and analysis, leaving more resources for the
users’ workflows; and avoids operational work to install more
software, such as a DBMS, inside a compute-intensive cluster.

V. EXPERIMENTAL VALIDATION

In this section, we provide an experimental validation of
ProvLake in support of the ML lifecycle in CSE. As execution
overhead is a major concern among CSE users, we first present
a performance analysis of parallel provenance data capture in
Section V-A, then we show a running example of which data
are captured during the lifecycle of our case study to answer
the exemplary queries Q1–Q6 in Section V-B.

Hardware setup. We use two clusters: a learning cluster,
which has 393 Intel and Power8 nodes, each with 24 to
48 CPU cores, 256 to 512 GB RAM, interconnected via
InfiniBand, sharing about 3.45 PB in a GPFS, and using in
total 946 GPUs (NVIDIA Tesla K40 and K80, each with 2880

and 4992 CUDA cores respectively); and a data processing
cluster, which has 12 nodes, each with 128 GB RAM, two
Intel CPUs with 40 cores, sharing a GPFS with 24 TB,
interconnected via an InfiniBand.
Software setup. ProvManager, PolyProvQueryEngine, and
Prov DBMS are deployed on a virtual Kubernetes cluster with
two nodes with 4 vCores, 16 GB RAM each, virtualized on top
of the data processing cluster. As in Fig. 4, the ProvTracker
service is started on a separate node on each of the two clus-
ters. ProvLake’s services are implemented using Python and
deployed with uWSGI with C++ Cython plugin with multi-
process and multi-thread parallelism enabled. ProvManager’s
queue is set to 50 and ProvTracker threads are set to 120. The
workflow scripts of our use case are implemented in Python
using multiple libraries, such as to manipulate raw seismic
files and for learning (PyTorch V1.1).

A. Performance Analysis

In our use case for training an autonomous identifier of geo-
logical structures (c.f. Sec II-C), the learning phase generates a
large amount of provenance data at a high frequency to stress
ProvLake services. In the deep learning model training, there
are two provenance capture calls (for the beginning and end) at
each batch iteration, in each learning epoch (c.f. Algorithm 1).
In this test, each training workflow executes about 35 iterations
for each learning epoch and up to 300 epochs, generating
about 15,000 provenance capture events per workflow run.
ProvTracker runs on one node in the learning cluster with 24
CPU cores, whereas the training workflows run in parallel and
distributed on up to 8 nodes, each with 28 Intel CPU cores and
6 GPUs (K80). While running the workflows, PLLib captures
data at runtime and sends them to ProvTracker which in turn
sends them to ProvManager service deployed externally on
the virtual Kubernetes cluster, which finally stores them in
the Prov DBMS. A provenance capture overhead analysis of
ProvLake using synthetic workloads to highly stress the system
and comparison with a competing system has been presented
in a previous work [17]. Here, we first present a performance
analysis testing different settings for provenance analysis, and
then a scalability analysis, both using real ML workloads. We
measure the overall execution time of the training workflow
script, repeating each test at least 10 times and we plot the
boxplots of the repetitions and the numeric values used in-text
refer to the median of the repetitions.
Experiment 1: varying provenance capture settings. For a
baseline, we first execute the training without any provenance
capture, then we vary the queue size in PLLib (i.e., amount of
provenance capture requests accumulated in PLLib), diskless
vs. diskful (i.e., saving or not provenance data in a log file
on disk), and online vs. offline (i.e., storing or not provenance
data in the DBMS, available for online provenance queries
during the execution). As for the training datasets, we use a
curated and labeled real seismic dataset using a specific range
of seismic slices (corresponding to a regional section of a
seismic cube) defined by the model trainer. The results are
in Fig. 5, where the fastest result is for Queue Size = 50,
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Fig. 5: Varying prov. capture. Setting D adds 0.67% overhead.

Diskless, Online (Setting D). Comparing with the setting with
no provenance capture, the added execution overhead in this
case is only 8.6 seconds on top of 21.3 minutes, i.e., 0.67%,
which is considered negligible.

To analyze the queue size, we compare Settings A–C with
D–F and we see larger queues provide faster provenance
capture since there is less but larger communication with
ProvTracker service. For instance, Setting A is about 7%
slower than D. However, very large queues have drawbacks
as they introduce higher latency between the event being
captured in the workflow execution and the provenance record
being stored in the database, caused by the retention of
provenance capture events in PLLib’s queue. Nevertheless,
for the settings with queue size 50 (D–F), a latency of less
than 5 seconds between the actual occurrence of the event
and its provenance being registered in the database, available
for queries, can be considered near real-time and good enough
even for training monitoring. To analyze diskless vs. diskful
settings, we compare Setting A with B and C; and D with E
and F. Diskless is faster than diskful, as the latter introduces
more I/O operations at runtime. However, comparing only
the medians, the difference is negligible (less than 0.1%).
Thus, because of a higher fault-tolerance provided by a diskful
setting, it may be interesting to append provenance data onto
a file on disk, locally in the cluster where the workflow
runs. Similarly, comparing the medians, we observe that the
difference between online vs. offline (e.g., setting B vs. C or E
vs. F) is also small, about 1%. Therefore, despite (D) being the
fastest setting, (E) may be preferred because its performance
is nearly the same as (D) and it has the advantage of backup
storage for provenance data, which is quite important as
provenance is used for quality assessment and reproducibility.
Experiment 2: scalability analysis. In this experiment, we
want to confirm if the execution strategies on an HPC cluster
are keeping the overhead low in a real ML workload, run-
ning multiple training workflows in parallel. We run a weak
scalability test by increasing the number of processing units
while increasing the data size. We use the fastest setting of the
previous experiment (i.e., D) and the same seismic cube. To
set up the training datasets, the trainer selects up to 8 different
sets of seismic slices, where each set has the same length (i.e.,
nearly the same data size). Thus, for x ∈ {1, 2, 4, 8}, there
are x workflows running on x nodes in parallel, summing
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Fig. 6: Weak scalability analysis.

28x Intel CPU cores, 6x GPUs, 4992∗6x CUDA GPU cores,
using in total an input dataset with size x ∗ datasize, where
datasize is the size of a dataset formed by 1 set of seismic
slices. The results are in Fig. 6, where we illustrate the linear
scalability as a horizontal line passing through the median of
the smallest setting (x = 1). Ideally, the medians should be
near this line. If they are not, it means that ProvTracker is
taking too long to answer, caused by high stress in the system
due to too many provenance capture requests, adding latency
to the training. However, we see that even in the largest setting
(i.e., x = 8), the execution time remains close to the linear
curve. The boxes remain within a small margin of 0.2 min
(or 0.9% of the x = 1 median) between 21.4 and 21.6 min,
meaning that the system delivers a constant and predictable
behavior even at larger scales. We note though that the variance
grows with the scale, caused by the larger number of parallel
tasks. Therefore, we conclude that at least for this scale (up to
48 K80 GPUs), the provenance capture system delivers good
scalability.
B. Use Case Validation

We explain how ProvLake supports queries Q1–Q6 in
the O&G use case, illustrated in Fig. 7 and described in
Section II-C. As shown in the figure, the phases of the
ML lifecycle in CSE are interconnected, as data generated
in a phase are consumed in another. Essentially, ProvLake
tracks and maintains such interconnections in a provenance
data graph as millions of RDF triples (about 30M in total
after all models have been trained in this use case) as the
chained data transformations in the multiple, distributed work-
flows composing the inner phases of the major phases of
the lifecycle run. The data in the figure are represented as
RDF resources, i.e., instances that extend prov:Entity and
PROV-ML specializations. Each of these instances receives
a URI, which works as a global identifier throughout the
lifecycle. Each trained model generated in the learning phase
is represented as an RDF resource, as well as the model
hyperparameters of each trained model, the evaluation metrics,
and a reference (file path) to the actual model file stored in
the file system. Execution data, such as file system metadata,
cluster’s hostname and node names used in the HPC jobs, job
ids in the cluster scheduler, and start and end timestamps of
each block of provenance capture events are associated to the
trained models in the provenance data graph.
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Fig. 7: Provenance data tracking in an O&G use case for the ML lifecycle in CSE.

Similarly, in the learning data preparation phase, there are
several data transformations in a data pipeline that transform
the curated and annotated scientific data into training, valida-
tion, and test datasets. Each data transformation is parameter-
ized. Parameters specify, for instance, noise filter thresholds,
size (in pixels) of tiles which will serve a seismic image clas-
sifier, ranges of regions (called seismic slices, e.g., inline and
crossline slices) of the seismic cube that will form the training
dataset, etc. Each value of these parameters, the name of the
transformation, execution data, and data references to input
and output data physically stored in the data stores are captured
and represented in ProvLake’s provenance data graph. For the
data curation phase, ProvLake captures provenance when the
data-intensive scripts that clean, filter, and create auxiliary
data run. When processing raw scientific files, important data
which will help to answer the queries are extracted, such as
geographic coordinates embedded as metadata in raw SEG-Y
seismic files (represented as a netherlands.sgy in the fig-
ure), associated to the file’s URI, and stored in the provenance
database. Yet, geoscientists input important annotations into
some of those scripts including associated oil fields, basins, oil
wells, and pieces of texts from PDF documents with survey
information related to the geological data acquisition process.
These annotations are stored in a domain-specific database,
externally to the provenance database, stored in a Triple Store.
In this case, ProvLake’s ability to keep track of data distributed
in multiple stores helps to maintain the data relationships
between the raw files in the file system and the structured
knowledge stored in another database. Auxiliary data, such
as polygons of the seismic cube are stored in the Document
DBMS, and the data references are similarly tracked and
related to the raw files. Other data, such as implementation
details, software name and version, are captured and stored
in the provenance database, following the PROV-ML, but, for
simplicity, we do not show them in the figure. As the data and
their relationships are properly tracked while the workflows
execute, ProvLake enables answering online, offline, intra- and
inter-training provenance queries to analyze ML data, domain-
specific data, and execution data throughout the phases of the
lifecycle, exemplified by the queries Q1–Q6.

To submit queries, the user sends a GET or POST request

to one of PolyProvQueryEngine’s endpoints. Then, PolyProv-
QueryEngine sends requests to ProvManager. Most of the
queries are answered with simple graph traversals using stan-
dard SPARQL features. For instance, to answer Q1, the user
provides a trained model URI (generated in the learning phase)
and the query should traverse in the provenance data graph
backward until the raw seismic file’s URI (processed in the
data curation phase). To return the geographic coordinates
and number of seismic slices, the query uses the extracted
data related to the seismic file. To return the oil basin and oil
field information, the query retrieves data from the resource,
in the Triple Store, that represents structured knowledge about
the seismic file. For Q2 and Q6, similar graph traversal
is executed. Other queries require analytical operators, such
as Q3, which requires finding the trained model with least
(using min() native SPARQL operator) loss, and returning
its hyperparameters. Q4 and Q5 make use of execution data
to provide basic statistics (min(), max(), avg() operators)
about the execution time of training iterations.

VI. RELATED WORK

Some works have addressed provenance tracking in the
ML context [9–11, 24]. However, they are mainly focused
on the learning and learning data preparation phases, failing
to trace back from the trained models until the raw domain-
specific data curated in workflows in the curation phase.
These solutions often come with one single system to manage
execution, data, and provenance of the whole lifecycle, but
in order to do so, users need to develop their workflows in
such a system. Although it is a good fit for simple projects
(e.g., the same user designs ML models, curates, prepares
the data and trains the ML models), it is not for CSE,
which is considerably more complex and heterogeneous. It
is unrealistic to expect that all phases, their execution, and
the processed data will be managed by one single system.
Alternatively, provenance tracking systems [12–16] can be
coupled to a CSE workflow, providing provenance support
while not significantly changing the way CSE users develop
their applications. However, these solutions fail to track the
interconnections between workflows and fail to track data
processed in multiple heterogeneous stores. Also, some of
them [12] add high provenance capture overhead, preventing



their adoption in CSE. Finally, none of them has a provenance
data representation capable of representing ML-specific and
domain-specific data, as we propose with PROV-ML, with
extensions of W3C PROV [18] and MLS [22].

On new provenance data representations for ML, some
works addressed the gap between the experiments of a ML
workflow execution and a standard representation to provide
reproducible experiments [19, 22, 25]. Esteves et al. [25] in-
troduce W3C PROV-compliant provenance in these workflows
in ML. They provide a machine-readable vocabulary and a
common schema for reproducibility in various frameworks and
workflow systems. However, it lacks details of the ML phases
itself. Publio et al. [19] present a new ML data representation
based on MEX vocabulary [25] to improve processes on
ML workflows. Nonetheless, they lack a explicit separation
between prospective and retrospective provenance, limiting
provenance data understanding. Moreover, these works are
focused on the learning phases of the lifecycle, whereas the
interconnections with workflows in prior phases, like for data
curation, are not provided. Finally, none of these solutions has
a provenance tracking system as we are proposing.

VII. CONCLUSIONS

In this work, we addressed the problem of tracking the data
transformations in the ML lifecycle, focusing on CSE. We
showed that heterogeneity in several dimensions, including
different human expertise, workflows, data stores, execution
machines, among others, adds a significant complexity that
must be addressed to support provenance tracking in the ML
lifecycle; end-to-end from raw scientific data files to trained
models. To the best of our knowledge, this is the first work that
characterizes provenance as an essential aspect to be managed
for the track of data in the ML lifecycle in CSE.

Although existing provenance tracking solutions that can be
coupled with workflows contribute with the flexibility needed
in CSE projects, they fail to support the heterogeneous nature
of the lifecycle. After the practical experience of extending
ProvLake for the lifecycle, we draw the following lessons:

(i) The characterization of provenance in the lifecycle al-
lows for an understanding of the different needs of different
persona as it drives the provenance tracking to answer key
online and offline, intra- and inter-training provenance queries
capable of analyzing, in an integrated way, ML data, domain-
specific data, and execution data, throughout the data curation,
data preparation and learning phases of the lifecycle. We
observed that the data curation step, which is often neglected
by ML systems, is the most complex part in CSE and needs
to be addressed carefully for provenance analysis.

(ii) In CSE, it is necessary to integrate provenance from
multiple workflows that process domain-specific data in the
data curation phase and ML data in the learning phases of
the ML lifecycle; otherwise, important data are not tracked
properly. In practice, this is often done manually, which is
time consuming and error prone. To achieve this integration,
it was key to create a representation that leverages ML and
domain-specific data. Therefore, we created PROV-ML, which

is compliant to W3C definitions, namely PROV and ML
Schema. We hope such representation can be adopted by other
systems in this area.

(iii) Architectural design decisions, such as a microservice
architecture and a lightweight provenance capture library (with
less than 1% of overhead), are essential for efficient tracking
enabling comprehensive provenance analysis. We observed
this finding through an O&G use case running on a testbed of
48 GPUs.
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