J. Hesthaven and G. Karniadakis, Scientific machine learning workshop, 2019.

Y. Gil, S. A. Pierce, and H. Babaie, Intelligent systems for geosciences: an essential research agenda, 2018.

M. Raissi, P. Perdikaris, and G. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comp. Physics, 2019.

E. Rodrigues, I. Oliveira, and R. Cunha, DeepDownscale: a deep learning strategy for high-resolution weather forecast, IEEE eScience, 2018.

D. S. Chevitarese, D. Szwarcman, and E. V. Brazil, Efficient classification of seismic textures, in IJCNN, 2018.

N. Polyzotis, S. Roy, and S. Whang, Data lifecycle challenges in production machine learning: a survey, SIGMOD Rec, 2018.

E. Deelman, A. Mandal, and M. Jiang, The role of machine learning in scientific workflows, Int. J. HPC, 2019.

M. Herschel, R. Diestelkmper, and H. Ben-lahmar, A survey on provenance: What for? what form? what from, 2017.

H. Miao, A. Li, and L. S. Davis, Towards unified data and lifecycle management for deep learning, ICDE, 2017.

Z. Zhang, E. R. Sparks, and M. J. Franklin, Diagnosing machine learning pipelines with fine-grained lineage, HPDC, 2017.

M. Zaharia, A. Chen, and A. Davidson, Accelerating the machine learning lifecycle with MLflow, IEEE Data Eng. Bulletin, 2018.

I. Suriarachchi, S. Withana, and B. Plale, Big provenance stream processing for data intensive computations, IEEE eScience, 2018.

L. Carvalho, K. Belhajjame, and C. Medeiros, A PROV-compliant approach to script-to-workflow process, The Sem. Web J, 2018.

J. Pimentel, J. Freire, and L. Murta, A survey on collecting, managing, and analyzing provenance from scripts, ACM Surv, 2019.

V. Silva, D. Oliveira, and P. Valduriez, DfAnalyzer: runtime dataflow analysis of scientific applications using provenance, 2018.
URL : https://hal.archives-ouvertes.fr/lirmm-01867887

V. Silva, R. Souza, and J. Camata, Capturing provenance for runtime data analysis in computational science and engineering applications, 2018.

R. Souza, L. Azevedo, and R. Thiago, Efficient runtime capture of multiworkflow data using provenance, IEEE eScience, 2019.
URL : https://hal.archives-ouvertes.fr/lirmm-02265932

L. Moreau and P. Missier, PROV-DM: the PROV data model, 2013.

G. C. Publio, D. Esteves, and A. ?awrynowicz, ML Schema: exposing the semantics of machine learning with schemas and ontologies, 2018.

R. Souza, V. Silva, and A. Coutinho, Data reduction in scientific workflows using provenance monitoring and user steering, 2017.
URL : https://hal.archives-ouvertes.fr/lirmm-01679967

R. Souza, V. Silva, and J. J. Camata, Keeping track of user steering actions in dynamic workflows, FGCS, 2019.
URL : https://hal.archives-ouvertes.fr/lirmm-02127456

A. , Machine learning schema community group, 2019.

A. Kumar, R. Mccann, and J. Naughton, Model selection management systems: the next frontier of advanced analytics, SIGMOD Rec, 2016.

D. Esteves, D. Moussallem, and C. B. Neto, MEX vocabulary: a lightweight interchange format for machine learning experiments, SEMANTICS, 2015.