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Abstract—This paper aims at opening a discussion on the 

quality assessment of indirect test strategies in the context of 

analog and RF integrated circuit testing. Many parameters may 

influence the prediction efficiency of the indirect test model 

(choice and number of indirect parameters taken into account, 

learning algorithm used to build the model…). In order to evaluate 

the quality of a given model, several metrics can be evaluated, that 

reflect either the average prediction error, a global reliability or a 

misclassification rate. But what are the most pertinent metrics to 

reflect the level of confidence that can be expected from the 

indirect test to efficiently replace a traditional test based on RF 

measurements? Which metrics can lead to an informed choice of 

an indirect test strategy for its stability and predictive power? 

These considerations are investigated in this paper and illustrated 

in a practical case study. 
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I. INTRODUCTION  

Several manufactured Integrated Circuits (IC) do not meet 
the targeted product specifications. Indeed, process variations 
and/or physical defects can degrade the performance of a 
circuit, or even drastically affect its operation. It is therefore 
essential to test the performance of each circuit produced 
before providing it or integrating it into a more complex 
system. The testing process represents a significant part of the 
total cost of an IC, especially for analog and RF circuits, 
whose performance must be measured with sophisticated and 
expensive test equipment. In order to reduce testing costs, one 
possible strategy is to adopt indirect testing, which consists in 
measuring parameters that require only low-cost test resources 
and correlating these measurements, called Indirect 
Measurements (IMs), with the device specifications. This 
correlation is generally established using machine-learning 
algorithms during an initial training phase. This approach has 
been introduced first for analog circuits [1], and then extended 
to RF circuits [2]. Several aspects have been researched, such 
as the influence of the training set [3], the use of embedded 
sensors to gather pertinent information [4], the exploitation of 
multi-Vdd test conditions [5], or the selection of appropriate 
indirect measurements [6-9]. A comprehensive review of 
works related to indirect testing can be found in [10].  

While the indirect test strategy seems attractive, its 
deployment in an industrial context is viable only if sufficient 
test quality can be achieved. However, it’s extremely difficult 
to assess at the learning phase what the test coverage will 
achieve during the industrial production test. Moreover, there 
is no general consensus on what is a pertinent and objective 
metric that allows the comparison of various model 
constructions in terms of indirect test efficiency. It is the 

objective of this paper to analyze and discuss these aspects, 
based on a practical case study.  

This paper is organized as follows. Section II summarizes 
the basics of the indirect test approach and the experimental 
protocol used for model construction and evaluation. Section 
III is devoted to the definition of the metrics commonly used 
in the context of indirect testing. Finally, results obtained on a 
practical case study are presented in Section IV. 

II. INDIRECT TEST STRATEGY 

A. Indirect Test Principle 

The underlying idea of indirect testing is that process 
variations that affect the device performance also affect 
indirect parameters. If the correlation between the indirect 
parameter space and the specification space can be 
established, then specifications may be verified using only the 
low-cost indirect signatures. Unfortunately, the relation 
between these two sets of parameters is complex and cannot 
be simply identified with an analytic function. The solution 
commonly implemented is based on the use of machine-
learning algorithms. The indirect test synopsis is actually split 
into two distinct phases, i.e. test preparation and production 
test, as illustrated in Figure 1. 

 
Fig.1. Indirect test synopsis. 

The objective of the initial test preparation phase is to 
build regression models that map the indirect parameters 
space to the performance parameters space. In this phase, both 
the specification tests and the low-cost measurements are 
performed on a set of devices. These data are then fed to a 
machine-learning algorithm, which is trained to learn the 
dependency between the indirect measurements and the 
conventional ones. Once the training is completed, the mass 
production testing phase can start. In this phase, only the 
indirect measurements are performed, and the specifications 
of every new device are predicted using the mapping learned        



   

 

B. Experimental Protocol 

A key element for the success of an indirect test is the 
construction of efficient regression models during the initial 
test preparation phase. This is not an easy task as many 
different solutions are possible, in particular regarding the 
choice of appropriate indirect measurements (IMs) and the 
choice of the learning algorithm. A common practice is 
therefore to explore different options during the test 
preparation phase and to retain the most performing one. 
Figure 2 gives a synthetic view of the experimental protocol 
generally employed. 

 
Fig.2. General overview of the experimental protocol. 

It consists of 4 main phases. The first phase involves the 
partitioning of the population into two different sets. The first 
one will be used to train the prediction model and the second 
one to evaluate the constructed model. Note that it is important 
to evaluate the performance of the model on different 
instances than the ones used for training, to verify the 
generalization ability of the model and avoid issues related to 
overfitting. A simple way to partition data is to use random 
sampling. However, such sampling method does not 
guarantee that training and validation sets have similar 
statistical characteristics which can reduce the model’s 
estimation accuracy. A more refined technique is to use Latin 
Hypercube Sampling (LHS), which ensures that the generated 
sets are representative of the real variability. This is the 
solution we have implemented in this work.  

The second phase consists in selecting pertinent IMs 
among the set of available measurements. Indeed, the 
construction of a model that uses all available IMs will 
inevitably suffer from overfitting. Moreover, the use of a 
limited number of IMs contributes to the reduction of testing 
costs. This problem of selecting a subset of features among a 
larger set is a recurrent problem in the field of machine-
learning, known as feature selection. Various algorithms have 
been proposed, which can be divided into three categories, 
namely filters, wrappers and embedded methods [11]. In the 
context of indirect testing, the solution commonly employed 
is a wrapper method based on Sequential Forward Selection 
(SFS). This procedure starts with an empty set and 
sequentially construct models by adding the feature that 
minimizes the prediction error when combined with the 
features that have already been selected. In this work, we have 
implemented such a procedure with a maximum number of 15 
features. 

The third phase consists in building a regression model 
using the features selected in the previous phase. The classical 
approach is to build a single regression model for each 
performance to be predicted. Many different algorithms exist 
to perform this task; the most popular algorithms used in the 
context of indirect test are Multiple Linear Regression (MLR), 
Multi-Adaptive Regression Splines (MARS), and Support 

Vector Machine (SVM). These three algorithms have been 
implemented in this work. An alternative approach is to build 
multiple regression models for each performance to be 
predicted and aggregate their outcomes to get the final 
prediction results. The idea is that with an appropriate 
combination of diverse individual models, it should be 
possible to exploit the strengths and overcome the weaknesses 
of the individual models and obtain better stability and 
predictive power. This approach is called ensemble learning 
and numerous methods for constructing ensemble models 
have been proposed in the literature [12]; the most popular 
methods are bagging, boosting and stacking. Basically, 
bagging and boosting methods rely on a manipulation of the 
training data in order to build multiple base learners using a 
single model type. In contrast, stacking relies on the use of 
different model types to build multiple base learners; the 
outputs of these base learners are then used to train a higher-
level learner, called meta-learner. The use of ensemble 
method for test application, has been firstly introduced in [5]. 
A recent work has shown the superiority of such models 
compared with bagging or boosting in the context of indirect 
testing [13]. Hence, we have implemented in this work the 
construction of an ensemble model based on stacking. More 
precisely, 3 different base learners have been trained using 
MLR, MARS and SVM; their outputs have been then used to 
train the meta-learner using MARS. 

Finally, the last phase concerns the evaluation of the test 
efficiency in order to retain the most efficient solution. In this 
phase, all the models built in the previous phase are used to 
perform prediction of devices of the validation set. Several 
metrics are then computed to evaluate the performance of the 
different models. But what are the most pertinent metrics to 
perform this evaluation? This is the key question that we target 
in this paper. The following section is therefore devoted to the 
description of the main metrics used in the context of indirect 
testing.  

III. METRICS FOR INDIRECT TEST EFFICIENCY EVALUATION 

The most commonly-used metric to evaluate the accuracy 
of a model is the Root Mean Square Error (RMSE). It 
corresponds to a measure of the differences between actual 
and predicted values. Basically, the RMSE corresponds to a 
measure of the average prediction error and is expressed in 
units of the variable of interest; its value is therefore dependent 
of the variable scale.  

  
To facilitate the comparison between datasets or models 

with different scales, the Normalized Root Mean Square Error 
(NRMSE) is also commonly used:  

 𝑁𝑅𝑀𝑆𝐸 =
√
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where yi is the actual performance value of the ith instance, ŷi 
is the predicted performance value of the ith instance, n is the 
number of instances in the validation set and �̅� is the mean of 
the observed data.  

The prediction error is in this case expressed in percentage. 
Globally, the lower the NRMSE (or the RMSE), the better the 
accuracy of the model. 

The problem with this metric is that it gives an image of 
the overall quality of a model, but it doesn’t give any 
information on the how the prediction errors are distributed. 
In particular, it doesn’t give any information on whether all 



   

 

circuits are predicted with a similar prediction error or whether 
some circuits are predicted with a low prediction error but 
some others with a large prediction error. Moreover, the 
prediction errors are computed assuming that the actual values 
are perfectly known, which is obviously an invalid assumption 
since the values determined with a conventional specification 
test are necessarily subjected to a measurement uncertainty.  

In this context, another metric has been introduced in [14] 
which permits to evaluate the quality of a model in terms of 
its reliability with respect to the measurement uncertainty of 
the conventional specification test. This metric, called Failing 
Prediction Rate (FPR), expresses the percentage of circuits 
with a prediction error that exceeds the conventional 
measurement uncertainty 𝜀𝑚𝑒𝑎𝑠 and is computed with: 

 𝐹𝑃𝑅 =
1

𝑛
 ∑ (|𝑦𝑖 − �̂�𝑖| > 𝜀𝑚𝑒𝑎𝑠)𝑛

𝑖=1  

with  (|𝑦𝑖 − �̂�𝑖| > 𝜀𝑚𝑒𝑎𝑠) = 1   if true  
   (|𝑦𝑖 − �̂�𝑖| > 𝜀𝑚𝑒𝑎𝑠) = 0   otherwise 

Both these metrics are devoted to the evaluation of the 
quality of a regression model, but they cannot be directly 
related to the indirect test efficiency. The common metric used 
in the literature to quantify the indirect test efficiency is the 
Misclassification Rate (MR). To compute this metric, the test 
limits must be known. Based on these test limits, all instances 
of the validation set are classified as good and bad circuits 
using the actual performance values on one hand and using the 
predicted values on the other hand. Both classifications are 
then compared and the number of incorrect decisions when 
using the predicted values is recorded. The Misclassification 
Rate expresses the percentage of circuits that have incorrect 
decisions among the total number of evaluated circuits. 

The main issue with this metric is that it does not take into 
account the measurement uncertainty that affects the 
conventional specification test. The original classification 
performed using measured performance values is therefore 
questionable. Indeed because of the measurement uncertainty, 
it exists a region around the test limit where it’s not possible 
to fully guarantee the classification (cf. Fig.3). More precisely, 
all circuits that have a measured value within this region might 
be either good or bad circuits; only circuits that have a 
measured value outside this region can be trustfully defined as 
good or bad circuits.  

In this context, we propose to compute another metric that 
might be more representative of the indirect test efficiency, 
called Trusted Misclassification Rate (T-MR). The idea is to 
evaluate a misclassification rate based only on trusted 
classifications, i.e. to compute the percentage of circuits that 
have an incorrect decision with the indirect prediction among 
the number of circuits that have a certain decision with the 
conventional measurement. 

In this work, we have implemented the computation of all 
these metrics and results obtained on a practical case study are 
discussed in the following section.  

IV. RESULTS 

The test vehicle is a LNA for which we have production 
test data on 3,850 devices. Data include on the one hand the 
measurement of the third-order intercept point (IP3), and on 
the other hand 79 low-cost indirect measurements which 
correspond to DC voltages on internal nodes (the device is 
equipped with an internal DC bus) and DC signatures 
delivered by built-in process monitors. Figure 3 illustrates the 
distribution of the IP3 performance on the population of 

available samples. It’s a non-Gaussian distribution with an 
excursion between 32dBm and 36dBm. The test limit for this 
specification is set at 34dBm and the measurement uncertainty 
is 0.5dB. The objective is to develop an indirect test solution 
for the prediction of IP3 performance and to evaluate the 
efficiency that can be achieved.  

 
Fig.3. IP3 distribution for the case study under investigation 

The experimental protocol described in Section II has been 
applied to this case study. The data set has been partitioned 
into a training set composed of 2,000 devices and a validation 
set composed of 1,850 devices. The composition of the 
validation set is summarized in Table I.  

TABLE I. COMPOSITION OF THE VALIDATION SET 

Classification w.r.t. conventional IP3 specification test 

Good circuits Bad circuits 

1452 398 

Classification w.r.t. conventional IP3 specification test 
taking into account measurement uncertainty 

Trusted good circuits Uncertain classifications Trusted bad circuits 

1270 400 180 

 

The training set has been used to build four different types 
of regression models, i.e. three classical models (MLR, MARS 
and SVM) and one ensemble model based on stacking, varying 
the number of features from 1 up to 15. The validation set has 
then been used to compile the different metrics presented in 
Section III for all constructed models. Results are summarized 
in Figure 4, which reports the evolution of the metrics with 
respect to the number of features. Several comments arise 
from the analysis of these graphs.  

First regarding the quality of the constructed models in 
terms of accuracy, it should be highlighted that it is possible 
to reach a very good accuracy for this case study. Indeed, for 
the four types of model, a low average prediction error is 
achieved, with a NRMSE below 1%. A slight advantage can 
be observed for SVM and Stack models, especially when only 
a limited number of features are used. The model with the least 
accuracy is as expected the simplest model, i.e. the MLR 
model. Globally according to this metric, there is no 
significant difference between the different types of model, 
with a NRMSE that ranges between 0.55% and 0.72% when a 
sufficient number of features are used.  

Moreover, according to the FPR metric, which concerns 
the quality of the constructed models in terms of reliability, 
the same trends can be observed as in the case of model 
accuracy. Indeed, the most performing models are SVM and 
Stack models and the least performing ones are MARS and 
MLR models. However, the difference is this time more 
noticeable, with a best FPR around 0.6% and 0.7% for SVM 
and Stack models, and a best FPR around 1.2% and 1.5% for 
MARS and MLR models.  



   

 

 
Fig.4. Evolution of metrics with respect to number of features, for 

different types of model 

Regarding the indirect test efficiency in terms of 
misclassification rate, the situation is somehow different. 
Indeed, when a sufficient number of features is used, there is 
no clear evidence of the superiority of SVM and Stack models; 
the situation is even opposite with the MLR model that tends 
to outperform other models, especially regarding the trusted 
misclassification rate. This observation raises a central issue, 
i.e. it’s difficult to establish a direct link between the accuracy 
or reliability of a model and the misclassification rate.  

 
Fig.5. Repartition of misclassified instances using MLR model  

with 10 features 

Furthermore, another important observation can be 
noticed in relation to the values achieved in terms of 
misclassification rate. Even if we have models with very good 
accuracy and reliability, more than 4% of the circuits suffer 
from an incorrect decision according to the classical MR 
definition, which can be considered as a poor performance. In 
contrast when looking only at circuits with a certain decision, 
a very good performance is achieved with a trusted 
misclassification rate that falls below 0.5%. There is a factor 
about 10 between the classical misclassification rate and the 
trusted one. This big difference indicates that most of 
misclassified circuits are located close to the test limit and 
within the uncertainty region; the classical misclassification 
rate fails to reveal this situation. To further illustrate this point, 
Figure 5 gives the repartition of misclassified instances using 
a MLR model built with at least 10 features. It clearly 
illustrates that, among the 79 circuits that have an incorrect 
decision for the classical computation of the misclassification 
rate, 78 of them are actually circuits located in the uncertainty 

region. Only 1 out of these circuits experiences a truly 
incorrect decision, which corresponds to a T-MR as low as 
0.07%. More generally, this result illustrates the fact that, 
because it does not take into account the measurement 
uncertainty that affects the conventional specification test, the 
misclassification rate classically computed is a pessimistic 
metric and is should not be considered as truly representative 
of the indirect test efficiency.  

V. CONCLUSION 

In this paper, we aimed at highlighting the issue of 
defining a pertinent metric able to assess the performance of 
various prediction models, which will lead us towards an 
automated choice of the best test strategy in a given indirect 
test context. Based on the case study results presented in the 
previous section, we can assert that there is an inconsistency 
on the model performance reflected by the various metrics. 
Therefore, we can observe the dire need of defining what is 
the most pertinent criterion to perform model selection. 
Solving this problem will allow us to have a more robust 
prediction model, in addition we may be able to use it to 
perform feature selection and even limit our feature space by 
applying a stopping criterion based on best model metric. 
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