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Abstract — Indirect testing of analog and RF integrated circuits is 

a widely studied approach, which has the benefits of relaxing 

requirements on test equipment and reducing industrial test cost. 

It is based on  machine-learning algorithms to train a regression 

model that maps an indirect and low-cost measurement space to 

the performance parameter space. In this work, we explore the 

benefit of using ensemble learning. Rather than using one single 

model to estimate targeted parameters, ensemble learning consists 

of training multiple individual regression models and combining 

their outputs in order to improve the predictive power. Different 

ensemble methods based on bagging, boosting or stacking are 

investigated and compared to classical individual models. Results 

are illustrated and discussed on three RF performances of a LNA 

for which we have production test data. 

Keywords: indirect testing, RF integrated circuits, machine-learning 

algorithms, ensemble methods, test efficiency  

I. INTRODUCTION 

Checking whether an IC complies with its specifications 
after the manufacturing process is an essential task to guarantee 
the quality of devices shipped to the customer. However, it has 
a strong impact on the total cost of the product. This is 
particularly true for analog and RF circuits that necessitates the 
use of sophisticated and expensive test equipment to measure the 
device specifications. An interesting approach to reduce the 
testing costs is to adopt an indirect test strategy. The idea is to 
measure parameters that require only low-cost test resources and 
to correlate these measurements, called Indirect Measurements 
(IMs), with the device specifications. This correlation is 
generally established using machine-learning algorithms.  

Indirect testing has been widely studied in the literature for 
many years [1-10]. Numerous aspects have been researched, 
such as the choice of the learning algorithm, the definition and 
optimization of appropriate test stimuli, the processing of 
complex signatures, the use of embedded sensors to gather 
pertinent information, the exploitation of multi-Vdd test 
conditions and procedures for the selection of appropriate 
indirect measurements.  

In this paper, we focus on a new kind of learning algorithms, 
namely ensemble methods, to see whether they can improve the 
indirect test efficiency. Recently, ensemble methods have gained 
in popularity and have shown their superiority over classical 
learning algorithms in several application domains. However, to 
the best of our knowledge, no specific studies have addressed the 
use of these methods in the specific context of analog/RF 
indirect test.  

This paper is organized as follows. Section II summarizes the 
basics of the indirect test approach. Section III gives an overview 
of the classical methods commonly used to build a regression 
model and introduces the principle of three types of ensemble 
methods. The experimental protocol developed to perform the 
comparative analysis of classical and ensemble methods is then 
defined in Section IV and case studies are summarized in 
Section V. Finally, before conclusion, results are presented and 
discussed in Section VI. 

II. INDIRECT TEST PRINCIPLE 

The underlying idea of indirect testing is that process 
variations that affect the device performance also affect indirect 
parameters. If the correlation between the indirect parameter 
space and the specification space can be established, then 
specifications may be verified using only the low-cost indirect 
signatures. Unfortunately, the relation between these two sets of 
parameters is complex and cannot be simply identified with an 
analytic function. The solution commonly implemented uses 
machine-learning algorithms. 

 
Fig.1. Indirect test synopsis. 

The indirect test synopsis is split into two distinct phases, 
namely training and production testing, as illustrated in Figure 1. 
The idea is to learn during the training phase the unknown 
dependency between the low-cost indirect measurements (IMi) 
and the conventional performance measurements (Pj). To 
achieve this, both the specification tests and the low-cost 
measurements are performed on a set of training devices and a 
machine-learning algorithm is trained to build regression models 
that map the indirect parameters space to the performance 
parameters space. During the production testing phase, only the 
low-cost indirect measurements are performed, and the 
specifications of every new device are predicted using the 
mapping learned in the initial training phase.  
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III. REGRESSION AND ENSEMBLE METHODS: OVERVIEW 

The classical approach to predict the value of a target feature 
on unseen instances is to build a single regression model. Many 
different algorithms exist to perform this task. The most popular 
algorithms used in the context of indirect test are Multiple Linear 
Regression (MLR), Multi-Adaptive Regression Splines 
(MARS), and Support Vector Machine (SVM). However, the 
performances achieved with these algorithms can significantly 
differ depending on the case study and these is no obvious 
winner when it comes to choosing a single prediction model.  

To cope with the model performance dependency on the size 
and the structure of the training data, researchers have started to 
use multiple regression models and aggregate their outcomes to 
get the final prediction results. The idea is that with an 
appropriate combination of diverse individual models, it should 
be possible to exploit the strengths and overcome the 
weaknesses of the individual models and obtain better overall 
predictive performance. This approach is called ensemble 
learning, which refers to the procedures used to train multiple 
individual regression models (base learners) and combine their 
outputs in order to improve the stability and the predictive power 
of the ensemble model. Numerous methods for constructing 
ensemble models have been proposed in the literature [11], 
which include parallel and sequential methods, based either on a 
single type of base learners (homogenous ensemble model) or 
learners of different types (heterogeneous ensemble model). The 
general principle of the three most popular methods is described 
hereafter.  

A. Bagging 

Bagging stands for bootstrap aggregation. The basic 
motivation for bagging is to decrease the variance by averaging 
multiple estimates. The principle consists in using bootstrap 
resampling (random sampling with replacement) to generate 
different data subsets from the original training set. Multiple 
base learners are then trained on these random subsets and the 
outputs of the base learners are averaged to produce the final 
estimate. Bagging is a parallel ensemble method that can be 
applied with any type of prediction model, but the most common 
application is with decision trees. A very popular algorithm that 
follows the bagging technique is Random Forest (RF), which 
uses decision trees as base learners but also randomizes the trees 
by selecting a random subset of features.  

B. Boosting  

Boosting is also a method that relies on building multiple 
base learners on different datasets. However, unlike bagging, 
boosting is a sequential method. The idea is to incrementally 
build an ensemble by training at each iteration, a predictor model 
that will correct its predecessor, by focusing on the under-fitted 
samples that present a large prediction error. The most popular 
method of boosting is AdaBoost (Adaptive Boosting). In this 
technique, the first predictor is learned on the entire dataset, with 
an equal weight assigned to all training samples. Then at each 
iteration, the algorithm modifies the weights of the training 
samples, giving higher weights to under-fitted samples. Finally, 
results of all predictors are aggregated using a weighting sum to 
produce the final prediction. Another popular boosting 
technique is Gradient Boosting. As in the AdaBoost algorithm, 
a new model is generated at each iteration with the objective to 

correct the predecessor model; the main difference is that the 
algorithm tries to fit residual errors made by the previous 
predictor instead of updating the training samples weights. As 
for bagging, boosting techniques can be applied with any type of 
prediction model, but they are usually applied with decision tree 
methods. 

C. Stacking method 

Stacking is a heterogeneous ensemble method that exploits a 
different principle than bagging and boosting techniques, that is 
based on the concept of a meta learner. The main concept is to 
use a prediction model to perform the aggregation of multiple 
base models. Practically, the technique involves two phases. 
First, multiple base learners are trained on the same dataset, 
generally using models of different types. The outputs of these 
base learners are then used to train a higher-level learner, called 
meta-learner. The two essential differences between stacking 
and bagging/boosting are: (i) the base models are not obtained 
by manipulating the training data but by using different model 
types, and (ii) the aggregation of the different base models is not 
performed by a simple combiner such as averaging or weighted 
sum but by a prediction model.  

IV. PROTOCOL OF EXPERIMENTS 

In order to explore whether ensemble methods can bring 
benefits over classical methods, the experimental protocol 
depicted in Figure 2 has been defined. It involves 4 main phases 
that consist in (i) population partitioning, (ii) feature selection, 
(iii) model construction and (iv) test efficiency evaluation. 
Details on these different phases are given hereafter.  

 
Fig.2. General overview of the experimental protocol. 

The first phase involves the partitioning of the population 
into two different sets. The first one will be used to train the 
prediction model and the second one with be used to evaluate 
the constructed model. Note that it is important to evaluate the 
performance of the model on different instances than the ones 
used for training, to verify the generalization ability of the model 
and avoid issues related to overfitting. In this work, we use Latin 
Hypercube Sampling (LHS) to perform the partitioning. This 
technique ensures that both the training and validation sets have 
similar statistical characteristics.  

The second phase consists in selecting pertinent IMs among 
the set of available measurements. This problem of selecting a 
subset of features among a larger set is a recurrent problem in 
the field of machine-learning, known as feature selection. 
Various algorithms have been proposed, which can be divided 
into three categories, namely filters, wrappers and embedded 
methods [12]. In the context of indirect testing, the solution 



     

commonly employed is a wrapper method based on Sequential 
Forward Selection (SFS). The procedure starts by building a 
regression model for each available IM and selecting the IM that 
generates the model with the minimum prediction error (lowest 
RMSE score). At the second iteration, a regression model is built 
for each pair of IMs that includes the previously selected IM; the 
pair that gives the best model is then selected. The process then 
continues with triplets and so on, until a stopping criterion is 
reached, for instance the number of selected IMs reaches a 
maximum target limit. In this work, we have implemented such 
a procedure using the MARS algorithm to build the regression 
models and limiting the search to a maximum of 15 features.  

The third phase consists in building a regression model using 
the features selected in the previous phase. In this work, we have 
implemented three classical models, namely MLR, MARS and 
SVM, and five ensemble models belonging to the different 
categories presented in section II:  

- Bagging: one ensemble model is built from ten MARS 
models trained in parallel on ten bootstrap samples of the 
original training set. 

- Boosting: one ensemble model is built using the AdaBoost 
algorithm with a sequential training of ten MARS models, 
and one ensemble model is built using the Gradient 
Boosting algorithm with 100 decision trees. 

- Stacking: one ensemble model is built using the three 
classical models (MLR, MARS, SVM) as base models, and 
one ensemble model is built by adding a Random Forest 
(bagging algorithm applied on 300 decision trees) as 4th 
base model. In both cases, the aggregation of the base 
learners is realized by the MARS algorithm. 

Finally, the last phase concerns the evaluation of the test 
efficiency. In this phase, all the models built in the previous 
phase are used to perform prediction of devices of the validation 
set. Several metrics are then computed to evaluate the 
performance of the different models.  

The most commonly-used metric to evaluate the accuracy of 
a model is the RMSE, which is a measure of the average 
prediction error:  

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1  

where yi is the actual performance value of the ith instance, ŷi is 
the predicted performance value of the ith instance, and n is the 
number of instances in the validation set.  

Another very common metric is the coefficient of 
determination R2, which is a measure of the goodness of fit of a 
model. This score is computed as: 

 𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
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where �̅� is the mean of the observed data. 

The R2 score is directly related to the RMSE score with:  

 𝑅2 = 1 −
𝑅𝑀𝑆𝐸2

𝜎𝑦
2  

where 𝜎𝑦
2 is the variance of the observed data. 

The interest of the R2 score is that it permits comparison across 
different variables since it is a normalized score that ranges 
between 0 and 1. In contrast, the RMSE score is expressed in 
units of the variable of interest and its value is dependent of the 

variable scale; comparison of RMSE scores between different 
variables is therefore invalid. In this paper, we will use the R2 
score to present and comment results.  

Another metric has been suggested in [13], which permits to 
quantify the prediction reliability of a model. This metric, called 
Failing Prediction Rate (FPR), expresses the percentage of 
circuits with a prediction error that exceeds the conventional 
measurement uncertainty 𝜀𝑚𝑒𝑎𝑠: 

 𝐹𝑃𝑅 =
1

𝑛
 ∑ (|𝑦𝑖 − �̂�𝑖| > 𝜀𝑚𝑒𝑎𝑠)𝑛

𝑖=1  

with  (|𝑦𝑖 − �̂�𝑖| > 𝜀𝑚𝑒𝑎𝑠) = 1   if true  
  (|𝑦𝑖 − �̂�𝑖| > 𝜀𝑚𝑒𝑎𝑠) = 0   otherwise 

Lastly, if the test limits are available, we can compute 
another metric called the Misclassification Rate (MR). This 
metric simply expresses the ratio of misclassified circuits with 
respect to the total number of circuits.  

V. CASE STUDIES 

The test vehicle is a Low-Noise Amplifier (LNA) for which 
we have production test data on 3,850 devices. More precisely, 
test data include the conventional measurements of three RF 
specification performances, namely the gain, the output power 
at 1dB compression point (P1dB) and the third-order intercept 
point (IP3). Test data also include 79 low-cost indirect 
measurements which correspond to DC voltages on internal 
nodes (the device is equipped with an internal DC bus and 
internal DC probes) and DC signatures delivered by built-in 
process monitors. The distribution of the three RF performances 
is illustrated in Figure 3 and the main characteristics are 
summarized in Table I.  

A first general comment is that the RF performances under 
investigation do not exhibit a Gaussian distribution. Another 
important point to highlight is that the three RF performances 
correspond to three different situations:  

- For the gain, we observe a very tight distribution with an 
excursion of only 0.5dB and a standard deviation that is even 
smaller than the measurement uncertainty. The test limits are 
located far away outside the distribution of available 
samples; as a consequence, there are no bad circuits with 
respect to the gain performance. 

- For P1dB, we observe a slightly larger distribution with an 
excursion of 1.5dBm and a standard deviation that is around 
twice the measurement uncertainty. For this performance, 
the lower test limit is located very close to the left tail of the 
distribution; three samples have a P1dB performance inferior 
to this limit, which means that only a negligible portion of 
the population (less than 0.1%) are bad circuits with respect 
to the P1dB performance.  

- For IP3, we observe a significantly larger distribution with 
an excursion of more than 3.5dBm but a standard deviation 
that is only about 1.5 times the measurement uncertainty. For 
this performance, the lower test limit falls within the 
distribution of available samples; 807 samples exhibit an IP3 
performance inferior to this limit, which means that around 
20% of the population are bad circuits with respect to the IP3 
performance.  

These three RF performances constitute the practical case 
studies considered in this paper. It will be particularly interesting 



     

to see how the indirect test approach will behave with respect to 
these three different situations. 

 
Fig.3. Distribution of the three RF performances under investigation. 

TABLE I.  SUMMARY OF THE MAIN CHARACTERICTICS  
FOR THE THREE RF PERFORMANCES UNDER INVESTIGATION 

 
RF Performance 

Gain P1dB IP3 

 Mean value 17.78dB 19.74dBm 34.68dBm 

 Std deviation 0.09dB 0.24dBm 0.72dBm 

 Meas. uncertainty 0.1dB 0.1dB 0.5dB 

 Test limits [17.3dB;19.5dB] [19dBm;22dBm] [34dBm;43dBm] 

 # good circuits 3850 3847 3043 

 # bad circuits 0 3 807 

 

VI. RESULTS 

The experimental protocol presented in Section IV has been 
applied on the above 3 case studies. Results are first commented 
for each RF performance to be predicted; then a global summary 
and a discussion is provided. Note that all metrics are evaluated 
on the validation set composed of 1,850 devices. 

A. Prediction of gain (G) 

Figure 4 summarizes the comparison between classical and 
ensemble methods for the prediction of the gain specification. 
More precisely, it reports the evolution of R2 and FPR scores 
(evaluated on the validation set) with respect to the number of 
features used in the regression model for the different methods.  

Several comments arise from the analysis of these graphs. 
Regarding classical methods, there is a clear advantage to 
models generated by MARS algorithm compared to MLR and 
SVM. The best solution is obtained using MARS model built 
with nine features, with a R2 score of 0.65 and a FPR score of 
2.9%. Regarding ensemble methods, models generated using 
stacking are more performing than models generated using 
boosting or bagging. The best solution corresponds to an 
ensemble model built with nine features that combines MLR, 
MARS, SVM and Random Forest (RF) models. This model 
permits to reach a R2 score of 0.72 and a FPR score of 1.5%.  

 
Fig.4. Comparison of R2 and FPR scores achieved for gain prediction  

using classical and ensemble methods.  

More generally for the gain specification, these results show 
that it is possible to obtain a benefit by using ensemble methods 
compared to classical methods, especially when stacking is 
applied. In particular, compared to the best solution achieved 
using a classical method (MARS model in this case), it is 
possible to obtain a 10% improvement in the R2 score and a 
reduction in the FPR score by a factor of almost two.  

B. Prediction of output power at 1dB compression point 

Figure 5 summarizes the comparison between classical and 
ensemble methods for the prediction of the P1dB specification, 
in terms of R2 and FPR scores achieved on the validation set by 
using the different methods. Regarding classical methods, unlike 
the gain specification, we can observe that SVM models are 
more powerful than MARS or MLR models, especially when 
only a limited number of features are used; results are then 
almost comparable when a higher number of features are used. 
The best solution is obtained using an SVM model built with 
eight features, with a R2 score of 0.85 and a FPR score of 12.3%. 
Regarding ensemble methods, we observe a similar trend than 
for the gain specification, i.e. models generated using stacking 
appear more powerful than models generated using boosting or 
bagging. The best solution corresponds to an ensemble model 
built with twelve features that combines MLR, MARS, SVM 
and Random Forest models. This model permits to reach a R2 
score of 0.87 and a FPR score of 11.2%.  

Globally for the P1dB specification, there is a slight benefit 
in using ensemble models generated with stacking compared to 
the best model generated with a classical method (SVM model 
in this case), with a more limited improvement than for the gain 
specification. In this case, the R2 score is improved by only 2.2% 
and the FPR score remains in the same range.  



     

 
Fig.5. Comparison of R2 and FPR scores achieved for P1dB prediction 

 using classical and ensemble methods. 

C. Prediction of third order intercept point (IP3) 

Figure 6 summarizes the comparison between classical and 
ensemble methods for the prediction of the IP3 specification, in 
terms of R2 and FPR scores achieved on the validation set by 
using the different methods.  

 
Fig.6. Comparison of R2 and FPR scores achieved for IP3 prediction 

 using classical and ensemble methods. 

In case of the IP3 specification, a similar behavior than for 
the P1dB specification is observed, i.e. the more powerful 

models obtained with classical methods are SVM models and 
the more powerful models generated with ensemble methods are 
models generated with stacking. However, the benefit brought 
by the use of ensemble methods is not evident in this case. 
Indeed, the best solution obtained with a classical method is a 
SVM model built with 14 features that exhibits a R2 score of 0.93 
and a FPR score of 0.6%, while the best solution obtained with 
an ensemble method is a stacked model that exhibits a R2 score 
of 0.94 and a FPR score of 0.7%. There is therefore a small 
improvement of the R2 score but a small degradation of the FPR 
score.  

D. Summary and discussion 

Table II summarizes the best results obtained using either 
classical or ensemble methods for the three RF specifications. A 
first general comment is that the use of ensemble methods, and 
in particular, ensemble methods based on stacking, permits to 
obtain an improvement in model accuracy for the three 
specifications. However, the level of improvement is different in 
each case and seems to depend on the level of accuracy that can 
be reached by a single model. These results actually tend to 
indicate that the benefit of using the ensemble model reduces as 
the accuracy reached by a single model increases.  

Still, an important point to underline is that when using 
classical methods, the type of model that gives the best results 
differs depending on the specification (MARS or SVM). In 
contrast, ensemble models built with stacking always lead to the 
best results. It is an interesting feature to have a solution able to 
handle a variety of different situations.  

Hence globally, the use of ensemble models that are built 
using stacking appears to be an interesting option. Moreover, it 
should be mentioned that we didn’t explore all the possibilities 
offered by stacking. Further improvements might be obtained, 
for instance by including other types of model as base learners 
which will add more diversity to the model collection, or by 
changing the type of the aggregating model (MARS model in 
this study).  

TABLE II.  COMPARISON BETWEEN CLASSICAL AND ENSEMBLE METHODS: 
SUMMARY OF BEST RESULTS FOR THE THREE RF PERFORMANCES 

 

Best solution selected from  

max(R2) on validation set 

RF Perf Model R2 (*) FPR (*) MR (*) # feat. 

Classical 

method 

Gain MARS 0.65 2.86% 0% 9 

P1dB SVM 0.85 12.32% 0.1% 8 

IP3 SVM 0.93 0.59% 4.2% 14 

Ensemble 

method 

Gain Stack+RF 0.72 1.51% 0% 9 

P1dB Stack+RF 0.87 11.24% 0.1% 12 

IP3 Stack+RF 0.94 0.70% 4.2% 14 
(*) Score computed on validation set 

More generally, this study also opens the question on what a 
pertinent metric is for indirect test efficiency evaluation. Indeed, 
results show that performances significantly vary depending on 
the considered specification and the considered metric.  

First, it appears that there is no direct relationship between 
the accuracy of a model evaluated in terms of R2 score and its 
reliability evaluated in terms of FPR score. Indeed, for the gain 
specification, the best model leads to a relatively low accuracy 



     

with a R2 around 0.7 but a fairly good reliability with less than 
3% of the devices that exhibit a prediction error which exceeds 
the classical measurement uncertainty. In contrast for the P1dB 
specification, we can obtain a reasonable accuracy with a R2 
around 0.85, but a relatively low reliability with more than 10% 
of the devices that exhibit a prediction error which exceeds the 
classical measurement uncertainty. Finally for the IP3 
specification, we can have both a good accuracy and a good 
reliability with a R2 higher than 0.9 and less than 1% of the 
devices that exhibit a prediction error which exceeds the 
classical measurement uncertainty.  

Then, it should be highlighted that it is difficult to establish 
a link between the accuracy or reliability of a model and the 
misclassification rate. Indeed, the misclassification rate strongly 
depends on the location of the test limits with respect to the 
distribution of available samples. For instance, in case of the 
gain specification, the test limits are located far away from the 
distribution; despite the relatively low accuracy of the models, 
all devices are correctly classified as good circuits and a perfect 
misclassification rate of 0% is achieved. In contrast for the IP3 
specification, the low test limit falls within the distribution; so 
even if we have models with very good accuracy and reliability, 
around 4% of the circuits are misclassified, which can be 
considered as a non-negligible number. Yet, this result should be 
mitigated by the fact that all the misclassified circuits are located 
relatively close to the test limit, as illustrated in Figure 7, which 
highlights the location of misclassified circuits on the global IP3 
distribution of the validation set. In fact, the computed 
misclassification rate might not be fully representative of the 
indirect test efficiency because it does not take into account the 
uncertainty that can affect the conventional measurement. 

 
Fig.7. Illustration of misclassified devices by using the “Stack+RF” 

ensemble model for IP3 specification. 

To further explain this point, let us analyze more in details 
Figure 7. When the measurement uncertainty is considered, it 
exists a region around the test limit where the circuits might be 
either good or bad circuits; only circuits outside this region can 
be trustfully defined as good or bad circuits by the conventional 
method. For our practical case on the IP3 specification, among 
the 1,850 circuits of the validation set, 400 are within the 
uncertainty region, 180 are trusted bad circuits and 1,270 are 
trusted good circuits. Now looking at the results of the indirect 
test, it appears that almost all the misclassified circuits are 
located within the uncertainty region, only five circuits being 
outside this region. The computed misclassification rate of 4% 
does not permit to reveal this situation. A more pertinent metric 

might be to compute the coverage of trusted classifications, i.e. 
the percentage of circuits that have a correct decision with the 
indirect prediction among the number of circuits that have a 
certain decision with the conventional measurement. For our 
case study, 1,450 circuits have a certain decision with the 
conventional measurement and 1,445 of them have a correct 
decision with the indirect prediction, which corresponds to a 
very good coverage of 99.66%. We believe that this metric can 
be more representative of the indirect test efficiency than the 
misclassification rate classically computed. 

VII. CONCLUSION 

In this paper, we have explored the use of ensemble methods 
for indirect test of RF circuits. Different ensemble methods 
based on bagging, boosting and stacking have been investigated 
and compared to classical individual models, namely MLR, 
MARS and SVM models. An experimental protocol has been 
developed and applied for the prediction of three RF 
performances on a low-noise amplifier for which we have 
production test data. Results have demonstrated the superiority 
of ensemble models built with stacking compared to ensemble 
models built with bagging or boosting. Results have also shown 
that such models can outperform the classical individual models, 
both in terms of accuracy and reliability, and that they offer a 
superior predictive power over a variety of different situations.  
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