K. R. Abrahamson and M. R. Fellows, Finite automata, bounded treewidth, and well-quasiordering, Proc. of Graph Structure Theory, Contemporary Mathematics 147, pp.539-564, 1991.

I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos, Faster parameterized algorithms for minor containment, Theoretical Computer Science, vol.412, issue.50, pp.7018-7028, 2011.
URL : https://hal.archives-ouvertes.fr/lirmm-00736522

I. Adler, S. G. Kolliopoulos, P. K. Krause, D. Lokshtanov, S. Saurabh et al., Irrelevant vertices for the planar disjoint paths problem, Journal of Combinatorial Theory, Series B, vol.122, pp.815-843, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01632343

J. Alber, M. Fellows, and R. Niedermeier, Polynomial-Time Data Reduction for Dominating Set, Journal of the ACM, vol.51, issue.3, pp.363-384, 2004.

S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese, An algebraic theory of graph reduction, Journal of the ACM, vol.40, issue.5, pp.1134-1164, 1993.

A. Atminas, M. Kaminski, and J. Raymond, Scattered packings of cycles. Theoretical Computer Science, vol.647, pp.33-42, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01401905

H. L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth, SIAM Journal on Computing, vol.25, issue.6, pp.1305-1317, 1996.

H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh et al., (meta) kernelization, Journal of the ACM, vol.63, issue.5, 2016.
URL : https://hal.archives-ouvertes.fr/lirmm-01483628

H. L. Bodlaender, S. Thomassé, and A. Yeo, Kernel bounds for disjoint cycles and disjoint paths, Theoretical Computer Science, vol.412, issue.35, pp.4570-4578, 2011.
URL : https://hal.archives-ouvertes.fr/lirmm-00806805

H. L. Bodlaender and B. Van-antwerpen-de-fluiter, Reduction algorithms for graphs of small treewidth, Information and Computation, vol.167, issue.2, pp.86-119, 2001.

R. B. Borie, R. G. Parker, and C. A. Tovey, Automatic generation of linear-time algo-rithms from predicate calculus descriptions of problems on recursively constructed graph families, Algorithmica, vol.7, pp.555-581, 1992.

J. R. Büchi, Weak second order arithmetic and finite automata, Logik und Grundlagen der Mathematik, vol.6, pp.66-92, 1960.

C. Chekuri and J. Chuzhoy, Large-treewidth graph decompositions and applications, Proc. of the 45th Symposium on the Theory of Computing (STOC), pp.291-300, 2013.

C. Chekuri and J. Chuzhoy, Polynomial bounds for the grid-minor theorem, Proc. of the 46th ACM Symposium on the Theory of Computing (STOC), pp.60-69, 2014.

B. Courcelle, The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs. Information and Computation, vol.85, pp.12-75, 1990.
URL : https://hal.archives-ouvertes.fr/hal-00353765

M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx et al., Parameterized Algorithms, 2015.

M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. Van-rooij et al., Solving connectivity problems parameterized by treewidth in single exponential time, Proc. of the 52nd IEEE Symposium on Foundations of Computer Science (FOCS), pp.150-159, 2011.

E. D. Demaine and M. Hajiaghayi, Linearity of grid minors in treewidth with applications through bidimensionality, Combinatorica, vol.28, issue.1, pp.19-36, 2008.

R. Diestel, Graph Theory, vol.173, 2010.

P. Erd?s and L. Pósa, On independent circuits contained in a graph, Canadian Journal of Mathematics, vol.17, pp.347-352, 1965.

M. R. Fellows, J. Guo, C. Komusiewicz, R. Niedermeier, and J. Uhlmann, Graphbased data clustering with overlaps, Discrete Optimization, vol.8, issue.1, pp.2-17, 2011.

M. R. Fellows and M. A. Langston, An Analogue of the Myhill-Nerode Theorem and Its Use in Computing Finite-Basis Characterizations (Extended Abstract), Proc. of the 30th IEEE Symposium on Foundations of Computer Science (FOCS), pp.520-525, 1989.

M. R. Fellows and M. A. Langston, On search, decision, and the efficiency of polynomial-time algorithms, Journal of Computer and System Sciences, vol.49, issue.3, pp.769-779, 1994.

H. Fernau, A. López-ortiz, and J. Romero, Kernelization algorithms for packing problems allowing overlaps, Proc. of the 12th Annual Conference on Theory and Applications of Models of Computation, vol.9076, pp.415-427, 2015.

F. V. Fomin, P. A. Golovach, and D. M. Thilikos, Contraction obstructions for treewidth, Journal of Combinatorial Theory, Series B, vol.101, issue.5, pp.302-314, 2011.

F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh, Bidimensionality and EP-TAS, Proc. of the 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.748-759, 2011.

F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos, Bidimensionality and kernels, Proc. of the 21st ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.503-510, 2010.

F. V. Fomin, S. Saurabh, and D. M. Thilikos, Strengthening Erd?s-Pósa property for minor-closed graph classes, Journal of Graph Theory, vol.66, issue.3, pp.235-240, 2011.

V. Garnero, C. Paul, I. Sau, and D. M. Thilikos, Explicit linear kernels via dynamic programming, SIAM Journal on Discrete Mathematics, vol.29, issue.4, pp.1864-1894, 2015.
URL : https://hal.archives-ouvertes.fr/lirmm-01263857

A. Giannopoulou, Partial Orderings and Algorithms on Graphs, 2012.

J. Guo and R. Niedermeier, Linear problem kernels for NP-hard problems on planar graphs, Proc. of the 34th International Colloquium on Automata, Languages and Programming (ICALP), vol.4596, pp.375-386, 2007.

J. J. Geelen, T. Huynh, and R. B. Richter, Explicit bounds for graph minors, 2013.

K. Kawarabayashi and Y. Kobayashi, Linear min-max relation between the treewidth of H-minor-free graphs and its largest grid, Proc. of the 29th International Symposium on Theoretical Aspects of Computer Science (STACS), vol.14, pp.278-289, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00678187

K. Kawarabayashi and P. Wollan, A simpler algorithm and shorter proof for the graph minor decomposition, Proc. of the 43rd ACM Symposium on Theory of Computing (STOC), pp.451-458, 2011.

E. J. Kim, A. Langer, C. Paul, F. Reidl, P. Rossmanith et al., Linear kernels and single-exponential algorithms via protrusion decompositions, ACM Transactions on Algorithms, vol.12, issue.2, p.21, 2016.
URL : https://hal.archives-ouvertes.fr/lirmm-01288472

T. Kloks, Treewidth. Computations and Approximations, 1994.

D. Lokshtanov, D. Marx, and S. Saurabh, Lower bounds based on the exponential time hypothesis, Bulletin of the EATCS, vol.105, pp.41-72, 2011.

F. Mazoit, A single exponential bound for the redundant vertex theorem on surfaces, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00867663

H. Moser, A problem kernelization for graph packing, Proc. of the 35th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM), vol.5404, pp.401-412, 2009.

N. Robertson and P. D. Seymour, Graph Minors. V. Excluding a Planar Graph, Journal of Combinatorial Theory, Series B, vol.41, issue.1, pp.92-114, 1986.

N. Robertson and P. D. Seymour, Graph Minors. XIII. The Disjoint Paths Problem, Journal of Combinatorial Theory, Series B, vol.63, issue.1, pp.65-110, 1995.

N. Robertson and P. D. Seymour, Graph minors. XVI. excluding a non-planar graph, Journal of Combinatorial Theory, Series B, vol.89, issue.1, pp.43-76, 2003.

J. Romero and A. López-ortiz, The G-packing with t-overlap problem, Proc. of the 8th International Workshop on Algorithms and Computation (WALCOM), vol.8344, pp.114-124, 2014.

J. Romero and A. López-ortiz, A parameterized algorithm for packing overlapping subgraphs, Proc. of the 9th International Computer Science Symposium in Russia (CSR), vol.8476, pp.325-336, 2014.

E. Fsp, .. .. Let-i-?-{1, .. ;. , R. ). , E. Fsp-(g-2-,-r)-=-?? et al., Let (T, X ) claim that for any node x of T , the graph G x is a progressive representative of its equivalence class with respect to ? E FSP ,G,t , namely C . Indeed, assume for contradiction that G x is not progressive, and therefore we know that there exists G x ? C such that ? E FSP ,t (G x , G x ) < 0. Let G be the graph obtained from G by replacing G x with G x . Since ? * E FSP ,G,t is DP-friendly, it follows that, Since we assume that E FSP is g-confined, we have that for any G ? B t with ?(G) = I, the function f E FSP (G, · ) can take at most g(t) + 2 distinct values (g(t) + 1 finite values and possibly the value ??). Therefore, it follows that the number of equivalence classes of ? * f E FSP (G 2 , R) for every encoding R such that f E FSP

E. Finally-;-g-x and G. Fsp, it follows that the height of T is at most the number of equivalence classes of ? E FSP ,G,t , which is at most r(E FSP , g, t, G) by Lemma 1. Since T is a binary tree

, A.5 Proof of Lemma, vol.4

E. Let, L. E. Fsp-=-(c-e-fsp, and . Fsp, FSP ) be the given encoder. We start by generating a repository of them