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We study the concept of compactor, which may be seen as a counting-analogue of kernelization in counting parameterized complexity. For a function F : Σ * → N and a parameterization κ : Σ * → N, a compactor (P, M) consists of a polynomial-time computable function P, called condenser, and a computable function M, called extractor, such that F = M•P, and the condensing P(x) of x has length at most s(κ(x)), for any input x ∈ Σ * . If s is a polynomial function, then the compactor is said to be of polynomial-size. Although the study on counting-analogue of kernelization is not unprecedented, it has received little attention so far. We study a family of vertex-certified counting problems on graphs that are MSOL-expressible; that is, for an MSOL-formula φ with one free set variable to be interpreted as a vertex subset, we want to count all A ⊆ V (G) where |A| = k and (G, A) |= φ. In this paper, we prove that every vertex-certified counting problems on graphs that is MSOL-expressible and treewidth modulable, when parameterized by k, admits a polynomial-size compactor on H-topological-minor-free graphs with condensing time O(k 2 n 2 ) and decoding time 2 O(k) . This implies the existence of an FPT-algorithm of running time O(n 2 k 2 ) + 2 O(k) . All aforementioned complexities are under the Uniform Cost Measure (UCM) model where numbers can be stored in constant space and arithmetic operations can be done in constant time.

Introduction

A large part of research on parameterized algorithms has been focused on algorithmic techniques for parametrizations of decision problems. However, relatively less effort has been invested for solving parameterized counting problems. In this paper, we provide a general data-reduction concept for counting problems, leading to a formal definition of the notion of a compactor. Our main result is an algorithmic meta-theorem for the existence of a polynomial size compactor, that is applicable to a wide family of problems of graphs.

General context

Algorithmic meta-theorems. Parameterized complexity has been proposed as a multivariable framework for coping with the inherent complexity of computational problems . Nowadays, it is a mature discipline of modern Theoretical Computer Science and has offered a wealth of algorithmic techniques and solutions (see [START_REF] Cygan | Parameterized Algorithms[END_REF][START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF][START_REF] Flum | Parameterized Complexity Theory[END_REF][START_REF] Niedermeier | Invitation to fixed-parameter algorithms[END_REF] for related textbooks). In some cases, in-depth investigations on the common characteristics of parameterized problems gave rise to algorithmic meta-theorems. Such theorems typically provide conditions, logical and/or combinatorial, for a problem to admit a parameterized algorithm [START_REF] Grohe | Methods for algorithmic meta theorems, chapter Model Theoretic Methods in Finite Combinatorics[END_REF][START_REF] Grohe | Logic, graphs, and algorithms[END_REF][START_REF] Kreutzer | Algorithmic Meta-theorems[END_REF][START_REF] Seese | The structure of the models of decidable monadic theories of graphs[END_REF]. Important algorithmic meta-theorems concern model-checking for Monadic Second Order Logic (MSOL) [START_REF] Courcelle | The monadic second-order logic of graphs. I. Recognizable sets of finite graphs[END_REF][START_REF] Borie | Automatic Generation of Linear-Time Algorithms from Predicate Calculus Descriptions of Problems on Recursively Constructed Graph Families[END_REF][START_REF] Arnborg | Easy problems for tree-decomposable graphs[END_REF][START_REF] Seese | Linear Time Computable Problems and First-Order Descriptions[END_REF] on bounded treewidth graphs and model checking for First Order Logic (FOL) on certain classes of sparse graphs [START_REF] Flum | Fixed-parameter tractability, definability, and modelchecking[END_REF][START_REF] Frick | Deciding First-Order Properties of Locally Tree-Decomposable Graphs[END_REF][START_REF] Dawar | Locally Excluding a Minor[END_REF][START_REF]1 8 20:12 Data-Compression for Parametrized Counting Problems on Sparse Graphs 20[END_REF][START_REF] Dvorak | Deciding First-Order Properties for Sparse Graphs[END_REF][START_REF] Grohe | Deciding First-order Properties of Nowhere Dense Graphs[END_REF].

In some cases, such theorems have a counterpart on counting parameterized problems. Here the target is to prove that counting how many solutions exist for a problem is fixed parameter tractable, under some parameterization of it. Related meta-algorithmic results concern counting analogues of Courcelle's theorem, proved in [START_REF] Courcelle | On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic[END_REF], stating that counting problems definable in MSOL are fixed-parameter tractable when parameterized by the treewidth of the input graph. Also similar results for certain fragments of MSOL hold when parameterized by the rank-width of the input graph [START_REF] Courcelle | On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic[END_REF]. Moreover, it was shown in [START_REF] Frick | Generalized Model-Checking over Locally Tree-Decomposable Classes[END_REF] that counting problems definable in first-order logic are fixed-parameter tractable on locally tree-decomposable graphs (e.g. for planar graphs and bounded genus graphs).

Kernelization and data-reduction.

A well-studied concept in parameterized complexity is kernelization. We say that a parameterized problem admits a polynomial kernel if there is an algorithm -called kernelization algorithm -that can transform, in polynomial time, every input instance of the problem to an equivalent one, whose size is bounded by a function of the parameter. When this function is polynomial then we have a polynomial kernel. A polynomial kernel permits the drastic data-reduction of the problem instances to equivalent "miniatures" whose size is independent from the bulk of the input size and is polynomial on the parameter. That way, a polynomial kernel, provides a preprocessing of computationally hard problems that enables the application of exact algorithmic approaches (however still super-polynomial) on significantly reduced instances [START_REF] Lokshtanov | Kernelization -Preprocessing with a Guarantee[END_REF].

Meta-algorithmic results for kernelization.

Apart from the numerous advances on the design of polynomial kernels for particular problems, algorithmic meta-theorems appeared also for kernelization. The first result of this type appeared in [START_REF] Hans | Meta) Kernelization[END_REF], where it was proved that certain families of problems on graphs admit polynomial kernels on bounded genus graphs. The logic-condition of [START_REF] Hans | Meta) Kernelization[END_REF] is CMSOL-expressibility or, additionally, the Finite Integer Index (FII) property (see [START_REF] Abrahamson | Finite Automata, Bounded Treewidth and Well-Quasiordering[END_REF][START_REF] Hans | Reduction algorithms for graphs of small treewidth[END_REF][START_REF] De | Algorithms for Graphs of Small Treewidth[END_REF]). Moreover, the meta-algorithmic results of [START_REF] Hans | Meta) Kernelization[END_REF] require additional combinatorial properties for the problems in question. The results in [START_REF] Hans | Meta) Kernelization[END_REF] where 20:3 extended in [START_REF] Fomin | Bidimensionality and Kernels[END_REF] (see also [START_REF] Fedor | Bidimensionality and Kernels[END_REF]) where the combinatorial condition for the problem was related to bidimensionality, while the applicability of the results was extended in minor-closed graph classes. Finally, further extensions appeared in [START_REF] Jung | Linear Kernels and Single-Exponential Algorithms Via Protrusion Decompositions[END_REF] where, under the bounded treewidthmodulability property (see Subsection 1.2), some of the results in [START_REF] Fomin | Bidimensionality and Kernels[END_REF][START_REF] Hans | Meta) Kernelization[END_REF] could be applied to more graph classes, in particular those excluding some fixed graph as a topological minor.

Data reduction for counting problems. Unfortunately, not much has been done so far in the direction of data-reduction for parameterized counting problems. The most comprehensive work in this direction was done by Marc Thurley [START_REF] Thurley | Kernelizations for parameterized counting problems. In 4th international conference on Theory and applications of models of computation[END_REF] (see also [START_REF] Thurley | Tractability and Intractability of Parameterized Counting Problems[END_REF]) who proposed the first formal definition of a kernelization analogue for parameterized problems called counting kernelization. In [START_REF] Thurley | Kernelizations for parameterized counting problems. In 4th international conference on Theory and applications of models of computation[END_REF] Thurley investigated up to which extent classic kernelization techniques such as Buss' Kernelization and crown decomposition may lead to counting counterparts of kernelization. In this direction, he provided counting kernelizations for a series of parameterized counting problems such as and p-#VertexCover, p-card-#Hitting Set and p-#Unique Hitting Set.

Compactor enumeration.

Another framework for data-reduction on parameterized counting problems is provided by the notion of a compactor. In a precursory level, it appeared for the first time in [START_REF] Díaz | Efficient algorithms for counting parameterized list H-colorings[END_REF]. The rough idea in [START_REF] Díaz | Efficient algorithms for counting parameterized list H-colorings[END_REF] was to transform the input of a parameterized counting problem to a structure, called the compactor, whose size is (polynomially) bounded by the parameter and such that the enumeration of certain family of objects (referred as compactor enumeration in [START_REF] Díaz | Efficient algorithms for counting parameterized list H-colorings[END_REF]) in the compactor is able to derive the number of solutions for the initial instance. This technique was introduced in [START_REF] Díaz | Efficient algorithms for counting parameterized list H-colorings[END_REF] for counting restrictive list H-colorings and, later in [START_REF] Nishimura | Parameterized Counting Algorithms for General Graph Covering Problems[END_REF], for counting generalized coverings and matchings. However none of [START_REF] Díaz | Efficient algorithms for counting parameterized list H-colorings[END_REF][START_REF] Nishimura | Parameterized Counting Algorithms for General Graph Covering Problems[END_REF] provided a general formal definition of a compactor, while, in our opinion, the work of Thurley provides a legitimate formalization of compactor enumeration.

In this paper, we define formally the concept of a compactor for parameterizations of function problems (that naturally include counting problems) that is not based on enumeration. As a first step, we observe that for parameterized function problems, the existence of a compactor is equivalent to the existence of an FPT-algorithm, a fact that is also the case for classic kernels on decision problems and for counting kernels in [START_REF] Thurley | Kernelizations for parameterized counting problems. In 4th international conference on Theory and applications of models of computation[END_REF].

Under the above formal framework, we prove an algorithmic meta-theorem on the existence of polynomial compactors for a general family of graph problems. In the next subsection, we define the compactor concept and we present the related meta-algorithmic results.

Our results

Counting problems and parameterizations. First of all notice that, for a counting problem, it is not possible to have a kernelization in the classic sense, that is to produce an reduced instance, bounded by a function of k, that is counting-equivalent in the sense that the number of solutions in the reduced instance will provide the number of solutions in the original one. For this reason we need a more refined notion of data compression where we transform the input instance to "structure", whose size is bounded by a function of k. This structure contains enough information (combinatorial and arithmetical) so as to permit the recovering of the number of the solutions in the initial instance. We next formalize this idea to the concept of a compactor.

Let N be all non-negative integers and by poly the set of all polynomials. Let Σ be a fixed alphabet. A parameterized function problem is a pair (F, κ) where F, κ : Σ * → N. An FPT-algorithm for (F, κ) is one that, given x ∈ Σ * , outputs F (x) in f (κ(x)) • poly(|x|) I S A A C 2 0 1 8
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Data-Compression for Parametrized Counting Problems on Sparse Graphs steps. When evaluating the running time, we use the standard Uniform Cost Measure (UCM) model where all basic arithmetic computations are carried out in constant time. We also disregard the size of the numbers that are produced during the execution of the algorithm.

Compactors. Let (F, κ) be a parameterized function problem. A compactor for (F, κ) is a pair (P, M ) where P : Σ * → Σ * is a polynomially computable function, called an condenser,

M : Σ * → N is a computable function, called a extractor, F = M • P , i.e., ∀x ∈ Σ * , F (x) = (M • P )(x)
, and there is a recursive function s :

N → N where ∀x ∈ Σ * |P (x)| ≤ s(κ(x)
). We call the function s size of the compactor (P, M ) and, if s ∈ poly, we say that (P, M ) is a polynomial-size compactor for (F, κ). We call the running time of the algorithm computing P , measured as a function of |x|, condensing time of (P, M ). We also call the running time of the algorithm computing M , measured as a function of κ(x), decoding time of (P, M ). We can readily observe that parameterized function problem has an FPT-algorithm if and only if there is a compactor for it.

Up to our best knowledge, the notion of compactor as formalized in this paper is new. As discussed in Subsection 1.1, similar notions have been proposed such as counting kernelization [START_REF] Thurley | Kernelizations for parameterized counting problems. In 4th international conference on Theory and applications of models of computation[END_REF] and compactor enumeration [START_REF] Díaz | Efficient algorithms for counting parameterized list H-colorings[END_REF]. In both counting kernelization and compact enumeration, a mapping from the set of all certificates to certain objects in the new instance is required. While this approach comply more with the idea of classic kernelization, it seems to be more restrictive. The main difference of our compactor from the previous notions is that (the condenser of) a compactor is free of this requirement, which makes the definition more flexible and easier to work with. Due to this flexibility and succinctness, we believe that our notion might be amenable for lower bound machineries akin to those for decision problem kernelizations.

Parameterized counting problems on graphs.

A structure is a pair (G, A) where G is a graph and A ⊆ V (G). Given a MSOL-formula φ on structures and some graph class G, we consider the following parameterized counting problem Π φ,G .

Π φ,G Input: a graph G ∈ G, an non-negative integer k. Parameter: k. Count: the number of vertex sets A ⊆ V (G) such that (G, A) |= φ and |A| = k. We say that an instance (G, k) ∈ G × N of Π φ,G is a null instance if it has no solutions. Given a graph G, we say that a vertex set A ⊆ V (G) is a t-treewidth modulator of G if the removal of A from G
leaves a graph of treewidth at most t. Given an MSOL-formula φ and a graph class G, we say that Π φ,G is treewidth modulable if there is a constant t (depending on φ and G only) such that, for every non-null instance (G, k) of Π φ,G , G has a t-treewidth modulator of size at most t • k.

Let F H be the class of all graphs that do not contain a subdivision of H as a subgraph. The next theorem states our main result.

Theorem 1. For every graph H and every MSOL

-formula φ, if Π φ,F H is treewidth modulable, then there is a compactor for Π φ,F H of size O(k 2 ) with condensing time O(k 2 n 2 ) and decoding time 2 O(k) .
As a corollary of the main theorem we have the following.

20:5 Corollary 2. For every graph H and every MSOL

-formula φ, if Π φ,F H is treewidth mod- ulable, then Π φ,F H can be solved in O(k 2 n 2 ) + 2 O(k) steps.
In the above results, the constants hidden in the O-notation depend on the choice of φ, on the treewidth-modulability constant t, and on the choice of H.

Recall that the above results are stated using the UCM model. As for Π φ,F H , the number of solutions is O(n k ) and this number can be encoded in O(k log n) bits. Assuming that summations of two r-bit numbers can be done in O(r) steps and multiplications of two r-bit numbers can be done in O(r 2 ) steps, then the size of the compactor in Theorem 1 is O(k 2 log n) the condensing and extracting times are O(k 4 n 2 log 2 n) and 2 O(k) log 2 n respectively. Consequently, the running time of the algorithm in Corollary 2 is

O(k 4 n 2 log 2 n) + 2 O(k) log 2 n.
Coming back to the algorithmic meta-theorems on parameterized counting problems we should remark that the problem condition of Corollary 2 is weaker than MSOL, as it additionally demands treewidth-modulability. However, the graph classes where this result applies have unbounded treewidth or rankwidth. That way our results can be seen as orthogonal to those of [START_REF] Courcelle | On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic[END_REF].

On the side of FOL, the problem condition of Corollary 2 is stronger than FOL, while its combinatorial applicability includes planar graphs or graphs of bounded genus where, the existing algorithmic meta-theorems require FOL-expressibility (see [START_REF] Frick | Generalized Model-Checking over Locally Tree-Decomposable Classes[END_REF]).

Outline of the compactor algorithms

Our approach follows the idea of applying data-reduction based on protrusion decomposability. This idea was initiated in [START_REF] Hans | Meta) Kernelization[END_REF] for the automated derivation of polynomial kernels on decision problems. The key-concept in [START_REF] Hans | Meta) Kernelization[END_REF] is the notion of a protrusion, a set of vertices with small neighborhood to the rest of the graph and inducing a graph of small treewidth. Also, [START_REF] Hans | Meta) Kernelization[END_REF] introduced the notion of a protrusion decomposition, which is a partition of G to O(k) graphs such the first one is a "center", of size O(k), and the rest are protrusions whose neighborhoods are in the center.

The meta-algorithmic machinery of [START_REF] Hans | Meta) Kernelization[END_REF] is based on the following combinatorial fact: for the problems in question, YES-instances -in our case non-null instances-admit a protrusion decomposition that, when the input has size Ω(k), one of its protrusions is "big enough". This permits the application of some "graph surgery" that consists in replacing a big protrusion with a smaller one and, that way, creates an equivalent instance of the problem (the replacements are based on the MSOL-expressibiliy of the problem). In the case of counting problems, this protrusion replacement machinery does not work (at least straightforwardly) as we have to keep track, not only of the way some part of a solution "invades" a protrusion, but also of the number of all those partial solutions. Instead, we take another way that avoids stepwise protrusion replacement. In our approach, the condenser of the compactor first constructs an approximate protrusion decomposition, then, it computes how many possible partial solutions of all possible sizes may exist in each one of the protrusions. This computation is done by dynamic programming (see Section 4) and produces a total set of O(k 2 ) arithmetic values. These values, along with the combinatorial information of the center of the protrusion decomposition and the neighborhoods of the protrusions in the center, constitutes the output of the condenser. This structure can be stored in O(k 2 ) space (given that arithmetic values can be stored in constant space) and contains enough information to obtain the number of all the solutions of the initial instance in 2 O(k) steps (Section 4).

We stress that the above machinery demands the polynomial-time construction of a constant-factor approximation of a protrusion-decomposition. To our knowledge, this remains an open problem in general. So far, no such algorithm has been proposed, even for particular I S A A C 2 0 1 8
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Data-Compression for Parametrized Counting Problems on Sparse Graphs graph classes, mostly because meta-kernelization machinery in [START_REF] Hans | Meta) Kernelization[END_REF] (and later in [START_REF] Fedor | Bidimensionality and Kernels[END_REF][START_REF] Fomin | Bidimensionality and Kernels[END_REF][START_REF] Jung | Linear Kernels and Single-Exponential Algorithms Via Protrusion Decompositions[END_REF][START_REF] Fedor | Planar F-Deletion: Approximation, Kernelization and Optimal FPT Algorithms[END_REF]) is based on stepwise protrusion replacement and does not actually need to construct such a decomposition. Based on the result in [START_REF] Jung | Linear Kernels and Single-Exponential Algorithms Via Protrusion Decompositions[END_REF], we show that that the construction of such an approximate protrusion decomposition is possible on H-topological-minor-free graphs, given that it is possible to construct an approximate t-treewidth modulator of G. In fact, this can been done in general graphs using the randomized constant-factor approximation algorithm in [START_REF] Fedor | Planar F-Deletion: Approximation, Kernelization and Optimal FPT Algorithms[END_REF]. Responding to the need for a deterministic approximation we provide a constantfactor approximation algorithm that finds a t-treewidth modulator on H-topological-minor free graphs (Section 3). This algorithm runs in O(k 2 n 2 ) steps and, besides from being a necessary step of the condenser of our compactor, is of independent algorithmic interest.

Preliminaries

We use N to denote the set of all non-negative integers. Let χ : N 2 → N and ψ : Given a graph G, a subdivision of G is any graph that is obtained from G after replacing its edges by paths with the same endpoints. We say that a graph H is a topological minor of G if G contains as a subgraph some subdivision of H. We also say that G is H-topological-minor-free if it excludes H as a topological minor.

N → N. We say that χ(n, k) = O k (ψ(n)) if there exists a function φ : N → N such that χ(n, k) = O(φ(k) • ψ(n)).

Boundaried structures. A labeling of a graph G is any injective function

λ : V (G) → N.

Given a structure (G, A), we call A the annotated set of (G, A) and the vertices in A annotated vertices of (G, A).

A boundaried structure, in short a b-structure, is a triple G = (G, B, A) where G is a graph and B, A ⊆ V (G). We say that B is the boundary of G and A is the annotated set of G. Also we call the vertices of B boundary vertices and the vertices in A annotated vertices. We use notation B (t) to denote all b-structures whose boundary has at most t vertices. We set

G(G) = G, V (G) = V (G), B(G) = B, A(G) = A.
We refer to G as the underlying graph of G and we always assume that the underlying graph of a b-structure is accompanied with some labelling λ. Under the presence of such a labelling, we define the index of a boundary vertex v as the quantity |{u ∈ B | λ(u) ≤ λ(v)}| i.e., the index of v when we arrange the vertices of B according to λ in increasing order. We extend the notion of index to subsets of B in the natural way, i.e., the index of S ⊆ B consists of the indices of all the vertices in S.

A boundaried graph, in short b-graph, is any b-structure G = (G, B, A) such that A = V (G). For simplicity we use the notation G = (G, B, -) to denote b-graphs instead of using the heavier notation G = (G, B, V (G)). For every t ∈ N, we use B (t) to denote the b-graphs in B (t) . We avoid denoting a boundary graph as an annotated graph as we want to stress the role of B as a boundary.

We say that two b-structures

G 1 = (G 1 , B 1 , A 1 ) and G 2 = (G 2 , B 2 , A 2 ) are compatible, denoted by G 1 ∼ G 2 , if A 1 ∩ B 1 and A 2 ∩ B 2 have the same index and the labeled graphs G[B 1 ] and G[B 2 ]
, where each vertex of B i is labeled by its index, are identical.

Given two compatible b-structures

G 1 = (G 1 , B 1 , A 1 ) and G 2 = (G 2 , B 2 , A 2 ), we define G 1 ⊕ G 2 as the structure (G, A)
where the graph G is obtained by taking the disjoint union of G 1 and G 2 and then identifying boundary vertices of G 1 and G 2 of the same index, and the vertex set A is obtained from A 1 and A 2 after identifying equally-indexed vertices in

A 1 ∩ B 1 and A 2 ∩ B 2 . Keep in mind that (G, A) = G 1 ⊕ G 2 is
an annotated graph and not a b-structure. We always assume that the labels of the boundary of G 1 prevail during the gluing operation, i.e., they are inherited to the identified vertices in (G, A) while the labels of the boundary of G 2 dissapear in (G, A). Especially, when G 1 and G 2 are compatible b-graphs, we treat G 1 ⊕ G 2 as a graph for notational simplicity.

Treewith of b-structures. Given a b-structure G = (G, B, A), we say that the triple D = (T, χ, r) is a tree decomposition of G if (T, χ) is a tree decomposition of G, r ∈ V (T ), and χ(r) = B. We see T as a tree rooted on r. The width of a tree decomposition D = (T, χ, r) is the width of the tree decomposition (T, χ). The treewidth of a b-structure G is the minimum width over all its tree decompositions and is denoted by tw(G). We use T (t) (resp. T 

X i = V (G i ) \ B i , i ∈ [s], it holds that 1. s ≤ α 2. ∀i ∈ [s], G i ∈ T (β) 3. ∀i ∈ [s], G i is a subgraph of G 4. ∀i, j ∈ [s], i = j ⇒ X i ∩ X j = ∅ 5. |V (G) \ i∈[s] X i | ≤ α 6. ∀i ∈ [s], tw(G[X i ]) ≤ γ.
We cal the set V (G) \ i∈[s] X i center of the above (α, β, γ)-protrusion decomposition. Protrusion decompositions have been introduced in [START_REF] Hans | Meta) Kernelization[END_REF] in the context of kernelization algorithms (see also [START_REF] Fedor | Bidimensionality and Kernels[END_REF][START_REF] Fomin | Bidimensionality and Kernels[END_REF]). The above definition is a modification of the original one in [START_REF] Hans | Meta) Kernelization[END_REF], adapted for the needs of our proofs. The only essential modification is the parameter γ, used in the last requirement. Intuitively, γ bounds the "internal" treewidth of each protrusion B i .

Equivalence on boundaried structures.

(Counting) Monadic Second Order Logic. We say that a MSOL-formula φ is a formula on structures if it has a free variable corresponding to a set of vertices. A structure G = (G, A) is a model for such a formula φ, we write this G |= φ, if it becomes true on G when instantiating the free variable of φ by the set A. Given a MSOL-formula φ we denote by |φ| the length of the formula.

20:8
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Equivalences between b-structures and b-graphs. Let φ be a MSOL-formula and t ∈ N.

Given two b-structures G 1 , G 2 ∈ B (t) , we say that G 1 ≡ φ,t G 2 if G 1 ∼ G 2 and ∀F ∈ B (t) F ∼ G 1 ⇒ (F ⊕ G 1 |= φ ⇐⇒ F ⊕ G 2 |= φ) Notice that ≡ φ,t
is an equivalence relation on B (t) . The following result is widely known as Courcelle's theorem and was proven [START_REF] Courcelle | The monadic second-order logic of graphs. I. Recognizable sets of finite graphs[END_REF]. The same result was essentially proven in [START_REF] Borie | Automatic Generation of Linear-Time Algorithms from Predicate Calculus Descriptions of Problems on Recursively Constructed Graph Families[END_REF] and [START_REF] Arnborg | Easy problems for tree-decomposable graphs[END_REF]. The version on structures that we present below appeared in [4, Lemma 3.2.]. Proposition 3. There exists a computable function ξ : N 2 → N such that for every CMSOformula φ and every t ∈ N, the equivalence relation ≡ φ,t has at most ξ(|φ|, t) equivalence classes.

Given a MSOL-formula φ and under the light of Proposition 3, we consider a (finite) set R φ,t containing one minimum-size member from each of the equivalence classes of ≡ φ,t . Keep in mind that R φ,t ⊆ B (t) . Notice that for every G ∈ B (t) , there is a b-structure in R φ,t , we denote it by rep φ,t (G), such that rep φ,t (G) ≡ φ,t G.

Approximating protrusion decompositions

The main result of this section is a constant-factor approximation algorithm computing a ttreewidth modulator (Lemma 5). Based on this we also derive a constant-factor approximation algorithm for a protrusion decomposition (Theorem 6). For our proofs we need the following lemma that is a consequence of the results in [START_REF] Jung | Linear Kernels and Single-Exponential Algorithms Via Protrusion Decompositions[END_REF].

Lemma 4.

For every h-vertex graph H and every t ∈ N, there exists a constant c and an algorithm that takes as input an H-topological-minor-free graph G and a t-treewidth modulator X ⊆ V (G) and outputs a (c|X|, c, t)-protrusion decomposition along with tree decompositions of its b-graphs of width at most c, in O h+t (n) steps.

As a consequence of Lemma 4, as long as the input graph G has many vertices (linear in k), there is a vertex set Y whose (internal) treewidth is at most t and contains sufficiently many vertices. The key step of the approximation algorithm, to be shown in the next lemma, is to replace N [Y ] with a smaller graph of the same 'type'. Two conditions are to be met during the replacement: first, the minimum-size of a t-treewidth modulator remains the same. Secondly, a t-treewidth modulator of the new graph can be 'lifted' to a t-treewidth modulator of the graph before the replacement without increasing the size.

Lemma 5.

For every h-vertex graph H and every t, there is a constant c, depending on h and t, and an algorithm that, given a graph G ∈ F H and k ∈ N, either outputs an t-treewidth-modulator of G of size at most c • k or reports that no t-treewidth modulator of G exists with size at most k. This algorithm runs in O h+t (n 2 ) steps.

Notice that the above lemma, with worst running time, is also a consequence of the recent results in [START_REF] Gupta | Losing treewidth by separating subsets[END_REF]. We insist to the above statement of Lemma 5, as we are interested for a quadratic time approximation algorithm for protrusion decompositions. Indeed, based on Lemma 5 we can prove the following that is the main result of this section. Theorem 6. Let H be an h-vertex graph and φ be a MSOL-formula that is treewidth modulable. Then there is a constant c, depending on h and |φ|, and an algorithm that, given an input (G, k) of Π φ,F H , either reports no A ⊆ V (G) with (G, A) |= φ has size at most k or outputs a (ck, c, c)-protrusion decomposition of G along with tree decompositions of its b-graphs, each of width at most c. This algorithm runs in O |φ|+h (n 2 ) steps.

4

The compactor

By Theorem 6, we may assume that a (tk, t, t)-protrusion decomposition G 1 , . . . , G s of G, with G i = (G i , B i , -), is given for some t. For counting the sets A ⊆ V (G) of size at most k with (G, A) |= φ, we view such a set A as a union of A 0 ∪ A 1 ∪ • • • A s , where A 0 is the subset of A residing in the the center of the decomposition, and

A i = A ∩ V (G i ) for each i ∈ [s]. Suppose that A i ⊆ V (G i ) for some i ∈ [s] satisfies (G i , B i , A i ) ≡ φ,t (G i , B i , A i ) and |A i | = |A i |.
Then, (A \ A i ) ∪ A i has the same size as |A| and we have (G,

A \ A i ∪ A i ) |= φ.
In other words, A i and A i are indistinguishable when seen from outside of G i .

The basic idea of the condenser is to replace all the occurrences of such sets A i (include A i itself) with O(1)-bit information; that is, the number of such sets, the size of |A i |, and the equivalence class containing (G i , B i , A i ). Formally, for the given CMSO-formula φ and t ∈ N, we define the function #sol φ,t so that for each R ∈ R φ,t , G := (G, B, -) ∈ T (t) , we set

#sol φ,t (R, G, k) = |{A ∈ V (G) k | R ≡ φ,t (G, B, A)}|.
This function can be fully computed in linear time on a b-graph of bounded treewidth.

Lemma 7.

For every CMSO-formula φ and every t ∈ N, there exists an algorithm that, given a G ∈ T (t) and a tree decomposition of G of width at most t, outputs #sol φ,t (R, G, k )

for every (R, k ) ∈ R φ,t × [0, k]. This computation takes O |φ|,t (nk 2 ) steps.
The proof of Lemma 7 is based on a dynamic programming procedure. This may follow implicitly from the proofs of Courcelle's theorem (see [START_REF] Courcelle | Monadic second-order evaluations on tree-decomposable graphs[END_REF][START_REF] Courcelle | On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic[END_REF]).

We are now in position to prove Theorem 1.

Proof of Theorem 1. We describe a polynomial size compactor (P, M) for Π φ,F H . Given an input (G, k) ∈ F H × N, the condenser P of the compactor runs as a first step the algorithm of Theorem 6. If this algorithm reports that there is no set A of size k with (G, k) |= φ, the the condenser outputs $, i.e., A(G, k) = $. Suppose now that the output is a (tk, t, t)-protrusion decomposition G 1 , . . . , G s of G, along with the corresponding tree decompositions, for some constant t that depends only on h and |φ|. Let K be the center of this protrusion decomposition and recall that |K|, s ≤ tk. We set G 0 = G[K] and let

G i = (G i , B i , -) for each i ∈ [s]. We also define B = {B i , | i ∈ [s]} where B i is the boundary of G i , i ∈ [s]
. The next step of the condenser is to apply the algorithm of Lemma 7 and compute

#sol φ,t (R, G i , k ) for every (R, k , i) ∈ R φ,t × [0, k] × [s], in O |φ|+h (nk 2 ) steps. The output of the condenser P is P(G, k) = (G 0 , B, {#sol φ,t (R, G i , k ) | (R, k , i) ∈ R φ,t × [0, k] × [s]}).
Clearly, P(G, k) can be encoded in O |φ|+h (k 2 ) memory positions. We next describe the extractor M of the compactor. For simplicity, we write z := P(G, k) and we define M($) = 0. We assume that there is a fixed labeling λ of G 0 . The extractor M first computes the set A containing all subsets of K of at most k vertices. Notice that |A| = 2 O |φ|+h (k) . Next, for each A 0 ∈ A, the algorithm builds the set M A0 containing all mappings m : [s] → R φ,t with the property that, for every i ∈

[s], (G 0 , B i , A 0 ) ∼ m(i).
As the boundary of m(i) induces an identical labeled graph as B i does, we denote m 

(i) as (G m i , B i , A m i ). Notice that |M A0 | = 2 O |φ|+h (k) , for every A 0 ∈ A. Let A 0 ∈ A
sets D m i+1 = ((D i , B i+1 , -) ⊕ (G m i+1 , B i+1 , -), j∈[i+1] A m j ) iteratively from i = 0 up to s -1. We set (D m , A m ) = D m s . Notice that the routine runs in O |φ|+h (k) steps and that |D m | = O |φ|+h (k).
The extractor M is defined as

M(z) = A0∈A m∈M A 0 [(D m , A m ) |= φ] • ζ∈K k-|A 0 | i∈[s] #sol φ,t (m(i), G i , ζ(i) + |B i ∩ A 0 |)
where 

m i ≡ φ,t (G i , B i , A ) ensure that (G, A 0 ∪ i∈[s] A i ) |= φ. Observe that |A 0 ∪ i∈[s] A i | = |A 0 | + i∈[s] |A i \ B i | = |A 0 | + i∈[s] |A i | = |A 0 | + i∈[s] ζ(i) = k.
That is, each combination of A 0 , m, ζ, and a sequence A 1 , . . . , A s contributing 1 to the sum M(z), a vertex set A of size precisely k can be uniquely defined and we have (G, A) |= φ. Clearly, distinct combinations lead to distinct such sets. Therefore, |{A ∈ V (G) k | (G, A) |= φ}| is at least the value of M(z). This completes the proof.

Conclusions

Concerning Theorem 1, we stress that the treewidth-modulability condition can be derived by other meta-algorithmic conditions. Such conditions are minor/contraction bidimensionality and linear separability for graphs excluding a graph/apex graph as a minor [START_REF] Fomin | Bidimensionality and Kernels[END_REF][START_REF] Fedor | Bidimensionality and Kernels[END_REF]. This extends the applicability of our meta-algorithmic result to more problems but in more restricted graph classes. Natural follow-up questions are whether the size of the compactor can be made linear and whether its combinatorial applicability can be extended to more general graph classes.

We envision that the formal definition of a compactor that we give in this paper may encourage the research on data-reduction for counting problems. The apparent open issue is whether other problems (or families of problems) may be amenable to this data-reduction paradigm (in particular, the results in [START_REF] Díaz | Efficient algorithms for counting parameterized list H-colorings[END_REF][START_REF] Nishimura | Parameterized Counting Algorithms for General Graph Covering Problems[END_REF][START_REF] Thurley | Kernelizations for parameterized counting problems. In 4th international conference on Theory and applications of models of computation[END_REF][START_REF] Thurley | Tractability and Intractability of Parameterized Counting Problems[END_REF] can be interpreted as results on polynomial compactors).

Another interesting question is whether (and to which extent) the fundamental complexity results in [START_REF] Chen | Lower Bounds for Kernelizations and Other Preprocessing Procedures[END_REF][START_REF] Hans | On problems without polynomial kernels[END_REF][START_REF] Fortnow | Infeasibility of instance compression and succinct PCPs for NP[END_REF][START_REF] Dell | AND-Compression of NP-Complete Problems: Streamlined Proof and Minor Observations[END_REF][START_REF] Hans | Kernelization Lower Bounds by Cross-Composition[END_REF][START_REF] Drucker | New Limits to Classical and Quantum Instance Compression[END_REF][START_REF] Harnik | On the Compressibility of NP Instances and Cryptographic Applications[END_REF] on the non-existence of polynomial kernels may have their counterpart for counting problems.
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 21 Given a, b ∈ N, we define by [a, b] = {a, . . . , b}. Also, given some a ∈ N we define [a] = {1, . . . , a}. Given a set Z and a k ∈ N, we denote Z k = {S ⊆ Z | |S| = k}. Graphs and boundary graphs Graphs. All graphs in this paper are simple and undirected. Given a graph G, we use V (G) to denote the set of its vertices. Given a S ⊆ V (G) we denote by N G (S) the set of all neighbours of S in G that are not in S. We also set N G [S] = S ∪ N G (S) and we use N (S) and N [S] as shortcuts of N G (S) and N G [S] (when the index is a graph denoted by G). We define G -S as the graph obtained from G if we remove the vertices in S, along with the edges incident to them. The subgraph of G induced by S is the graph G[S] := G -(V (G) \ S). Finally, we set ∂ G (S) = N G (V (G -S)). We call |V (G)| the size of a graph G and n is reserved to denote the size of the input graph for time complexity analysis.

  (t) ) to denote all b-structures (resp. b-graphs) in B (t) (resp. B(t) ) with treewidth at most t.Protrusion decompositions.Let G be a graph. Given α, β, γ ∈ N, an (α, β, γ)-protrusion decomposition of G is a sequence of G 1 = (G 1 , B 1 , -), . . . , G s = (G s , B s , -) of b-graphs where, given that

  and m ∈ M A0 . For each such pair, the extractor runs a routine that constructs an annotated graph (D m , A m ) as follows: first it initializesD m 0 = (D 0 , A m 0 ) with D 0 = G 0 and A m 0 = A 0 . After constructing D m i = (D i , j∈[i] A m j ), the routine

  [•] is a function indicating whether a sentence is true (=1) or false (=0), andK -|A0| is the set of all vectors ζ ∈ [0, k] s such that i∈[s] ζ(i) = -|A 0 |. Having access to {#sol φ,t (R, G i , k ) | (R, k , i) ∈ R φ,t × [0, k] × [s]}, we can compute M(z) in 2 O |φ|+h (k) steps. Therefore, the extractor runs in the claimed running time. It remains to prove that M(z) equals |{A ∈ V (G) k | (G, A) |= φ}|.Before proceeding, we present a key claim (for the proof, see the full version of the paper).Claim 8. Let H i = (H i , B, A i ) for i = 1, 2 be two compatible b-structures from B (t) . Let H 2 = (H 2 , B, A 2 ) be a b-structure equivalent with H 2 .Then for every B ⊆ V (H 1 ) of size at most t, the two b-structures D and D are equivalent under ≡ φ,t , whereD = ((H 1 , B, -)⊕(H 2 , B, -), B , A 1 ∪A 2 ) and D = ((H 1 , B, -)⊕(H 2 , B, -), B , A 1 ∪A 2 )Now, consider an arbitrary sequence A 1 , . . . , A s of vertex sets withA i ⊆ V (G i ), each of which is counted in #sol φ,t (m(i), G i , ζ(i) + |B i ∩ A 0 |).Claim 8, [(G m , A m ) |= φ] = 1, and
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