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—— Abstract

We study the concept of compactor, which may be seen as a counting-analogue of kernelization in
counting parameterized complexity. For a function F' : ¥* — N and a parameterization x : ¥* —
N, a compactor (P, M) consists of a polynomial-time computable function P, called condenser, and
a computable function M, called eztractor, such that F' = MoP, and the condensing P(x) of 2 has
length at most s(k(z)), for any input x € X*. If s is a polynomial function, then the compactor
is said to be of polynomial-size. Although the study on counting-analogue of kernelization is
not unprecedented, it has received little attention so far. We study a family of vertex-certified
counting problems on graphs that are MSOL-expressible; that is, for an MSOL-formula ¢ with
one free set variable to be interpreted as a vertex subset, we want to count all A C V(G)
where |A| = k and (G, A) = ¢. In this paper, we prove that every vertex-certified counting
problems on graphs that is MSOL-expressible and treewidth modulable, when parameterized by
k, admits a polynomial-size compactor on H-topological-minor-free graphs with condensing time
O(k*n?) and decoding time 20, This implies the existence of an FPT-algorithm of running time
O(n?k?) + 2°0) | All aforementioned complexities are under the Uniform Cost Measure (UCM)
model where numbers can be stored in constant space and arithmetic operations can be done in
constant time.
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1 Introduction

A large part of research on parameterized algorithms has been focused on algorithmic
techniques for parametrizations of decision problems. However, relatively less effort has been
invested for solving parameterized counting problems. In this paper, we provide a general
data-reduction concept for counting problems, leading to a formal definition of the notion of a
compactor. Our main result is an algorithmic meta-theorem for the existence of a polynomial
size compactor, that is applicable to a wide family of problems of graphs.

1.1 General context

Algorithmic meta-theorems. Parameterized complexity has been proposed as a multi-
variable framework for coping with the inherent complexity of computational problems .
Nowadays, it is a mature discipline of modern Theoretical Computer Science and has offered
a wealth of algorithmic techniques and solutions (see [12, 17, 22, 38] for related textbooks). In
some cases, in-depth investigations on the common characteristics of parameterized problems
gave rise to algorithmic meta-theorems. Such theorems typically provide conditions, logical
and/or combinatorial, for a problem to admit a parameterized algorithm [30, 29, 36, 40].
Important algorithmic meta-theorems concern model-checking for Monadic Second Order
Logic (MSOL) [10, 7, 2, 41] on bounded treewidth graphs and model checking for First Order
Logic (FOL) on certain classes of sparse graphs [21, 28, 13, 20, 19, 31].

In some cases, such theorems have a counterpart on counting parameterized problems.
Here the target is to prove that counting how many solutions exist for a problem is fixed
parameter tractable, under some parameterization of it. Related meta-algorithmic results
concern counting analogues of Courcelle’s theorem, proved in [9], stating that counting
problems definable in MSOL are fixed-parameter tractable when parameterized by the tree-
width of the input graph. Also similar results for certain fragments of MSOL hold when
parameterized by the rank-width of the input graph [9]. Moreover, it was shown in [27]
that counting problems definable in first-order logic are fixed-parameter tractable on locally
tree-decomposable graphs (e.g. for planar graphs and bounded genus graphs).

Kernelization and data-reduction. A well-studied concept in parameterized complexity is
kernelization. We say that a parameterized problem admits a polynomial kernel if there is an
algorithm — called kernelization algorithm — that can transform, in polynomial time, every
input instance of the problem to an equivalent one, whose size is bounded by a function
of the parameter. When this function is polynomial then we have a polynomial kernel. A
polynomial kernel permits the drastic data-reduction of the problem instances to equivalent
“miniatures” whose size is independent from the bulk of the input size and is polynomial on
the parameter. That way, a polynomial kernel, provides a preprocessing of computationally
hard problems that enables the application of exact algorithmic approaches (however still
super-polynomial) on significantly reduced instances [37].

Meta-algorithmic results for kernelization. Apart from the numerous advances on the
design of polynomial kernels for particular problems, algorithmic meta-theorems appeared
also for kernelization. The first result of this type appeared in [4], where it was proved
that certain families of problems on graphs admit polynomial kernels on bounded genus
graphs. The logic-condition of [4] is CMSOL-expressibility or, additionally, the Finite Integer
Index (FII) property (see [1, 6, 14]). Moreover, the meta-algorithmic results of [4] require
additional combinatorial properties for the problems in question. The results in [4] where
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extended in [23] (see also [25]) where the combinatorial condition for the problem was related
to bidimensionality, while the applicability of the results was extended in minor-closed graph
classes. Finally, further extensions appeared in [34] where, under the bounded treewidth-
modulability property (see Subsection 1.2), some of the results in [23, 4] could be applied to
more graph classes, in particular those excluding some fixed graph as a topological minor.

Data reduction for counting problems. Unfortunately, not much has been done so far in
the direction of data-reduction for parameterized counting problems. The most comprehens-
ive work in this direction was done by Marc Thurley [42] (see also [43]) who proposed the
first formal definition of a kernelization analogue for parameterized problems called counting
kernelization. In [42] Thurley investigated up to which extent classic kernelization techniques
such as Buss’ Kernelization and crown decomposition may lead to counting counterparts
of kernelization. In this direction, he provided counting kernelizations for a series of para-
meterized counting problems such as and p-#VERTEXCOVER, p-CARD-#HITTING SET and
p-#UNIQUE HITTING SET.

Compactor enumeration. Another framework for data-reduction on parameterized counting
problems is provided by the notion of a compactor. In a precursory level, it appeared for
the first time in [16]. The rough idea in [16] was to transform the input of a parameterized
counting problem to a structure, called the compactor, whose size is (polynomially) bounded
by the parameter and such that the enumeration of certain family of objects (referred as
compactor enumeration in [16]) in the compactor is able to derive the number of solutions
for the initial instance. This technique was introduced in [16] for counting restrictive list
H-colorings and, later in [39], for counting generalized coverings and matchings. However
none of [16, 39] provided a general formal definition of a compactor, while, in our opinion,
the work of Thurley provides a legitimate formalization of compactor enumeration.

In this paper, we define formally the concept of a compactor for parameterizations of
function problems (that naturally include counting problems) that is not based on enumeration.
As a first step, we observe that for parameterized function problems, the existence of a
compactor is equivalent to the existence of an FPT-algorithm, a fact that is also the case for
classic kernels on decision problems and for counting kernels in [42].

Under the above formal framework, we prove an algorithmic meta-theorem on the existence
of polynomial compactors for a general family of graph problems. In the next subsection, we
define the compactor concept and we present the related meta-algorithmic results.

1.2 Our results

Counting problems and parameterizations. First of all notice that, for a counting problem,
it is not possible to have a kernelization in the classic sense, that is to produce an reduced
instance, bounded by a function of k, that is counting-equivalent in the sense that the number
of solutions in the reduced instance will provide the number of solutions in the original
one. For this reason we need a more refined notion of data compression where we transform
the input instance to “structure”, whose size is bounded by a function of k. This structure
contains enough information (combinatorial and arithmetical) so as to permit the recovering
of the number of the solutions in the initial instance. We next formalize this idea to the
concept of a compactor.

Let N be all non-negative integers and by poly the set of all polynomials. Let ¥ be a
fixed alphabet. A parameterized function problem is a pair (F,k) where F,k : ¥* — N.
An FPT-algorithm for (F, k) is one that, given « € ¥*, outputs F(x) in f(x(x)) - poly(|x|)
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steps. When evaluating the running time, we use the standard Uniform Cost Measure (UCM)
model where all basic arithmetic computations are carried out in constant time. We also
disregard the size of the numbers that are produced during the execution of the algorithm.

Compactors. Let (F, k) be a parameterized function problem. A compactor for (F, k) is a
pair (P, M) where

P :¥* — ¥* is a polynomially computable function, called an condenser,

M : ¥* — N is a computable function, called a extractor,

F=MoP,ie,VzeX¥* F(z)= (Mo P)(x), and

there is a recursive function s : N — N where Vo € ¥* |P(z)| < s(k(x)).

We call the function s size of the compactor (P, M) and, if s € poly, we say that (P, M) is a
polynomial-size compactor for (F, k). We call the running time of the algorithm computing
P, measured as a function of |x|, condensing time of (P, M). We also call the running time
of the algorithm computing M, measured as a function of k(z), decoding time of (P, M). We
can readily observe that parameterized function problem has an FPT-algorithm if and only if
there is a compactor for it.

Up to our best knowledge, the notion of compactor as formalized in this paper is
new. As discussed in Subsection 1.1, similar notions have been proposed such as counting
kernelization [42] and compactor enumeration [16]. In both counting kernelization and
compact enumeration, a mapping from the set of all certificates to certain objects in the new
instance is required. While this approach comply more with the idea of classic kernelization,
it seems to be more restrictive. The main difference of our compactor from the previous
notions is that (the condenser of) a compactor is free of this requirement, which makes the
definition more flexible and easier to work with. Due to this flexibility and succinctness, we
believe that our notion might be amenable for lower bound machineries akin to those for
decision problem kernelizations.

Parameterized counting problems on graphs. A structure is a pair (G, A) where G is a
graph and A C V(G). Given a MSOL-formula ¢ on structures and some graph class G, we
consider the following parameterized counting problem Il g.

yg
Input: a graph G € G, an non-negative integer k.

Parameter: k.
Count: the number of vertex sets A C V(G) such that (G, A) = ¢ and |A| = k.

We say that an instance (G, k) € G x N of Il4 ¢ is a null instance if it has no solutions.
Given a graph G, we say that a vertex set A C V(@) is a t-treewidth modulator of G if the
removal of A from G leaves a graph of treewidth at most . Given an MSOL-formula ¢ and
a graph class G, we say that I, ¢ is treewidth modulable if there is a constant ¢ (depending
on ¢ and G only) such that, for every non-null instance (G, k) of Il g, G has a t-treewidth
modulator of size at most ¢ - k.

Let Fg be the class of all graphs that do not contain a subdivision of H as a subgraph.
The next theorem states our main result.

» Theorem 1. For every graph H and every MSOL-formula ¢, if Ily r,, is treewidth
modulable, then there is a compactor for Iy 7, of size O(k*) with condensing time O(k*n?)
and decoding time 2°0%).

As a corollary of the main theorem we have the following.
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» Corollary 2. For every graph H and every MSOL-formula ¢, if Il 7, is treewidth mod-
ulable, then Iy F,, can be solved in O(k*n?) + 200 steps.

In the above results, the constants hidden in the O-notation depend on the choice of ¢,
on the treewidth-modulability constant ¢, and on the choice of H.

Recall that the above results are stated using the UCM model. As for Il 7,,, the number
of solutions is O(n*) and this number can be encoded in O(klogn) bits. Assuming that
summations of two r-bit numbers can be done in O(r) steps and multiplications of two r-bit
numbers can be done in O(r?) steps, then the size of the compactor in Theorem 1 is O(k? log n)
the condensing and extracting times are O(k*n? log? n) and 20(k) log? n respectively. Con-
sequently, the running time of the algorithm in Corollary 2 is O(k*n?log® n) + 2°%) log® n.

Coming back to the algorithmic meta-theorems on parameterized counting problems
we should remark that the problem condition of Corollary 2 is weaker than MSOL, as it
additionally demands treewidth-modulability. However, the graph classes where this result
applies have unbounded treewidth or rankwidth. That way our results can be seen as
orthogonal to those of [9].

On the side of FOL, the problem condition of Corollary 2 is stronger than FOL, while its
combinatorial applicability includes planar graphs or graphs of bounded genus where, the
existing algorithmic meta-theorems require FOL-expressibility (see [27]).

1.3 Outline of the compactor algorithms

Our approach follows the idea of applying data-reduction based on protrusion decomposability.
This idea was initiated in [4] for the automated derivation of polynomial kernels on decision
problems. The key-concept in [4] is the notion of a protrusion, a set of vertices with small
neighborhood to the rest of the graph and inducing a graph of small treewidth. Also, [4]
introduced the notion of a protrusion decomposition, which is a partition of G to O(k) graphs
such the first one is a “center”, of size O(k), and the rest are protrusions whose neighborhoods
are in the center.

The meta-algorithmic machinery of [4] is based on the following combinatorial fact:
for the problems in question, YES-instances — in our case non-null instances— admit a
protrusion decomposition that, when the input has size Q(k), one of its protrusions is “big
enough”. This permits the application of some “graph surgery” that consists in replacing a big
protrusion with a smaller one and, that way, creates an equivalent instance of the problem (the
replacements are based on the MSOL-expressibiliy of the problem). In the case of counting
problems, this protrusion replacement machinery does not work (at least straightforwardly)
as we have to keep track, not only of the way some part of a solution “invades” a protrusion,
but also of the number of all those partial solutions. Instead, we take another way that
avoids stepwise protrusion replacement. In our approach, the condenser of the compactor
first constructs an approximate protrusion decomposition, then, it computes how many
possible partial solutions of all possible sizes may exist in each one of the protrusions. This
computation is done by dynamic programming (see Section 4) and produces a total set of
O(k?) arithmetic values. These values, along with the combinatorial information of the center
of the protrusion decomposition and the neighborhoods of the protrusions in the center,
constitutes the output of the condenser. This structure can be stored in O(k?) space (given
that arithmetic values can be stored in constant space) and contains enough information to
obtain the number of all the solutions of the initial instance in 2°®*) steps (Section 4).

We stress that the above machinery demands the polynomial-time construction of a
constant-factor approximation of a protrusion-decomposition. To our knowledge, this remains
an open problem in general. So far, no such algorithm has been proposed, even for particular
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graph classes, mostly because meta-kernelization machinery in [4] (and later in [25, 23, 34, 24])
is based on stepwise protrusion replacement and does not actually need to construct such a
decomposition. Based on the result in [34], we show that that the construction of such an
approximate protrusion decomposition is possible on H-topological-minor-free graphs, given
that it is possible to construct an approximate t-treewidth modulator of G. In fact, this can
been done in general graphs using the randomized constant-factor approximation algorithm
n [24]. Responding to the need for a deterministic approximation we provide a constant-
factor approximation algorithm that finds a t-treewidth modulator on H-topological-minor
free graphs (Section 3). This algorithm runs in O(k?n?) steps and, besides from being a
necessary step of the condenser of our compactor, is of independent algorithmic interest.

2 Preliminaries

We use N to denote the set of all non-negative integers. Let y : N> = N and ) : N — N,
We say that x(n,k) = Ox(¢p(n)) if there exists a function ¢ : N — N such that x(n,k) =
O(p(k) - (n)). Given a,b € N, we define by [a,b] = {a,...,b}. Also, given some a € N we
define [a) = {1,...,a}. Given a set Z and a k € N, we denote (i) ={SCZ]||S|=k}

2.1 Graphs and boundary graphs

Graphs. All graphs in this paper are simple and undirected. Given a graph G, we use
V(G) to denote the set of its vertices. Given a S C V(G) we denote by Ng(S) the set of all
neighbours of S in G that are not in S. We also set Ng[S] = S U Ng(S) and we use N(S)
and N[S] as shortcuts of Ng(S) and Ng[S] (when the index is a graph denoted by G). We
define G — S as the graph obtained from G if we remove the vertices in .S, along with the
edges incident to them. The subgraph of G induced by S is the graph G[S] := G— (V(G)\ S).
Finally, we set 0g(S) = Ng(V(G — S)). We call |V(G)| the size of a graph G and n is
reserved to denote the size of the input graph for time complexity analysis.

Given a graph G, a subdivision of G is any graph that is obtained from G after replacing
its edges by paths with the same endpoints. We say that a graph H is a topological
minor of G if G contains as a subgraph some subdivision of H. We also say that G is
H -topological-minor-free if it excludes H as a topological minor.

Boundaried structures. A labeling of a graph G is any injective function A : V(G) — N.
Given a structure (G, A), we call A the annotated set of (G, A) and the vertices in A annotated
vertices of (G, A).

A boundaried structure, in short a b-structure, is a triple G = (G, B, A) where G is a
graph and B, A C V(G). We say that B is the boundary of G and A is the annotated set of
G. Also we call the vertices of B boundary vertices and the vertices in A annotated vertices.
We use notation B®) to denote all b-structures whose boundary has at most t vertices. We
set G(G) =G, V(G) =V(G), B(G) = B, A(G) = A. We refer to G as the underlying graph
of G and we always assume that the underlying graph of a b-structure is accompanied with
some labelling A. Under the presence of such a labelling, we define the index of a boundary
vertex v as the quantity [{u € B | A(u) < A(v)}| i.e., the index of v when we arrange the
vertices of B according to A in increasing order. We extend the notion of index to subsets of
B in the natural way, i.e., the index of S C B consists of the indices of all the vertices in S.

A boundaried graph, in short b-graph, is any b-structure G = (G, B, A) such that
A = V(G). For simplicity we use the notation G = (G, B, —) to denote b-graphs instead of

using the heavier notation G = (G, B,V(Q)). For every t € N, we use B to denote the
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b-graphs in B®). We avoid denoting a boundary graph as an annotated graph as we want to
stress the role of B as a boundary.

We say that two b-structures G; = (G1, By, A1) and Go = (G2, Ba, As) are compatible,
denoted by G ~ Go, if A1 N By and A N By have the same index and the labeled graphs
G[B1] and G[Bs], where each vertex of B; is labeled by its index, are identical.

Given two compatible b-structures G = (G, By, A1) and Go = (G, By, As), we define
G1 @ G; as the structure (G, A) where

the graph G is obtained by taking the disjoint union of G; and G2 and then identifying

boundary vertices of Gy and G of the same index, and

the vertex set A is obtained from A; and Ao after identifying equally-indexed vertices in

Al n Bl and A2 N BQ.

Keep in mind that (G, A) = G1 ® G; is an annotated graph and not a b-structure. We
always assume that the labels of the boundary of G; prevail during the gluing operation,
i.e., they are inherited to the identified vertices in (G, A) while the labels of the boundary
of Gy dissapear in (G, A). Especially, when G; and Gq are compatible b-graphs, we treat
G1 & G; as a graph for notational simplicity.

Treewith of b-structures. Given a b-structure G = (G, B, A), we say that the triple
D = (T, x,r) is a tree decomposition of G if (T, x) is a tree decomposition of G, r € V(T),
and x(r) = B. We see T as a tree rooted on r. The width of a tree decomposition D = (T, x,r)
is the width of the tree decomposition (T, x). The treewidth of a b-structure G is the minimum
width over all its tree decompositions and is denoted by tw(G). We use 7@ (resp. ?(t)) to

denote all b-structures (resp. b-graphs) in B® (resp. E(t)) with treewidth at most ¢.

Protrusion decompositions. Let G be a graph. Given a, 8,7 € N, an («, 8, 7)-protrusion
decomposition of G is a sequence of Gy = (G1,B1,—),...,Gs = (Gs, Bs,—) of b-graphs
where, given that X; = V(G;) \ B;,i € [s], it holds that

s < o

Viels, G eT"”

Vi € [s], G; is a subgraph of G

Vi,jels], iZj=XiNnX; =10

[V(G)\ Usepq) Xil <

. Vi€ ls], tw(G[X;]) <.

We cal the set V(G) \ U,¢y Xi center of the above (a, 3, 7)-protrusion decomposition.
Protrusion decompositions have been introduced in [4] in the context of kernelization al-
gorithms (see also [25, 23]). The above definition is a modification of the original one in [4],
adapted for the needs of our proofs. The only essential modification is the parameter -y, used
in the last requirement. Intuitively, v bounds the “internal” treewidth of each protrusion B;.

Se kR wbdE

2.2 Equivalence on boundaried structures.

(Counting) Monadic Second Order Logic. We say that a MSOL-formula ¢ is a formula on
structures if it has a free variable corresponding to a set of vertices. A structure G = (G, A) is
a model for such a formula ¢, we write this G | ¢, if it becomes true on G when instantiating
the free variable of ¢ by the set A. Given a MSOL-formula ¢ we denote by |¢| the length of
the formula.
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Equivalences between b-structures and b-graphs. Let ¢ be a MSOL-formula and ¢ € N.
Given two b-structures G, G, € B®, we say that G, =4+ Go if

G1 ~ G2 and

VFEBOF~G = FaG ¢ < FoGylo9)
Notice that =4, is an equivalence relation on B(*). The following result is widely known
as Courcelle’s theorem and was proven [10]. The same result was essentially proven in [7]
and [2]. The version on structures that we present below appeared in [4, Lemma 3.2.].

» Proposition 3. There exists a computable function & : N> — N such that for every CMSO-
formula ¢ and every t € N, the equivalence relation =4+ has at most £(|¢|,t) equivalence
classes.

Given a MSOL-formula ¢ and under the light of Proposition 3, we consider a (finite) set
Re,+ containing one minimum-size member from each of the equivalence classes of =4 ; .
Keep in mind that Ry C B . Notice that for every G € B®), there is a b-structure in Ro.t,
we denote it by rep, ,(G), such that rep, ,(G) =4 G.

3 Approximating protrusion decompositions

The main result of this section is a constant-factor approximation algorithm computing a ¢-
treewidth modulator (Lemma 5). Based on this we also derive a constant-factor approximation
algorithm for a protrusion decomposition (Theorem 6). For our proofs we need the following
lemma that is a consequence of the results in [34].

» Lemma 4. For every h-vertex graph H and every t € N, there exists a constant ¢ and an
algorithm that takes as input an H -topological-minor-free graph G and a t-treewidth modulator
X CV(G) and outputs a (c|X|, c,t)-protrusion decomposition along with tree decompositions
of its b-graphs of width at most ¢, in Op(n) steps.

As a consequence of Lemma 4, as long as the input graph G has many vertices (linear in
k), there is a vertex set Y whose (internal) treewidth is at most ¢ and contains sufficiently
many vertices. The key step of the approximation algorithm, to be shown in the next lemma,
is to replace N[Y] with a smaller graph of the same ‘type’. Two conditions are to be met
during the replacement: first, the minimum-size of a t-treewidth modulator remains the
same. Secondly, a t-treewidth modulator of the new graph can be ‘lifted’ to a t-treewidth
modulator of the graph before the replacement without increasing the size.

» Lemma 5. For every h-vertex graph H and every t, there is a constant c, depending
on h and t, and an algorithm that, given a graph G € Fgy and k € N, either outputs an
t-treewidth-modulator of G of size at most ¢ - k or reports that no t-treewidth modulator of G
exists with size at most k. This algorithm runs in Op4(n?) steps.

Notice that the above lemma, with worst running time, is also a consequence of the recent
results in [32]. We insist to the above statement of Lemma 5, as we are interested for a
quadratic time approximation algorithm for protrusion decompositions. Indeed, based on
Lemma 5 we can prove the following that is the main result of this section.

» Theorem 6. Let H be an h-vertexr graph and ¢ be a MSOL-formula that is treewidth
modulable. Then there is a constant ¢, depending on h and |p|, and an algorithm that, given
an input (G, k) of Il x,,, either reports no A C V(G) with (G, A) |= ¢ has size at most k
or outputs a (ck, ¢, c)-protrusion decomposition of G along with tree decompositions of its
b-graphs, each of width at most c. This algorithm runs in O|¢\+h(ﬂ2) steps.
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4 The compactor

By Theorem 6, we may assume that a (tk,t,t)-protrusion decomposition Gy, ..., G; of G,
with G; = (G4, B;, —), is given for some t. For counting the sets A C V(G) of size at most
k with (G, A) = ¢, we view such a set A as a union of AgU Ay U--- Ay, where A is the
subset of A residing in the the center of the decomposition, and A; = ANV (G;) for each
i € [s]. Suppose that A C V(G;) for some i € [s] satisfies (G;, By, A;) =4+ (Gs, Bi, A;) and

|A;| = |AL]. Then, (A\ A4;) U A} has the same size as |A| and we have (G, A\ 4; U A}) | ¢.

In other words, A, and A; are indistinguishable when seen from outside of G;.

The basic idea of the condenser is to replace all the occurrences of such sets A} (include
A; itself) with O(1)-bit information; that is, the number of such sets, the size of |A}|, and the
equivalence class containing (G;, B;, A}). Formally, for the given CMSO-formula ¢ and ¢t € N,

we define the function #sol , so that for each R € Ry 1, G := (G,B,—) € 7‘(”, we set

ol G0 = fpae (V) IR =0 Gman)

This function can be fully computed in linear time on a b-graph of bounded treewidth.

» Lemma 7. For every CMSO-formula ¢ and every t € N, there exists an algorithm that,
given a G € 7(t) and a tree decomposition of G of width at most t, outputs #soly ,(R, G, k')
for every (R, k') € Ry x [0,k]. This computation takes O)y(nk?) steps.

The proof of Lemma 7 is based on a dynamic programming procedure. This may follow
implicitly from the proofs of Courcelle’s theorem (see [11, 9]).
We are now in position to prove Theorem 1.

Proof of Theorem 1. We describe a polynomial size compactor (P, M) for I, z,. Given
an input (G,k) € Fg x N, the condenser P of the compactor runs as a first step the
algorithm of Theorem 6. If this algorithm reports that there is no set A of size k with
(G, k) = ¢, the the condenser outputs 8, i.e., A(G,k) = $. Suppose now that the output
is a (tk,t,t)-protrusion decomposition Gy, ..., Gy of G, along with the corresponding tree
decompositions, for some constant ¢ that depends only on h and |¢|. Let K be the center
of this protrusion decomposition and recall that |K|,s < tk. We set Gy = G[K] and let
G; = (G4, B;, —) for each i € [s]. We also define B = {B;,| i € [s]} where B; is the boundary
of G, i € [s]. The next step of the condenser is to apply the algorithm of Lemma 7 and
compute #soly (R, Gy, k') for every (R, k',i) € Ry % [0,k] X [s], in Ojyj4.n(nk?) steps. The
output of the condenser P is

P(G, k) = (Go, B, {#s0l, (R, Gi, k') | (R, K/, i) € Ry x [0, k] x [s]})-

Clearly, P(G, k) can be encoded in O)y4+(k*) memory positions.

We next describe the extractor M of the compactor. For simplicity, we write z := P(G, k)
and we define M($) = 0. We assume that there is a fixed labeling A of Gy. The extractor
M first computes the set A containing all subsets of K of at most k vertices. Notice that
|A| = 29161+n(F)  Next, for each Ay € A, the algorithm builds the set M4, containing all
mappings m : [s] = Ry, with the property that, for every ¢ € [s], (Go, B;, Ag) ~ m(i).
As the boundary of m(¢) induces an identical labeled graph as B; does, we denote m(i) as
(G™, B;, A™). Notice that |[M4,| = 29161+»(*)for every A, € A.

Let Ag € A and m € My,. For each such pair, the extractor runs a routine that
constructs an annotated graph (D™, A™) as follows: first it initializes Dy = (Do, AY)
with Do = Go and A = Ao. After constructing D' = (Dj,;¢; AT), the routine
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sets Diy = ((Ds, Bit1,—) ® (GIy, Biv1, =), Ujepi1) A7) iteratively from ¢ = 0 up to
s —1. We set (D™, A™) = D'. Notice that the routine runs in Oj41(k) steps and that
D™ = Oy n():

The extractor M is defined as

M= S ID™ A" ol (30 [T #soloulm(i), Gir (i) + 1B: N Ao))
]

AoEAmEMAO CEKk—\Aol i€[s

where [-] is a function indicating whether a sentence is true (=1) or false (=0), and KCy_| 4,
is the set of all vectors ¢ € [0, k]* such that >, ¢(é) = £ — [Aol.

Having access to {#sol; ;(R, Gi, k') | (R, k',i) € Ry ¢ x [0, k] x [s]}, we can compute M(z)
in 29161+1(¥) steps. Therefore, the extractor runs in the claimed running time. It remains to
prove that M(z) equals [{A € (V(?) | (G, A) |= 6}.

Before proceeding, we present a key claim (for the proof, see the full version of the paper).

» Claim 8. Let H; = (H;, B, A;) fori=1,2 be two compatible b-structures from BW. Let
H), = (H}, B, A}) be a b-structure equivalent with Hy. Then for every B' C V(Hy) of size at
most t, the two b-structures D and D’ are equivalent under =4+, where

D= ((f[l,B7 —)EB(HQ,B, —),B/7A1UA2) and D/ = ((Hl,B, —)@(HQ,B, —),B/,A1UA12>

Now, consider an arbitrary sequence Af,..., A’ of vertex sets with A, C V(G;), each of
which is counted in #soly ((m(3), Gy, ((7) + |B; N Agl). Claim 8, [(G™, A™) |= ¢] = 1, and
m; =4 (G;, B, A') ensure that (G, Ag U Uie[s] Al) = ¢. Observe that
140U ([ Ail = Aol + Y 1A\ Bil = [Ao| + Y |4l = |Ao| + D () = k.

i€[s] 1€[s] 1€[s] i€[s]

That is, each combination of Ag, m, ¢, and a sequence A}, ..., AL contributing 1 to the sum
M(z), a vertex set A of size precisely k can be uniquely defined and we have (G, A) = ¢.
Clearly, distinct combinations lead to distinct such sets. Therefore, |[{A € (V(kG)) | (G,A) E
¢} is at least the value of M(z). This completes the proof. <

5 Conclusions

Concerning Theorem 1, we stress that the treewidth-modulability condition can be derived by
other meta-algorithmic conditions. Such conditions are minor/contraction bidimensionality
and linear separability for graphs excluding a graph/apex graph as a minor [23, 25]. This
extends the applicability of our meta-algorithmic result to more problems but in more
restricted graph classes. Natural follow-up questions are whether the size of the compactor
can be made linear and whether its combinatorial applicability can be extended to more
general graph classes.

We envision that the formal definition of a compactor that we give in this paper may
encourage the research on data-reduction for counting problems. The apparent open issue is
whether other problems (or families of problems) may be amenable to this data-reduction
paradigm (in particular, the results in [16, 39, 42, 43] can be interpreted as results on
polynomial compactors).

Another interesting question is whether (and to which extent) the fundamental complexity
results in [8, 3, 26, 15, 5, 18, 33] on the non-existence of polynomial kernels may have their
counterpart for counting problems.
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