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Abstract
For a fixed graph H, we are interested in the parameterized complexity of the following problem,
called {H}-M-Deletion, parameterized by the treewidth tw of the input graph: given an n-
vertex graph G and an integer k, decide whether there exists S ⊆ V (G) with |S| ≤ k such that
G\S does not contain H as a minor. In previous work [IPEC, 2017] we proved that if H is planar
and connected, then the problem cannot be solved in time 2o(tw) · nO(1) under the ETH, and can
be solved in time 2O(tw·log tw) ·nO(1). In this article we manage to classify the optimal asymptotic
complexity of {H}-M-Deletion when H is a connected planar graph on at most 5 vertices.
Out of the 29 possibilities (discarding the trivial case H = K1), we prove that 9 of them are
solvable in time 2Θ(tw) · nO(1), and that the other 20 ones are solvable in time 2Θ(tw·log tw) · nO(1).
Namely, we prove that K4 and the diamond are the only graphs on at most 4 vertices for which
the problem is solvable in time 2Θ(tw·log tw) ·nO(1), and that the chair and the banner are the only
graphs on 5 vertices for which the problem is solvable in time 2Θ(tw) · nO(1). For the version of
the problem where H is forbidden as a topological minor, the case H = K1,4 can be solved in
time 2Θ(tw) · nO(1). This exhibits, to the best of our knowledge, the first difference between the
computational complexity of both problems.
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2:2 A Complexity Dichotomy for Hitting Small Planar Minors

1 Introduction

Let H be a fixed graph. In the {H}-M-Deletion (resp. {H}-TM-Deletion) problem,
we are given an n-vertex graph G and an integer k, and the objective is to decide whether
there exists a set S ⊆ V (G) with |S| ≤ k such that G \ S does not contain H as a minor
(resp. topological minor). These problems belongs to the more general category of graph
modification problems. The cases where H is planar and connected are already quite general,
as the cases H = K2 and H = K3 correspond to Vertex Cover and Feedback Vertex
Set, respectively. We are interested in the parameterized complexity of {H}-M-Deletion
and {H}-TM-Deletion taking as the parameter the treewidth of G, denoted by tw.

Determining the optimal asymptotic complexity of {H}-M-Deletion parameterized by
treewidth has been an active area in the parameterized complexity community during the last
years. As relevant examples, Vertex Cover is easily solvable in time 2O(tw) · nO(1), called
single-exponential, by standard dynamic-programming techniques, and no algorithm with
running time 2o(tw) · nO(1) exists unless the Exponential Time Hypothesis (ETH)1 fails [10].
For Feedback Vertex Set, the existence of a single-exponential algorithm remained open
for a while, until Cygan et al. [6] presented the Cut&Count technique. See also [2, 9, 11, 15].

We recently studied these problems in [1] and proved2, among other results, that if H is
planar and connected, then the problems cannot be solved in time 2o(tw) · nO(1) under the
ETH, and can be solved in time 2O(tw·log tw) · nO(1) (for {H}-TM-Deletion, we additionally
need H to have maximum degree at most 3). We also presented a dichotomy when H = Ci
is a cycle on i vertices, by proving that both problems (which are clearly equivalent for
subcubic graphs) can be solved in single-exponential time if and only if i ≤ 4. We aimed at
a similar dichotomy when H = Pi is a path on i vertices, but we left open the case H = P5.
In this article we obtain the following results, the lower bounds holding under the ETH:

1. When H = K1,i, the star with i leaves, {K1,i}-M-Deletion is solvable in time 2Θ(tw) ·
nO(1) for i ≤ 3, and in time 2Θ(tw·log tw) · nO(1) for i ≥ 4. On the other hand, {K1,i}-TM-
Deletion can be solved in time 2Θ(tw) ·nO(1) for every i ≥ 1. To the best of our knowledge,
this is the first example of a graph H for which the complexity of {H}-M-Deletion
and {H}-TM-Deletion differ.

2. When H = θi, the multigraph consisting of two vertices and i ≥ 1 parallel edges, both
problems can be solved in time 2Θ(tw) · nO(1) for i ≤ 2, and in time 2Θ(tw·log tw) · nO(1) for
i ≥ 3. The same dichotomy occurs when H = K2,i.

3. We classify the optimal asymptotic complexity of {H}-M-Deletion when H is a
connected planar graph on at most 5 vertices. Out of the 29 possibilities (discarding the
trivial case H = {K1}), we prove that 9 of them are solvable in time 2Θ(tw) · nO(1), and
that the other 20 ones are solvable in time 2Θ(tw·log tw) · nO(1); a summary is shown in
Figure 1. Note that K4 and the diamond are the only graphs on at most 4 vertices for
which the problem is solvable in time 2Θ(tw·log tw) ·nO(1), and that the chair and the banner
are the only graphs on 5 vertices for which the problem is solvable in time 2Θ(tw) · nO(1).
In particular, this settles the complexity of {P5}-M-Deletion, which we left open in [1].
All the lower bounds also hold for {H}-TM-Deletion, with the only difference that the
case H = K1,4 can be solved in time 2Θ(tw) · nO(1), as mentioned in item 1 above.

1 The ETH states that 3-SAT on n variables cannot be solved in time 2o(n); see [10] for more details.
2 In [1] we considered the more general case where all the graphs in a fixed finite family F are forbidden

as (topological) minors. For simplicity, we only consider here the case where F contains a single graph.
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Figure 1 Classification of the complexity of {H}-M-Deletion for all connected simple planar
graphs H with |V (H)| ≤ 5 and |E(H)| ≥ 1: for the 9 graphs on the left (resp. 20 graphs on the right),
the problem is solvable in time 2Θ(tw) · nO(1) (resp. 2Θ(tw·log tw) · nO(1)). For {H}-TM-Deletion,
K1,4 should be on the left. The results of this article correspond to the red (darker) graphs; the
other ones were either already known (namely, P2, P3, and C3) or obtained in [1].

Let us discuss about the techniques that we used to obtain the above results. The single-
exponential algorithms are ad hoc, some being easier than others. All of them exploit a
structural characterization of the graphs that exclude that particular graph as a (topological)
minor; cf. for instance Lemma 1. Intuitively, the “complexity” of this characterization is
what determines the difficulty of the corresponding dynamic programming algorithm, and is
also what makes the difference between being solvable in single-exponential time or not.

More precisely, the algorithms for {K1,s}-TM-Deletion are simple and use standard
dynamic programming techniques on graphs of bounded treewidth. The algorithm for {paw}-
TM-Deletion is more involved and uses the rank-based approach introduced by Bodlaender
et al. [2], similarly to the algorithm for {C4}-TM-Deletion that we presented in [1]. Finally,
the algorithms for {chair}-TM-Deletion and {banner}-TM-Deletion are a combination
of some of the algorithms given here and in [1], the latter one using the rank-based approach.

The superexponential lower bounds of this article are inspired by a reduction of Bonnet et
al. [4]. Namely, we prove subexponential lower bounds for P5, K1,i with i ≥ 4 for the minor
version, K2,i and θi for i ≥ 3 (note that if G is a simple graph, {θ3}-Deletion is equivalent
to {diamond}-Deletion), and the following graphs depicted in Figure 1: the px, the kite,
the dart, the bull, the butterfly, the cricket, and the co-banner. All these reductions are based
on a general construction (cf. Section 4.1), and then we need particular small gadgets to deal
with each of the graphs. On the other hand, one can easily check that all the other graphs
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2:4 A Complexity Dichotomy for Hitting Small Planar Minors

on the right hand side of Figure 1, namely K4, C5, K3 ∪ 2K1, K5-e, W4, P3 ∪ 2K1, P2 ∪ P3,
the gem, and the house, satisfy the general condition given in [1, Theorem 20], and therefore
the superexponential lower bound follows for both problems and each of these graphs. This
completes the dichotomy for all connected (simple) planar graphs on at most 5 vertices.
The remainder of this article is organized as follows. In Section 2 we provide some preliminaries.
The single-exponential algorithms are presented in Section 3 and the superexponential lower
bounds in Section 4. We conclude the article in Section 5. Due to space constraints, the
proofs of the results marked with ‘(?)’ can be found in the full version of this article.

2 Preliminaries

We use standard graph-theoretic notation, and we refer to [7] for any undefined term and
the notions of minor and topological minor. We also refer to [8, 5] for the basic definitions of
parameterized complexity, tree decompositions, and treewidth. We need to introduce nice
tree decompositions, which make the presentation of the algorithms much simpler.

Let D = (T,X ) be a tree decomposition of G, r be a vertex of T , and G = {Gt | t ∈ V (T )}
be a collection of subgraphs of G, indexed by the vertices of T . We say that the triple
(D, r,G) is a nice tree decomposition of G if the following conditions hold:

Xr = ∅ and Gr = G,
each node of D has at most two children in T ,
for each leaf t ∈ V (T ), Xt = ∅ and Gt = (∅, ∅). Such t is called a leaf node,
if t ∈ V (T ) has exactly one child t′, then either
Xt = Xt′ ∪ {vinsert} for some vinsert 6∈ Xt′ and Gt = G[V (Gt′) ∪ {vinsert}]. The node t
is called introduce vertex node and the vertex vinsert is the insertion vertex of Xt,
Xt = Xt′ \ {vforget} for some vforget ∈ Xt′ and Gt = Gt′ . The node t is called forget
vertex node and vforget is the forget vertex of Xt.

if t ∈ V (T ) has exactly two children t′ and t′′, then Xt = Xt′ = Xt′′ , and E(Gt′) ∩
E(Gt′′) = ∅. The node t is called a join node.

For each t ∈ V (T ), we denote by Vt the set V (Gt). Given a tree decomposition, it is possible
to transform it in polynomial time to a nice new one of the same width [12]. Moreover, by
Bodlaender et al. [3] we can find in time 2O(tw) · n a tree decomposition of width O(tw) of
any graph G. Hence, since in this article we focus on single-exponential algorithms, we may
assume that a nice tree decomposition of width w = O(tw) is given with the input.

If a graph G contains a graph H as a minor (resp. topological minor), we denote it by
H �m G (resp. H �tm G). For a fixed graph H and a graph G, we define the parameter
m{H}(G) (resp. tm{H}(G)) as the minimum size of a set S ⊆ V (G) such that H 6�m G \ S
(resp. H 6�tm G \ S).

3 Single-exponential algorithms

In this section we present single-exponential algorithms for hitting particular graphs. Since
the algorithms when H = K1,s use standard dynamic programming techniques, they have
been moved to the full version. In what follows we present a single-exponential algorithm
for {paw}-TM-Deletion. For completeness, the basic ingredients and notations of the
rank-based approach of Bodlaender et al. [2] are given in the full version. The algorithms for
the chair and the banner are also given in the full version.

We start with a simple structural characterization of the simple graphs that exclude the
paw as a topological minor; recall the paw graph in Figure 1.



J. Baste, I. Sau, and D.M. Thilikos 2:5

I Lemma 1. A simple graph G satisfies paw 6�tm G if and only if each connected component
of G is either a cycle or a tree.

Proof. It is easy to see that neither a cycle nor a tree contain the paw as a topological minor.
Let G be a graph such that paw 6�tm G. Let us assume w.l.o.g. that G is connected. If G
does not contain a cycle, then it is a tree. Otherwise, let C be a chordless cycle in G. If G
contains a vertex v that is not in C, then, as G is connected, there exists a path from v to C
containing at least 2 vertices. This is not possible, as it would imply that G contains the
paw as a topological minor. As C is chordless and G is simple, we obtain that G is exactly
the cycle C, and the lemma follows. J

We present an algorithm that solves the decision version of {paw}-TM-Deletion. As
the algorithm that we presented for {C4}-TM-Deletion in [1], this algorithm is based on
the one given in [2, Section 3.5] for Feedback Vertex Set. Let G be a graph and k be an
integer. The idea of the following algorithm is to partition V (G) into three sets. The first one
will be the solution set S, the second one will be a set F of vertices that induces a forest, and
the third one will be a set C of vertices that induces a collection of cycles. If we can partition
our graph into three such sets (S, F,C) such that there is no edge between a vertex of F and
a vertex of C and such that |S| ≤ k, then, using Lemma 1, we know that tm{paw}(G) ≤ k.
On the other hand, if such a partition does not exist, we know that tm{paw}(G) > k. The
main idea of this algorithm is to combine classical dynamic programming techniques in order
to verify that C induces a collection of cycles, and the rank-based approach in order to verify
that F induces a forest.

As for {C4}-TM-Deletion (see [1]), we define a new graph G0 = (V (G)∪ {v0}, E(G)∪
E0), where v0 is a new vertex and E0 = {{v0, v} | v ∈ V (G)}. For each subgraph H of G0,
for each Z1 ⊆ V (H), and for each Y ⊆ E0 ∩ E(H[Z1]), we denote by H〈Z1, Y 〉 the graph(
Z1, Y ∪ E

(
H[Z1 \ {v0}]

))
.

Given a nice tree decomposition of G of width w, we define a nice tree decomposition
((T,X ), r,G) of G0 of width w + 1 such that the only empty bags are the root and the leaves
and for each t ∈ T , if Xt 6= ∅, then v0 ∈ Xt. Note that this can be done in linear time. For
each bag t, each integers i, j, and `, each function s : Xt → {0, 1, 20, 21, 22}, each function
s0 : {v0} × s−1(1)→ {0, 1}, and each partition p ∈ Π(s−1(1)), we define:

Et(p, s, s0, i, j, `) = {(Z1, Z2, Y ) | (Z1, Z2, Y ) ∈ 2Vt × 2Vt × 2E0∩E(Gt), Z1 ∩ Z2 = ∅,
|Z1| = i, |Z2| = `, |E(Gt[Z1 \ {v0}]) ∪ Y | = j,

∀e ∈ E0 ∩ Et, s0(e) = 1⇔ e ∈ Y,
∀v ∈ Z2 ∩Xt, s(v) = 2z with z = degGt[Z2](v),
∀v ∈ Z2 \Xt, degGt[Z2](v) = 2,
Z1 ∩Xt = s−1(1), v0 ∈ Xt ⇒ s(v0) = 1,
∀u ∈ Z1 \Xt : either t is the root or

∃u′ ∈ s−1(1) : u and u′ are connected in Gt〈Z1, Y 〉,
∀v1, v2 ∈ s−1(1) : p v Vt[{v1, v2}]⇔ v1 and v2 are con-

nected in Gt〈Z1, Y 〉,
∀(u, v) ∈ (Z1 \ {v0})× Z2, {u, v} 6∈ E(Gt)}

At(s, s0, i, j, `) = {p | p ∈ Π(s−1(1)), Et(p, s, s0, i, j, `) 6= ∅}.

IPEC 2018



2:6 A Complexity Dichotomy for Hitting Small Planar Minors

In the definition of Et, the sets Z1 (resp. Z2) correspond to the set F (resp. C) restricted to
Gt. The vertex v0 and the set Y exist to ensure that F will be connected.

By Lemma 1, we have that the given instance of {paw}-TM-Deletion is a Yes-instance
if and only if for some i and `, i+ ` ≥ |V (G) ∪ {v0}| − k and Ar(∅, i, i− 1, `) 6= ∅. For each
t ∈ V (T ), we assume that we have already computed At′ for every children t′ of t, and we
proceed to the computation of At. As usual, we distinguish several cases depending on the
type of node t.

Leaf. By definition of At, we have At(∅,∅, 0, 0, 0) = {∅}.
Introduce vertex. Let v be the insertion vertex of Xt, let t′ be the child of t, let s : Xt →
{0, 1, 20, 21, 22}, s0 : {v0} × s−1(1)→ {0, 1}, and let H = Gt

〈
s−1(1), s−1

0 (1)
〉
.

If v = v0 and s(v0) ∈ {0, 20, 21, 22}, then by definition of At we have that
At(s, s0, i, j, `) = ∅.
Otherwise, if v = v0, then by construction of the nice tree decomposition, we know
that t′ is a leaf of T and so s = {(v0, 1)}, j = ` = i − 1 = 0 and At(s, s0, i, j, `) =
ins({v0},At′(∅,∅, 0, 0, 0)).
Otherwise, if s(v) = 0, then, by definition of At, it holds that At(s, s0, i, j, `) =
At′(s|Xt′ , s|Et′ , i, j, `).
Otherwise, if s(v) = 2z, z ∈ {0, 1, 2}, then let Z ′2 = NGt[Xt](v) \ s−1(0). If Z ′2 6⊆
s−1({21, 22}) or |Z ′2| 6= z, then At(s, s0, i, j, `) = ∅. Otherwise Z ′2 ⊆ s−1({21, 22}) and
|Z ′2| = z, and with s′ : Xt′ → {0, 1, 20, 21, 22} defined such that ∀v′ ∈ Xt′ \Z ′2, s′(v′) =
s(v′) and for each v′ ∈ Z ′2 such that s(v′) = 2z′ , z′ ∈ {1, 2}, s′(v′) = 2z′−1. It holds
that At(s, s0, i, j, `) = At′(s′, s0, i, j, `− 1).
Otherwise, we know that v 6= v0, s(v) = 1, and v0 ∈ NG[s−1(1)](v). First, if NGt[Xt](v)\
s−1(0) 6⊆ s−1(1), then At(s, s0, i, j, `) = ∅. Indeed, this implies that the cycle part and
the forest part are connected. As s(v) = 1, we have to insert v in the forest part and
we have to make sure that all vertices of NH [v] are in the same connected component
of H. The only remaining choice is to insert the edge {v, v0} or not. Again, this is
handled by the function s0. By adding v, we add one vertex and |NH(v)| edges in the
forest part. Therefore, we have that
At(s, s0, r, i, j, `) =
glue(NH [v], ins({v},At′(s|Xt′ , s0|Et′ , i− 1, j − |NH(v)|, `))).

Forget vertex. Let v be the forget vertex of Xt, let t′ be the child of t, and let s : Xt →
{0, 1, 20, 21, 22}. As a vertex from the collection of cycles can be removed only if it has
exactly two neighbors, we obtain that
At(s, i, j, `) = At′(s ∪ {(v, 0)}, s0, i, j, `)

∪↓ proj({v}, At′(s ∪ {(v, 1)}, s0 ∪ {({v0, v}, 0)}, i, j, `))
∪↓ proj({v}, At′(s ∪ {(v, 1)}, s0 ∪ {({v0, v}, 1)}, i, j, `))
∪↓ At′(s ∪ {(v, 22)}, s0, i, j, `).

Join. Let t′ and t′′ be the two children of t, let s : Xt → {0, 1, 20, 21, 22}, s0 : {v0} ×
s−1(1)→ {0, 1}, and let H = Gt

〈
s−1(1), s−1

0 (1)
〉
. Given three functions s∗, s′, s′′ : Xt →

{0, 1, 20, 21, 22}, we say that s∗ = s′⊕ s′′ if for each v ∈ s−1({0, 1}), s∗(v) = s′(v) = s′′(v),
and for each v ∈ Xt such that s∗(v) = 2z, z ∈ {0, 1, 2}, there exist z′, z′′ ∈ {0, 1, 2} such
that s′(v) = 2z′ , s′′(v) = 2z′′ , and z = z′ + z′′ − degGt[Xt\s−1(0)](v).
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We join every compatible entries At′(s′, s′0, i′, j′, `′) and At′′(s′′, s′′0 , i′′, j′′, `′′). For two
such entries being compatible, we need s′ ⊕ s′′ to be defined and s′0 = s′′0 . We obtain that
At(s, s0, i, j, `) =

⋃↓
s′,s′′:Xt→{0,1,20,21,22},

s=s1⊕s2
i′+i′′=i+|V (H)|
j′+j′′=j+|E(H)|

`′+`′′=`+|s−1({20,21,22})|

join(At′(s′, s0, i
′, j′, `′), At′′(s′′, s0, r′′, i′′, j′′, `′′)).

I Theorem 2. {paw}-TM-Deletion can be solved in time 2O(tw) · n7.

Proof. The algorithm works in the following way. For each node t ∈ V (T ) and for each
entry M of its table, instead of storing At(M), we store A′t(M) = reduce(At(M)) by using [2,
Theorem 3.7]. As each of the operations we use preserves representation by [2, Lemma 3.6],
we obtain that for each node t ∈ V (T ) and for each possible entry M , A′t(M) represents
At(M). In particular, we have that A′r(M) = reduce(Ar(M)) for each possible entry M .
Using the definition of Ar and Lemma 1, we have that tm{paw}(G) ≤ k if and only if for
some i and `, i+ ` ≥ |V (G) ∪ {v0}| − k and A′r(∅, i, i− 1, `) 6= ∅.

We now focus on the running time of the algorithm. The size of the intermediate sets
of weighted partitions for a leaf node and for an introduce vertex node, are upper-bounded
by 2|s−1(1)|. For a forget vertex node, we take the union of four sets of size 2|s−1(1)|, so the
intermediate sets of weighted partitions have size at most 4 · 2|s−1(1)|. For a join node, as
in the big union operation we take into consideration at most 5|Xt| possible functions s′, as
many functions s′′, at most n+ |s−1(1)| choices for i′ and i′′, at most n+ |s−1(1)| choices for
j′ and j′′ (as we can always assume, during the algorithm, that H is a forest), and at most
n+ |s−1({20, 21, 22}| choices for `′ and `′′, we obtain that the intermediate sets of weighted
partitions have size at most 25|Xt| · (n + |s−1(1)|)2 · (n + |s−1({20, 21, 22}|) · 4|s

−1(1)|. We
obtain that the intermediate sets of weighted partitions have size at most (n+ |Xt|)3 · 100|Xt|.
Moreover, for each node t ∈ V (T ), the function reduce will be called as many times as the
number of possible entries, i.e., at most 2O(w) · n3 times. Thus, using [2, Theorem 3.7], A′t
can be computed in time 2O(w) · n6. The theorem follows by taking into account the linear
number of nodes in a nice tree decomposition. J

4 Superexponential lower bounds

Let Q = {P5} ∪ {K2,s | s ≥ 3} ∪ {θs | s ≥ 3} and let R = {K1,s | s ≥ 4}. In this section,
we provide superexponential lower bounds for {H}-M-Deletion when H ∈ Q ∪ R, for
{H}-TM-Deletion when H ∈ Q, and for both problems for some particular graphs on 5
vertices depicted in Figure 1, namely the cricket, the px, the butterfly, the co-banner, the
bull, the kite, and the dart. As mentioned before, the reductions of this section are strongly
inspired by the ideas of Bonnet et al. [4]. More precisely, we will prove the following theorems.

I Theorem 3. Let H ∈ Q ∪R. Unless the ETH fails, {H}-M-Deletion cannot be solved
in time 2o(tw log tw) · nO(1).

I Theorem 4. Let H ∈ Q. Unless the ETH fails, {H}-TM-Deletion cannot be solved in
time 2o(tw log tw) · nO(1).

I Theorem 5. Let H ∈ {{cricket}, {px}, {butterfly}, {co-banner}, {bull}, {kite}, {dart}}. Un-
less the ETH fails, neither {H}-M-Deletion nor {H}-TM-Deletion can be solved in
time 2o(tw log tw) · nO(1).
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In the following we focus on the proof of Theorem 3 and Theorem 5. Theorem 4 can
be proved by using the same reductions as for Theorem 3 by just replacing “minor” by
“topological minor” and “-M-Deletion” by “-TM-Deletion”. Note that this holds when
H ∈ Q but not when H ∈ R.

We first provide in Section 4.1 a general framework that will be used for every H ∈ Q∪R
and the graphs H listed in Theorem 5, and then we explain how to modify this framework
for each specific H. Namely, in Section 4.2 we deal with P5 and in Section 4.3 with the stars.
The other cases can be found in the full version of this article. All these proofs for particular
graphs are quite similar and follow the same structure, but we need different gadgets and
slight changes in the analysis to deal with each of the graphs H.

4.1 The general construction
In order to prove Theorems 3 and 5, we present several reductions from k× k Permutation
Independent Set, introduced by Lokshtanov et al. [14].

k × k Permutation Independent Set
Input: An integer k and a graph G with vertex set [1, k]× [1, k].
Parameter: k.
Output: Is there an independent set of size k in G with exactly one element from each
row and one element from each column?

I Theorem 6 (Lokshtanov et al. [14]). The k×k Permutation Independent Set problem
cannot be solved in time 2o(k log k) unless the ETH fails.

The general construction that we proceed to present only depends on the number of vertices
of H. Let H ∈ Q ∪ R ∪ {{cricket}, {px}, {butterfly}, {co-banner}, {bull}, {kite}, {dart}} and
let (G, k) be an instance of k × k Permutation Independent Set. As we are asking for
an independent set that contains exactly one vertex in each row, we will assume w.l.o.g.
that, for each (i, j), (i, j′) in V (G), {(i, j), (i, j′)} ∈ E(G). Let n = |V (G)| and m = |E(G)|.
We proceed to construct a graph F that displays the encoding of the m subgraphs of G
consisting of exactly one edge. This is done in such a way that each edge is encoded exactly
once. Moreover, these encodings are arranged in a cyclic way separated by gadgets ensuring
the consistency of the selected solution.

Namely, we first define the graph K = Kh−1 where h = |V (H)|. For each e ∈ E(G), and
each (i, j) ∈ [1, k]2, we define the graph Bei,j to be the disjoint union of two copies of K and
two new vertices aei,j and bei,j . Informally, every graph Bei,j , e ∈ E(G), plays the same role
and corresponds to the vertex (i, j) ∈ V (G). For each e ∈ E(G) and each j ∈ [1, k], we define
the graph Cej obtained from the disjoint union of every Bei,j , i ∈ [1, k], such that two graphs
Bei1,j and B

e
i2,j

, i1 6= i2, are complete to each other, i.e., for every i1 6= i2, if v1 ∈ V (Bei1,j)
and v2 ∈ V (Bei2,j), then {v1, v2} ∈ E(Cej ). Informally, every graph Cej , e ∈ E(G), plays the
same role and corresponds to the column j of G.

For every e ∈ E(G), we also define the graph De obtained from the disjoint union of every
Cej , j ∈ [1, k], by adding, if e = {(i, j), (i′, j′)}, every edge {v1, v2} such that v1 ∈ V (Bei,j) and
v2 ∈ V (Bei′,j′). The graph De is depicted in Figure 2. Informally, the graph De, e ∈ E(G),
encodes the edge e of the graph G.

For every e ∈ E(G), we also define Je such that V (Je) = {cej | j ∈ [1, k]}∪{rei | i ∈ [1, k]}
is a set of new vertices and E(Je) = ∅. The graphs Je, e ∈ E(G), are the separators that
will ensure the consistency of the selected solution.

Finally, the graph F is obtained from the disjoint union of every De, e ∈ E(G), and
every Je, e ∈ E(G), by adding the following edges, for a given fixed cyclic permutation
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Ce1

Be1,1

Be2,1

Be3,1

Ce2

Be1,2

Be2,2

Be3,2

Ce3

Be1,3

Be2,3

Be3,3

Figure 2 The graph De for e = {(1, 1), (2, 2)} ∈ E(G) where k = 3. A bold edge means that two
graphs B are connected in a complete bipartite way.

Je1 De1 Je2 De2 Je3 De3

Figure 3 The shape of the framework graph F assuming that k = 3, G contains only the three
edges e1, e2, and e3, and σ is the cyclic permutation (e1, e2, e3).

σ of the elements of E(G): for each e ∈ E(G) and each i, j ∈ [1, k], we add the edges
{aei,j , rei }, {rei , b

σ−1(e)
i,j }, {bσ

−1(e)
i,j , cej}, and {cej , ai,j} to E(F ). This concludes the definition of

the framework graph F , which is depicted in Figure 3 (a similar figure appears in [4]). The
pair (F, ` := 2h(k − 1)km) is called the H-framework of (G, k). For convenience, we always
assume that we know the permutation σ linked to the graph F .

Let us now discuss about the treewidth of F . First note that for each e ∈ E(G),
the set V (Je) ∪ V (Jσ(e)) disconnects the vertex set V (De) from the remaining part of
F . Moreover, if e = {(i, j), (i′, j′)}, then the bags V (Ce1) ∪ V (Bei,j) ∪ V (Bei′,j′), V (Ce2) ∪
V (Bei,j) ∪ V (Bei′,j′), . . . , V (Cek) ∪ V (Bei,j) ∪ V (Bei′,j′) form a path decomposition of De of
width 2h(k + 2)− 1. Combining this decomposition with the circular shape of F and the
fact that V (Je) ∪ V (Jσ(e)) disconnects the vertex set V (De) from the remaining part of F ,
we obtain that the treewidth (in fact, also the pathwidth) of F is at most 6k+ 2h(k+ 2)− 1,
and therefore tw(F ) = O(k).

For each graph H, we will consider (F, `), the H-framework of (G, k), and create another
pair (FH , `), where FH is a graph obtained starting from F by adding some vertices and
edges. We will claim that there exists a solution of k× k Permutation Independent Set
on (G, k) if and only if there exists a solution of {H}-M-Deletion on (FH , `). In order to
do this, we will prove the two following properties for each graph H.

I Property 1. Let S be a solution of {H}-M-Deletion on (FH , `). For every e ∈ E(G)
and j ∈ [1, k] such that |V (Cej ) \S| is maximized, there exists i ∈ [1, k] such that V (Cej ) \S ⊆
V (Bei,j).

The above property states that for each column Cej , j ∈ [1, k] and e ∈ E(G), containing
a minimum number of vertices of the solution, the remaining vertices all belong to the same
row.
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I Property 2. Let S be a solution of {H}-M-Deletion on (FH , `). For every e ∈ E(G),
and for every i, j ∈ [1, k], if bei,j 6∈ S, then for every i′ ∈ [1, k] \ {i}, we have aσ(e)

i′,j ∈ S.

The above property states that the choices of the vertices aei,j , bei,j are consistent through
the whole framework graph FH .

If we assume that Property 1 holds, we have the following lemma.

I Lemma 7. If Property 1 holds, then for every solution S of {H}-M-Deletion on
(FH , ` = 2h(k − 1)km), for every e ∈ E(G), and for every j ∈ [1, k], there exists i ∈ [1, k]
such that V (Cej ) \ S = V (Bei,j). Moreover, for every e ∈ E(G), V (Je) ∩ S = ∅.

Proof. Assume that Property 1 holds and let S be a solution of {H}-M-Deletion on
(FH , 2h(k− 1)km). By Property 1, we know that for every e ∈ E(G), and for every j ∈ [1, k],
|V (Cej )∩S| ≥ 2h(k−1). As there are exactly m edges and k columns, the budget is tight and
we obtain that |V (Cej ) ∩ S| = 2h(k − 1). This implies that |V (Cej ) \ S| = 2h, corresponding
to the size of a set Bei,j for some i ∈ [1, k]. The lemma follows. J

For each specific graph H, in order to prove Property 1 and Property 2, we will first
prove Property 1 and then use Lemma 7 in order to prove Property 2.

I Lemma 8 (?). If Property 1 and Property 2 hold and there exists a solution S of {H}-
M-Deletion on (FH , ` = 2h(k − 1)km), then, for any e ∈ E(G), the set T e = {(i, j) |
V (Bei,j) ∩ S = ∅} is a solution of k × k Permutation Independent Set on (G, k).

Using the same argumentation, we obtain the same results for the topological minor
version.

I Property 3. Let S be a solution of {H}-TM-Deletion on (FH , `). For every e ∈ E(G)
and j ∈ [1, k] such that |V (Cej ) \S| is maximized, there exists i ∈ [1, k] such that V (Cej ) \S ⊆
V (Bei,j).

I Property 4. Let S be a solution of {H}-TM-Deletion on (FH , `). For every e ∈ E(G),
and for every i, j ∈ [1, k], if bei,j 6∈ S, then for every i′ ∈ [1, k] \ {i}, we have aσ(e)

i′,j ∈ S.

I Lemma 9. If Property 3 holds, then for every solution S of {H}-TM-Deletion on
(FH , ` = 2h(k − 1)km), for every e ∈ E(G), and for every j ∈ [1, k], there exists i ∈ [1, k]
such that V (Cej ) \ S = V (Bei,j). Moreover, for every e ∈ E(G), V (Je) ∩ S = ∅.

I Lemma 10. If Property 3 and Property 4 hold and there exists a solution S of {H}-
TM-Deletion on (FH , ` = 2h(k − 1)km), then, for any e ∈ E(G), the set T e = {(i, j) |
V (Bei,j) ∩ S = ∅} is a solution of k × k Permutation Independent Set on (G, k).

Given a solution T of k × k Permutation Independent Set on (G, k), we define
ST = {v ∈ V (FH) | v ∈ Bei,j : e ∈ E(G), (i, j) ∈ [1, k]2 \ T}. Note that |ST | = 2h(k − 1)km.

4.2 The reduction for P5

We are ready to present the hardness reduction when H = P5.

I Theorem 11. {P5}-M-Deletion cannot be solved in time 2o(tw log tw) · nO(1) unless the
ETH fails.
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Proof. Let H = P5. Let (G, k) be an instance of k × k Permutation Independent
Set and let (F, `) be the H-framework of (G, k), as defined in Section 4.1. Note that
` = 10(k − 1)km. In this theorem, we define FP5 = F without any modification.

Let T be a solution of k×k Permutation Independent Set on (G, k). One can check
that every connected component of F \ ST is of size 4. Indeed, the connected components
of F \ ST are either the copies of the graph K, which is of size 4, or the subgraph induced
by the edges {aei,j , rei }, {rei , b

σ−1(e)
i,j }, {bσ

−1(e)
i,j , cej}, and {cej , aei,j}, for every (i, j) ∈ T . Thus

F \ ST does not contain any P5 as a minor and ST is a solution of {P5}-M-Deletion of
size 10(k − 1)km.

Assume now that S is a solution of {P5}-M-Deletion on G of size 10(k − 1)km. We
first prove that Property 1 holds. Let e ∈ E(G) and j ∈ [1, k] that maximize the size of
|V (Cej ) \ S|. By the pigeonhole principle, |V (Cej ) \ S| ≥ 10. Let UM be a set V (Bei,j) \ S,
i ∈ [1, k], with the maximum number of elements, and let UA = V (Cej ) \ (S ∪ UM ). If
|UM | = 1, then, as |V (Cej ) \ S| ≥ 10, we obtain that K10 is a subgraph of Cej , contradicting
the definition of S. If |UM | ≥ 2 and |UA| ≥ 3 or if |UM | ≥ 3 and |UA| ≥ 2, then Cej contains
a K2,3 as a subgraph, also contradicting the definition of S. Finally if |UA| = 1, we have that
|UM | = 9 and so, Cej [UM ] contains a K4 that, combined with the element of UA, produces a
K5 that is forbidden by the definition of S. Thus |UA| = 0 and Property 1 holds.

Let e ∈ E(G) and let i, j ∈ [1, k] such that bei,j 6∈ S. Let i′ ∈ [1, k] such that
i 6= i′. If aσ(e)

i′,j 6∈ S, then, as by Lemma 7 S ∩ V (Jσ(e)) = ∅, we have that the path
r
σ(e)
i′ , a

σ(e)
i′,j , c

σ(e)
j , bei,j , r

e
i is a subgraph of F \ S. Since, by definition of S, F \ S does not

contain P5 as a minor, we have that aσ(e)
i′,j ∈ S. Thus Property 2 holds and the theorem

follows. J

4.3 The reduction for K1,s

The next theorem should be compared to the result in the full version stating that there
exist single-exponential algorithms for hitting K1,s as a topological minor for every s ≥ 1,
while in Theorem 12 we prove that it is not the case for hitting K1,s as a minor, for every
s ≥ 4. It should be noted that the bound on s of Theorem 12 is tight, as if s ≤ 3, then
{K1,s}-M-Deletion is exactly {K1,s}-TM-Deletion, and therefore it can be solved in
single-exponential time; see the full version for the details.

I Theorem 12. Given s ≥ 4, {K1,s}-M-Deletion cannot be solved in time 2o(tw log tw) ·nO(1)

unless the ETH fails.

Proof. Let s ≥ 4 and let H = K1,s. Let (G, k) be an instance of k × k Permutation
Independent Set and let (F, `) be the H-framework of (G, k), as defined in Section 4.1.
Note that ` = 2(s+ 1)(k − 1)km. We construct the graph FH from F by adding a pendant
vertex to every vertex aei,j , e ∈ E(G), i, j ∈ [1, k], and by adding s− 3 pendant vertices to
every vertex bei,j , e ∈ E(G), i, j ∈ [1, k].

Let T be a solution of k × k Permutation Independent Set on (G, k). Then every
connected component of FH \ ST is either a copy of the graph K, which is of size s, or
the subgraph induced by aei,j , rei , b

σ−1(e)
i,j , cej , and the vertices that are pendant to aei,j and

b
σ−1(e)
i,j , for every (i, j) ∈ T . This latter subgraph, depicted in Figure 4, does not contain
K1,s as a minor. Thus FH \ ST does not contain any K1,s as a minor and ST is a solution of
{K1,s}-M-Deletion of size 2(s+ 1)(k − 1)km.

Assume now that S is a solution of {K1,s}-M-Deletion on G of size 2(s+ 1)(k− 1)km.
We first prove that Property 1 holds. Let e ∈ E(G) and j ∈ [1, k] that maximize the size of
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c
σ(e)
j

r
σ(e)
i

bei,j a
σ(e)
i,j

s− 3 pendant vertices

Figure 4 A connected component of FH \ S that is not a copy of K, with s = 6.

|V (Cej )\S|. By the pigeonhole principle, |V (Cej )\S| ≥ 2(s+ 1). Let UM be a set V (Bei,j)\S,
i ∈ [1, k], with the maximum number of elements, and let UA = V (Cej ) \ (S ∪ UM ). If
1 ≤ |UM | < s, then |UA| ≥ s and K1,s is a subgraph of Cej , contradicting the definition of
S. If |UM | ≥ s and |UA| ≥ 1, then again K1,s is a subgraph of Cej , contradicting again the
definition of S. Thus |UA| = 0 and Property 1 holds.

Let e ∈ E(G) and let i, j ∈ [1, k] such that bei,j 6∈ S. Let i′ ∈ [1, k] such that i 6= i′. If
a
σ(e)
i,′j 6∈ S, then, as by Lemma 7 it holds that S ∩ V (Jσ(e)) = ∅, we have that the path
r
σ(e)
i′ , a

σ(e)
i′,j , c

σ(e)
j , bei,j , r

e
i combined with the vertex pendant to aσ(e)

i′,j and the s − 3 vertices
pendant to bei,j is a subgraph of FH \ S and K1,s is a minor of it. As, by definition of S,
FH \ S does not contains K1,s as a minor, we have that aσ(e)

i′,j ∈ S. Thus Property 2 holds
and the theorem follows. J

5 Conclusions and further research

The ultimate goal in this line of research is to establish the tight complexity of {H}-M-
Deletion and {H}-TM-Deletion for any graph H, but we are still very far from it. In
particular, we do not know whether there exists some H for which a double-exponential lower
bound can be proved. Very recently, Kociumaka and Pilipczuk [13] studied the problem of
deleting a minimum number of vertices to obtain a graph of Euler genus at most g, and
presented an algorithm running in time 2Og(tw·log tw) · nO(1). Generalizing their technique to
H-minor-free graphs (which would correspond to the general {H}-M-Deletion problem)
seems quite challenging, as this would involve a huge amount of technical details.

We managed to classify the complexity of {H}-M-Deletion when H is a connected
planar graph on at most 5 vertices (cf. Figure 1). While we consider this dichotomy a
significant result, most of the algorithms and the reductions are ad hoc, and therefore our
approach does not seem to be easily applicable for dealing with larger graphs H. The case
where H is planar and connected is already very interesting, since the results in [1] imply that
{H}-M-Deletion cannot be solved in time 2o(tw) · nO(1) under the ETH and can be solved
in time 2O(tw·log tw) · nO(1). Thus, it makes sense to guess that, in this case, the complexity of
{H}-M-Deletion is either 2Θ(tw) · nO(1) or 2Θ(tw·log tw) · nO(1), as it happens if |V (H)| ≤ 5.
We conjecture that for every connected simple planar graph H with |V (H)| ≥ 6, the latter
case holds. In fact, we conjecture the following property, which is easily seen to imply the
previous conjecture: if H and H ′ are graphs such that H �m H ′ and {H}-M-Deletion
is not solvable under the ETH in time f(tw) · nO(1) for some function f , then {H ′}-M-
Deletion is not solvable under the ETH in time f(tw) · nO(1) either. We think that the
equivalent property for the topological minor version also holds. Note that for establishing
a dichotomy for {H}-TM-Deletion when H is a connected planar graph on at most 5
vertices, it remains to obtain algorithms in time 2O(tw·log tw) · nO(1) for the graphs in Figure 1
that have maximum degree 4, like the gem or the dart, as for those graphs [1, Theorem 6]
cannot be applied.
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Finally, note that the only connected (simple) graph on at most 5 vertices missing
in Figure 1 is K5. We think that, using techniques similar as those developed in [11],
{K5}-M-Deletion is solvable in time 2O(tw·log tw) · nO(1), which would be tight.
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