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Abstract

In a recent paper, one of us posed three open problems concerning squarefree arith-
metic progressions in infinite words. In this note we solve these problems and prove
some additional results.

1 Introduction
The study of infinite words avoiding squares is a classical problem in combinatorics on words.
A square is a word of the form xx, such as tartar. One of the most well-studied squarefree
words [16, 9] is the word vtm = 012021012102012 · · · obtained by iterating the map 0 7→ 012,
1 7→ 02, 2 7→ 1.

A number of authors, such as Carpi [5], Currie and Simpson [8], and Kao et al. [12], have
studied squarefree arithmetic progressions in infinite words. Let p be a positive integer. If
∗The authors are supported by NSERC Discovery Grants 03901-2017 (Currie) and 418646-2012 (Ram-

persad).
†The author is supported by ANR project CoCoGro (ANR-16-CE40-0005).
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w = w0w1w2 · · · is an infinite word where each wi is a single letter, then [w]p denotes the
infinite word w0wpw2p · · · . Harju [10] studied the following question and showed that it has
a positive solution for all p ≥ 3:

Given p, does there exist an infinite squarefree word w over a ternary alphabet
such that [w]p is squarefree?

At the end of his paper, Harju posed three open problems:

Problem 1. Does there exist a squarefree word w over a ternary alphabet such that for
every p ≥ 3, the subsequence [w]p contains a square?

Problem 2. Do there exist pairs (p, q) of relatively prime integers such that there exists a
squarefree word w over a ternary alphabet for which both [w]p and [w]q are squarefree?

Problem 3. It is true that for all squarefree words v over a ternary alphabet, there exists
a squarefree word w and an integer p ≥ 3 such that [w]p = v?

In this paper we answer each of these questions. Regarding Problem 3, we resolve this
problem by instead studying the following much stronger version of this problem.

Problem 4. Let p ≥ 2 be an integer and let v be any infinite ternary word. Does there
exist an infinite ternary squarefree word w such that [w]p = v?

For 6 ≤ p ≤ 29 and v = 00000 · · · , we give a positive answer to Problem 4. For p ≥ 30,
we give a positive answer for all infinite words v. In fact, we prove an even stronger result by
showing that, given any sequence (pi)i≥0 of positions such that pi+1 − pi ≥ 30, it is possible
to construct w such that v appears as the subsequence of w indexed by (pi)i≥0.

2 Preliminaries
Let A be a finite alphabet of letters. For a word w over A (i.e., w ∈ A∗), let |w| denote its
length, i.e., the number of occurrences of letters in w. A word u is a factor of w, if w = xuy
where x and/or y may be empty. If x (y, resp.) is empty then u is a prefix (a suffix, resp.)
of w.

A finite or infinite word w over A is squarefree if it does not have any factors of the form
u2 = uu for nonempty words u ∈ A∗. A morphism h : A∗ → A∗ is said to be squarefree, if
it preserves squarefreeness of words, i.e., if h(w) is squarefree for all squarefree words w. A
morphism h : A∗ → A∗ is uniform if the images h(a) have the same length: |h(a)| = n for
all a ∈ A and for some positive n called the length of h.

An infinite word w is a fixed point of a morphism h if h(w) = w. This happens if w
begins with the letter a, and w is obtained by iterating h on the first letter a of w: h(a) = au
and w = auh(u)h2(u) · · · . In this case we denote the fixed point w by hω(a).

For the next algorithmically helpful result we refer to Crochemore [6].

Theorem 1. Let h : A∗ → A∗ be a morphism.
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1. If |A| = 3 then h is squarefree if and only if it preserves squarefreeness of all squarefree
words of length five.

2. If h is uniform then h is squarefree if and only if it preserves squarefreeness of all
squarefree words of length three.

In the rest of this paper we work over the ternary alphabet T = {0, 1, 2}. Let τ : T ∗ → T ∗

be the morphism defined by

τ(0) = 012, τ(1) = 02 and τ(2) = 1 . (1)

The morphism τ is not squarefree since it does not preserve squarefreeness of the words 010
and 02120. The images of these are 01(2020)12 and 01(210210)12, respectively, with the
squares indicated. Nevertheless, the word obtained by iterating the morphism on 0 gives an
infinite squarefree word as a limit, called the Thue word :

vtm = 012021012102012 · · · (= τω(0)).

(Here we follow [2] in using vtm, for variant of the Thue–Morse word, to denote this word.)
For the next basic result, see [4, 9, 11, 14, 16] and [13]:

Lemma 2. The Thue word vtm is squarefree and it does not contain 010 or 212 as factors.

Blanchet-Sadri et al. [2, Theorem 3] proved the following:

Lemma 3. For each odd k and each factor w of vtm, the set of positions at which w occurs
in vtm contains all congruence classes modulo k.

3 Problem 1
In this section we show that the word vtm gives a positive solution to Problem 1.

Theorem 4. For each k ≥ 2 the word [vtm]k contains either the square 00 or the square 22.

Proof. The first part of the proof relies on the fact that vtm is a 2-automatic sequence.
Berstel [1] studied several different ways to generate the sequence vtm; in particular, he
showed that vtm is generated by the 2-DFAO (deterministic finite automaton with output)
in Figure 1. The automaton takes the binary representation of n as input (reading from most
significant digit to least significant digit), and if the computation ends in a state labeled a,
the automaton outputs a, indicating that vn = a.

Since vtm is an automatic sequence, we can use Walnut [15] to verify that it has certain
combinatorial properties. We verify with Walnut that for every k ≥ 2, the sequence vtm
contains a length k + 1 factor of the form 0u0 or 2u2. The Walnut command to do this is:

eval same_first_last “Ei (VTM[i]=@0 & VTM[i+k]=@0)|(VTM[i]=@2 &
VTM[i+k]=@2)”;

3
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Figure 1: 2-DFAO for vtm

(k): Ei (VTM[i] = @0 & VTM[i+k] = @0) | (VTM[i] = @2 & VTM[i+k] = @2)
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Figure 2: Walnut output automaton

The Walnut output for this command is the automaton in Figure 2, which shows that the
given predicate holds for all k ≥ 2.

Suppose k is odd. To complete the proof, it suffices to show that vtm contains an
occurrence of the length k+1 factor 0u0 or 2u2 at a position congruent to 0 modulo k. This
follows immediately from Lemma 3 and so we have established the claim for all odd k ≥ 2.

If k is even, write k = 2ak′, where k′ is odd. Suppose that k′ ≥ 3. We have already seen
that vtm contains an occurrence of a length k′ + 1 factor 0u0 or 2u2 at a position i ≡ 0
(mod k′). From the automaton generating vtm, we see that if vi = 0 (resp. vi = 2), then
v2ai = 0 (resp. v2ai = 2), which establishes the claim for k′ ≥ 3.

Finally, suppose that k is a power of 2. Then the binary representations of k and 2k have
the form 10` and 10`+1 respectively, for some ` ≥ 1. From the automaton generating vtm,
we see that vk = v2k = 2, as required. This completes the proof.

4 Problem 2
In this section we give positive solutions to Problem 2 for two different pairs (p, q); i.e.
(p, q) = (3, 11) and (p, q) = (5, 6). We first introduce some notation. Given a morphism
h : A∗ → A∗ and a positive integer p such that p divides |h(a)| for all a ∈ A, let hp be the
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morphism defined by hp(a) = [h(a)]p.

Theorem 5. For (p, q) = (3, 11) there exists an infinite ternary squarefree word w such that
[w]p and [w]q are both squarefree.

We first define the following morphism h on T ∗:

0 7→012101202102010212012101201021202101201020120210121020120212010210

121021201020120212010210121020120212012102010210121020120212010210

120212012102010212012101201021202102010212012101202102010210120212

1 7→012101202102010212012101201021202101201020120210121020120212010210

120212012102010212012101201021202102010212012101202102010210120212

2 7→010210121021201020121021202101201021202102012101202102010210120212

The next result gives a condition for a morphism g to map vtm to a squarefree word. We
will use it to show that h(vtm), h3(vtm), and h11(vtm) are all squarefree, which is sufficient
to establish Theorem 5.

Theorem 6. Suppose that g : T ∗ → A∗ is such that

1. g(u) is square-free for every factor u of vtm of length 5.

2. The only solution of

g(a) = uv

g(b) = zv

g(c) = zw

a, b, c ∈ T,

such that v 6= w and u 6= z is abc = 010.

3. For a ∈ T we can write g(a) = uva such that whenever w ∈ T ∗ and g(w) = xvaz, then
z ∈ g(T ∗).

Then g(vtm) is square-free.

Remark 7. Let h, h3, h11 be given as above. Let ĥ11 be defined on letters by ĥ11(a) =
0−1h11(a)0. The theorem’s conditions hold for g = h, h3, ĥ11.

• For g = h, condition 3 is witnessed by va = 02102010210120212 for a = 0, 1, 2.

• For g = h3, condition 3 is witnessed by va = 210212 for a = 0, 1, 2.

• For g = ĥ11, condition 3 is witnessed by v0 = v1 = 1210, v2 = 20210.

Thus, in order to establish Theorem 5, it remains to give the proof of Theorem 6.
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Proof of Theorem 6. Let a0a1 · · · am be a shortest factor of vtm such that g(a0a1 · · · am) con-
tains a square. Some non-empty xx is a factor of g(a0a1 · · · am). Since m ≥ 4 by condition 1,
and m is as small as possible, it follows that g(ai) is a factor of x for some i.

Using condition 3 repeatedly, write

A′′0A1 · · ·Aj−1A
′
j = A′′jAj+1 · · ·A2j−1A

′
2j

where

Ai = g(ai), 0 ≤ i ≤ 2j,

Ai = A′iA
′′
i , i = 0, j, 2j

A′′0 = A′′j
A′j = A′2j

and m = 2j.
By condition 1, g is 1-1, so that ai = aj+i, 1 ≤ i ≤ j−1. Since vtm is square-free, A′0 6= A′j

and A′′j 6= A′′2j. By condition 2, this implies a0 = a2j = 0, aj = 1. Again, since vtm is square-
free, a0 6= a1, aj−1 6= aj 6= aj+1, and a2j−1 6= a2j. Now 0 = a0 6= a1 = aj+1 6= aj = 1; thus
aj+1 = 2. Similarly, 0 = a2j 6= a2j−1 = aj−1 6= aj = 1; thus aj−1 = 2. Then aj−1ajaj+1 = 212
is a factor of vtm. This is a contradiction.

Remark 8. We also make the following observation concerning the morphism h11, which is
defined by

0 7→0201021 012021 20121

1 7→0201021 20121

2 7→012021.

By splitting the images in this way, we see that h11 = x11 ◦ τ , and hence that h11(vtm) =
x11(vtm), where x11 is the morphism defined by

0 7→ 0201021, 1 7→ 012021, 2 7→ 20121.

One now verifies (using Theorem 1) that x11 is a squarefree morphism, which implies that
h11(vtm) is squarefree.

Theorem 9. For (p, q) = (5, 6) there exists an infinite ternary squarefree word w such that
[w]p and [w]q are both squarefree.

Proof. To prove the result it suffices to find a morphism h such that h, h5, and h6 are all
squarefree (which we can verify using Theorem 1). Such a morphism is given below.
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0 7→012102120210201021012021201210120210201021012102120121012021201020

120210201021012010201210120212012102120210201202120102012101201021

012102120121012021201020120210201021012010201210120212010201210212

021012102010210120102012021012102120210201021201210120102012021020

102120210120102012021201210212021012102012021201210120102101210201

021202101201020120210121021202102010212012101201021202102010210121

020120212012101201021202102010212012101201020120210201021202101210

212012101201021202102010210121020120212012102010210121021202101201

020120210201021202101210201202120121012010210121020102120121012021

201020120210201021012010201210120212

1 7→012102120210201021012021201210120210201021012102120121012021201020

120210201021012010201210120212012102120210201202120102012101201021

012102120121012021201020120210201021012010201210120212010201210212

021012102010210120102012021012102120210201021201210120102120210201

021012102012021201210201021012102120210120102012021201210212021012

102012021201210120102101210201021202101201020120210121021202102010

212012101201021202102010210121020120212012101201021202102010212012

101201020120210201021202101201020120212012102120210121020120212012

101201021202102010210121020120212012102010210121021202101201020120

210201021202101210201202120121012010210121020102120121012021201020

120210201021012102120102012101201021012102120210201210120212

2 7→012102120210201021012021201210120210201021012102120121012021201020

120210201021012010201210120212012102120210201202120102012101201021

012102120121012021201020120210201021012010201210120212010201210212

021012102010210120102012021012102120210201021201210120102120210201

021012102012021201210201021012102120210120102012021201210212021012

102012021201210120102101210201021202101201020120210121021202102010

212012101201021202102010210121020120212012101201021202102010212012

101201020120210201021202101210212012101201021202102010210121020120

212012102010210121021202101201020120210201021202101210201202120121

012010210121020102120121012021201020120210201021012010201210120212

012102120210201202120102012101201021012102120210201210120212
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Remark 10. For the pair (p, q) = (5, 8) we searched via a backtracking algorithm for words of
the desired form. The backtrack appears to get “stuck” around length 1200, suggesting that
there may not be an infinite word for the pair (5, 8). This would be somewhat surprising,
given the existence of an infinite word for the pair (5, 6).

5 Problems 3 and 4
Problem 3 is a special case of Problem 4, so we focus on Problem 4. We shall show that the
least positive answer for Problem 4 in the ternary case is p = 4. We also state some positive
and negative examples for small integers p for Problem 4.

5.1 Problem 4 for 2 ≤ p ≤ 5 and constant v

Lemma 11. Problem 4 has no solution for the moduli p = 2, p = 3 and p = 5.

Proof. Indeed, suppose first that w ∈ T ω is an infinite squarefree word such that [w]p = 00 · · ·
is unary for p ∈ {2, 3}. Then necessarily w ∈ {01, 02}ω or w ∈ {012, 021}ω, respectively.
However, there are no infinite squarefree words in the binary case, and hence the moduli 2
and 3 have no solutions.

We then show that Problem 4 has no solution for the modulus p = 5. In this case if [w]5
is constant then

w ∈ {01021, 01201, 02102, 02012}ω.
The longest words having an arithmetic progression of zeros modulo p = 5 are the following
three words of length 40:

0102101201020120210201021012010201202101 ,

0102101201020120210201021012010201202120 ,

0120102012021020102101201020120210201210 ,

where there are ‘malapropos’ factors 02120 and 01210 at the end of the two last words.

Remark 12. If we allow four letters in the alphabet, then Problem 4 becomes trivial for
constant v = 0000 · · · . Indeed, let p ≥ 2, and let w ∈ {1, 2, 3}ω be any squarefree ternary
word. The quaternary word obtained by adding 0 at the beginning and after every p − 1
letters of w has an arithmetic progression of 0’s modulo p. For arbitrary v, determining
precisely the values of p for which Problem 4 has a solution over a four-letter alphabet
remains an open problem.

For modulus p = 4 we have a solution for constant v.

Theorem 13. The Thue word vtm has an infinite arithmetic progression of 1’s modulo 4.

Proof. We rely on the 3rd power of the morphism τ defined in Eq. (1):

τ 3(0) = 012021012102

τ 3(1) = 01202102

τ 3(2) = 0121.
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Since τ 3(vtm) = vtm, it is immediate that the letters of vtm at positions n ≡ 1 (mod 4) are
all equal to 1.

5.2 Problem 4 for 6 ≤ p ≤ 29 and constant v

Theorem 14. For all p ≥ 6 divisible by an integer m ≤ 29, there exists an infinite squarefree
word w ∈ T ω such that [w]p = 000 · · · .

Before going to the constructions we state some aspects related to the problem. For
constant v, Theorem 14 will settle the cases for 6 ≤ p ≤ 29.

Remark 15. Currie [7] showed that there exist uniform squarefree morphisms T ∗ → T ∗ for
all lengths n ≥ 23. However, the constructed morphisms h in [7] are cyclic shift morphisms
for which h(1) = π(h(0)) and h(2) = π(h(1)) where π is the permutation (0 1 2) of T . In
particular the images of the letters start with different letters. Because of this they do not
provide solutions to our main problem; see Theorem 16 below.

The following result narrows the candidates of infinite squarefree words with arithmetic
progressions obtained by morphisms. It also gives infinitely many examples of integer se-
quences a1 < a2 < · · · avoiding infinite arithmetic progressions with the property that the
differences ai+1 − ai form a bounded sequence. Indeed, the bound is always 4. (Here ai will
mark the place of the ith letter 0 in the sequence hω(0).)

Theorem 16. Let h : T ∗ → T ∗ be a uniform squarefree morphism of prime number length q
such that

0 is a prefix of h(0) but not of h(1) and h(2). (2)

Then there does not exist any infinite arithmetic progressions of 0’s in w = hω(0).

Proof. Assume that there exists an integer p such that w has an arithmetic progression of
0’s modulo p. Let p be chosen to be the least of these integers. Then the common length q of
the images h(a), a ∈ T , divides p. Indeed, otherwise gcd(p, q) = 1, as q is a prime number,
and therefore the multiples of p form a complete residue system modulo q. In this case w is
the all zero word; a contradiction.

Let w = W1W2 · · · where |Wi| = p. In particular, each Wi begins with the letter 0,
and, by the above, for each i there exists a unique word Ui ∈ T ∗ of length p/q such that
h(Ui) = Wi. By (2), each Wi begins with 0. Now, since w is a fixed point of h, it is also
the case that w = U1U2 · · · . However, |Ui| = p/q < p contradicts the minimality assumption
on p.

Example 17. The least length for a uniform squarefree morphism is 11; see Brandenburg [3].
The following uniform morphism of length 11 is squarefree and satisfies the conditions of
Theorem 16:

h(0) = 02120102012 ,

h(1) = 10201021012 ,

h(2) = 10212021012 .

9



Proof of Theorem 14. We proceed by constructing a uniform squarefree morphism h to wit-
ness the claim for each p with 6 ≤ p ≤ 29. For this we need only to give the morphisms for
values of p that are not divisible by 4 or by any q with 6 ≤ q < p. The morphism h is then
applied to any infinite squarefree word (such as the Thue word vtm). The squarefreeness of
the morphisms listed below can be checked by Theorem 1 aided by a computer.

Case p = 6. Image length 36:
010212012102010212021012021201021012
010212012102012021012102010212021012
010212012102012021020121021201021012

Case p = 7. Image length 28:
0121012021012102010210120212
0121012021012102120210120212
0121012021020102120210120102

Case p = 9. Image length 18:
010210121020120212
010210121020121012
010210121021202102

Case p = 10. Image length 20:
01021012010201202102
01021012010201210212
01021012010212012102

Case p = 11. Image length 11:
01021012102
01021202102
01210120212

Case p = 13. Image length 26:
01201020120210120102120121
01201020120210121021201021
01201020120210201210212021

Case p = 15. Image length 30:
010201202101201021012102010212
010201202101201021201210120212
010201202101201021202101210212

Case p = 17. Image length 34:
0102012021020102101201021201210212
0102012101202120102101202102010212
0102012101202120102101202120121012

Case p = 19. Image length 19:
0102012021020121012
0102012021201021012
0102012102120121012

Case p = 23. Image length 23:
01020120210121020120212
01020120210201210120212
01020121012010210120212

Case p = 25. Image length 25:
0102012021012010201210212
0102012021012010210120212
0102012021012102120121012

Case p = 29. Image length 29:
01020120210120102012021201021

01210201202120102012102010212

01210201202120102120210120212

We note that there are only cyclic shift morphisms for lengths 13 and 17, and there
are no uniform morphisms of length 15. We also note that the morphisms given above all
have the property that the images all have a common non-empty prefix. This raises an
interesting question concerning the existence of n-uniform squarefree morphisms with this
property and the maximum length of the common prefix. Given a morphism h : T ∗ → T ∗,
let lcp(h) denote the length of the longest common prefix of the images {h(a) : a ∈ T}.
Given a positive integer n, let lcp(n) denote the maximum value of lcp(h) over all n-uniform
squarefree morphisms h : T ∗ → T ∗. We have computed the value of lcp(n) for 18 ≤ n ≤ 70.
The results of this computation suggest the following conjecture:

Conjecture 18. For every n ≥ 30, there exists an n-uniform squarefree morphism h : T ∗ →
T ∗ such that lcp(h) = n− 6.
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Example 19. For n = 70 the morphism h with images

h(0) = 0120210201021012010201202101201021012021020102120210120102012021201021

h(1) = 0120210201021012010201202101201021012021020102120210120102012021020121

h(2) = 0120210201021012010201202101201021012021020102120210120102012021012102

is squarefree and the images have a common prefix of length 64.

We also note that the n − 6 in Conjecture 18 would be optimal. Using a computer we
verified that for every triple of distinct squarefree words (u, v, w) with |u| = |v| = |w| = 5,
there do not exist words p and s with |p| = |s| = 8 such that pus, pvs, and pws are all
squarefree. It follows that the n− 6 in the conjecture cannot be replaced with n− 5.

5.3 Problem 4 for p ≥ 30 and arbitrary v

The next result implies a positive solution to Problem 4 for p ≥ 30 and arbitrary v, and also
implies a positive solution to Problem 3.

Theorem 20. Let (pi)i≥0 be a sequence of positions such that pi+1−pi ≥ 30 and let v be any
infinite ternary word. There exists an infinite squarefree ternary word w such that v appears
as the subsequence of w indexed by (pi)i≥0.

Proof. We use the squarefree multi-valued morphism h defined by

h(0) =


01210212021012021201210

012102120210201021201210

0121021202102012021201210

01210212021020121021201210,

h(1) = π(h(0)), and h(2) = π(h(1)), where π is the permutation (0 1 2) of T . To show that
h is squarefree, we apply Theorem 1(a). It is easy to check that the proof of Theorem 1
from [6] works for multi-valued morphisms as well; however, when applying the theorem, for
each squarefree word x of length 5 we have to check that all 45 words in the image h(x) are
squarefree. Note that the images of each letter have length 23, 24, 25, or 26. Also, they
share a common prefix of length 12 and a common suffix of length 9, so that they only differ
by their middle factors (in bold).

We start with any infinite ternary squarefree word, say the Thue word vtm. We apply
h to vtm with images of length 26 only, which gives an infinite ternary squarefree word
t = t0t1t2 · · · .

Suppose that tpi = vi; we will show how to modify t so that tpi+1
= vi+1. If tpi+1

6= vi+1,
then t contains the forced letter vi+1 at position pi+1 + 1, pi+1 + 2, or pi+1 + 3. Notice
that every factor of t of length 26 + 5 − 1 = 30 contains a full occurrence of a middle
factor of length 5. Since pi+1 − pi ≥ 30, there exist a full occurrence of a middle factor
of length 5 between positions pi + 1 and pi+1. If the match to vi+1 is at position pi+1 + 1
(resp. pi+1 + 2, pi+1 + 3), then we can replace this middle factor by the middle factor of
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length 4 (resp. 3, 2), corresponding to the alternative h-image of length 25 (resp. 24, 23).
This ensures that in the resulting word, the letter at position pi+1 now matches vi+1. This
procedure can be repeated for all i and the resulting word is the desired word w.

6 Future work
One obvious open problem is to characterize the pairs (p, q) for which Problem 2 has a
positive solution. Another open problem is to prove Conjecture 18. Regarding Problem 4,
we have only shown the existence of a positive solution for p ≥ 30. It remains to determine
what happens for p ≤ 29. For example, for p = 4, one can verify by computer that the
infinite word v = 010101 · · · cannot be obtained as a mod 4 subsequence of any squarefree
ternary word. Are there similar counterexamples for other small values of p, such as p = 6?
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