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Control of a planar under-actuated biped
on a complete walking cycle

Ahmed Chemori1 Antonio Loŕıa2

Abstract—We address the problem of stabilizing a planar
biped robot on a complete walking cycle. Our approach is
based on singling out the three fundamental phases of motion
of a biped : single and double-support, separated (sequen-
tially) by an impact “instantaneous” phase. We propose con-
trol laws to drive the robot for a finite time during each phase,
while ensuring certain robustness vis-a-vis the impacts which
are treated as external perturbations. We also provide some
simulation results.

1 Introduction

Biped robots have gained an increasing interest in the last few
years for many different reasons: they may assist Man in difficult or
dangerous tasks in which other mobile robots would fail (e.g. irreg-
ular surfaces with multiple obstacles). See the still actual overview
[1]. From a control viewpoint the problem of making a biped have
a dynamically stable walk (i.e., to follow a reference trajectory or
path) is interesting due to the complexity of the model: it consists
on a set of constrained differential equations and a discrete-time
map which induces discontinuity in the solutions. Furthermore,
the structure of the system changes depending on the phase of
motion ’loosing’ or ’gaining’ degrees of freedom. Many approaches
have been proposed in the literature to address the problem of
stable dynamic walking.

Some interesting results smartly exploit the physical properties
of the biped. In particular, these results are studied to produce
ballistic movements, i.e., the robot with one foot on the ground
and one leg swinging in the air is roughly regarded as an inverted
pendulum with an equivalent inertia. Then, the control is designed
so as to balance the robot forward and to “let it fall” on its swing-
ing foot. Trajectories cannot be planned ahead of time but for
an adequate tunning this approach produces periodic movements
which are little energy-consuming. See for instance [2, 3, 4]. Other
approaches are based on the definition, ahead of time, of the ref-
erence trajectories. For instance, in [5] the authors generate the
trajectories via a van der Pol oscillator.

The authors are not aware of many rigorous stability proofs
for complex biped robots with a model including the equations of
impact. A noteworthy example is [6] where the problem is rigor-
ously analyzed via a Poincaré map. See also [7]. In particular,
the authors propose a criterion for periodic systems with impacts.
Another result using a Poincaré criterion is in [8] where the au-
thors propose a sliding mode approach to make the biped follow
a nominal trajectory with an asymptotically convergent behavior
to a cyclic motion. See also [9] for a study from a hybrid systems
viewpoint.

In this paper we address the problem of dynamic stability of a
biped for which reference trajectories are defined ahead of time.
For clarity of exposition we focus on the case study of a 7-degrees-
of-freedom planar biped prototype described in [10] however, the
results presented may apply to other underactuated mechanical
systems. Our control approach borrows from previous results
for manipulators with holonomic constraints (cf. [11]) and par-

1INPG, Laboratoire d’Automatique de Grenoble, BP46 ENSIEG,
38402 St. Martin d’Hères, France

2C.N.R.S, Laboratoire de Signaux et Systèmes, Supélec, 91192 Gif
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tial feedback linearization (cf. [12]) since we address the control
problem by proposing a controller for each phase of motion: single-
support phase (one foot grounded) and double-support phase (both
feet grounded). The impacts occurring when the swing leg touches
the ground are regarded as “external” perturbations.

The rest of the paper is organized as follows. In next section we
present in some detail, the dynamic model of the prototype biped
robot. In Section 3 we present our main result. We provide some
simulation results in Section 4 and conclude with some remarks in
Section 5.

2 Dynamic model

It is generally accepted that a walking cycle can be divided into
three sequential phases of motion : single-support (SS) i.e., with
one foot grounded; impact, and double-support (DS) i.e., both
feet grounded. Accordingly, the dynamic model is composed of
three sets of equations, each corresponding to a phase of motion.
The models for the single and double-support phases are reduced
order Lagrangian models. These are obtained by writing first the
model for the seven degrees of freedom system (that is, the robot
with both feet “in the air”) and then, considering the holonomic
constraints (generated by the respective situations of one or both
feet grounded) to obtain reduced order models. The Lagrange
equations can be written as [13, 14]

H(q)q̈ + C(q, q̇)q̇ + G(q) = Su (1)

where q ∈ Rn is the vector of generalized coordinates, H(q) is
the inertia matrix, C(q, q̇) contains the centrifugal and Coriolis
forces terms, G(q) is the vector of gravitational forces, u ∈ Rp are
the control inputs, S is a “torque-distribution matrix” which is
constant, full rank and of unitary norm.

In the case-study of this note, we have 7 degrees of freedom
in the phase of flight (both feet in the air during running gaits),
5 degrees of freedom in the SS phase and 3 degrees of freedom
in the DS phase. The robot has only 4 actuators (at knees and
hip) hence, the system is over-actuated during the DS phase and
under-actuated in the other phases.

The constraints generated by one or both feet being grounded
are holonomic and restrict the biped’s motion to a smooth (n−m)–
dimensional submanifold and are defined by the equation

φ(q) = 0 (2)

where the function φ : Rn → Rm is at least twice continuously
differentiable, and m is the number of holonomic constraints (2 or
4 depending on the phase of motion).

Generally speaking the constraints of a mechanical system in
contact with a surface and under the action of gravity are expressed
as φ(q) ≥ 0 and are called unilateral (cf e.g. [15]). The case of
φ(q) > 0 corresponding to configurations in which the system is
separated from the surface (i.e., unconstrained) and the case of
φ(q) = 0 corresponding as already mentioned, to the case when
the system is in contact. They are called unilateral because it
is assumed that the resulting forces act in only one sense in the
direction normal to the surface (in other words, it is assumed that
the body (e.g. the foot) may take off but does not penetrate the
surface).

In what follows, we derive reduced-order models for the SS phase
(2 constraints for planar robots) and DS phase (4 constraints for
planar robots) based on the constraints equation (2). To that end,

1



following [16] we assume that3

(Assumption 1) there exist an operating region Ω ⊂ Rn defined as
Ω := Ωnc×Ωc, where Ωnc is a convex subset of Rn−m, Ωc is an
open subset of Rm. We also assume the existence of a function
ψ : Ωnc → Rm twice continuously differentiable, such that
φ(qnc, ψ(qnc)) = 0 for all qnc ∈ Ωnc. Under these conditions,
the vector of constrained generalized positions, qc, can be
uniquely defined by the vector qnc such that qc = ψ(qnc) for
all qnc ∈ Ωnc.

Under this assumption the matrix J(q) = ∂φ(q)/∂q can be par-
titioned as J(q) = [J1(q), J2(q)], where J1(q) := ∂φ(q)/∂qnc,
J2(q) := ∂φ(q)/∂qc and the Jacobian matrix J2(q) ∈ Rm×m never
degenerates in the set Ω. Necessary and sufficient conditions for
global solubility have been given in [17] based on the implicit func-
tion theorems of [18]. Thus, without loss of generality we can as-
sume that for all q ∈ Ω there exist positive constants β1, β2, β3

such that, for all4 i = 1, 2, . . . , n,

0 < β1 ≤ ‖J2(q)‖ ≤ ‖J(q)‖ ≤ β2 ,

∂J(q)

∂qi

 < β3 . (3)

A reduced-order model is obtained by taking the above constraints
into consideration. Following [16] (see also [20]) one obtains(

H∗(q)q̈nc + C∗(q, q̇)q̇nc + G∗(q) = M>(q)Su

λ = Z(q)[Cλ(q, q̇)q̇nc + G(q)− Su]
(4)

where the index ∗ expresses the model reduction, λ corresponds
to the Lagrange multipliers related to the force of constraint,
H∗(q) := M>(q)H(q)M(q), G∗(q) := M>(q)g(q), Z(q) :=�
J(q)H−1(q)J>(q)

�−1
J(q)H−1(q) and

M(q) :=

�
In−m

− J−1
2 (q)J1(q)

�
(5a)

C∗(q, q̇) := M>(q)[H(q)Ṁ(q) + C(q, q̇)M(q)] (5b)

hence, M(q) is full column rank if and only if J−1
2 (q) exists. In

such case and only then, the reduced order model is valid.

Interestingly enough, the reduced order model inherits the usual
properties of robot manipulator models with only rotational joints:
the matrix H∗(q) is symmetric positive definite for all q ∈ Ω,
Ḣ∗(q) − 2C∗(q, q̇) is skew-symmetric for all (q, q̇) ∈ Ω2 and un-
der (3) we also have the existence of constants dm, dM , kc > 0
such that dmI ≤ H∗(q) ≤ dMI and ‖C∗(q, q̇)‖ ≤ kc ‖q̇‖.

This model can be used for both phases of single and double
support the only difference being the number of constraints and
therefore of degrees of freedom. We present below the explicit mod-
els corresponding to the single-support and double-support phases
respectively. The control laws will be independently designed for
each model (resp. phase).

In what follows, we restrict our analysis to the case-study
of the planar 7-degrees-of-freedom biped fully described in [10,
21] (see also http://www-lag.ensieg.inpg.fr/PRC-Bipedes/ )
hence, q := [q31 q41 q32 q42 q1 x y]> where q4i are the coordinates
of the shins relative to the thighs, the latter are expressed with
respect to the vertical and given by q3i, q1 is the coordinate of
the torso with respect to the vertical and x, y are the Cartesian
coordinates of the hips on the plane (longitude and height). The

3This is a general assumption fundamental in problems of constrained
mechanical systems and it is verified for the case study considered here.

4Notice that the inequality ‖J2(q)‖ ≤ ‖J(q)‖ in (3) is not obvious.
Interested readers are referred to [19], ch. X, sec. 6,7.

coordinates of the stance leg correspond to q31 and q41. Other
constraints not explicitly mentioned here are those of non-sliding.
These induce reaction forces tangential to the contact surface, i.e.,
the ground and are also holonomic
Standing assumption 1 We assume that the feet in contact with

the surface do not slide nor leave the surface at “unwanted”
moments. In particular, when an impact of the swing foot
with the ground occurs, the foot neither slides nor bounces.
Also, the support foot does not slide and the stance leg lifts
off without interaction.

Dynamics during the single-support phase: In this phase the
constraints are expressed by(

xp = x− l3 sin(q31)− l4 sin(q31 + q41) = (i− 1)L

yp = y + l3 cos(q31) + l4 cos(q31 + q41) = 0
(6)

where (xp, yp) denote the coordinates of the support foot, i
indexes the step, L denotes the length of the step, l1 denotes the
length of the torso, l3 the length of the thighs and l4 the length
of the shins. A direct calculation (see [21]) shows that in this
case J2(q) ≡ I that is, Ωnc = R5 × R5. We stress however, that
u ∈ R4 hence in single-support the system is under-actuated. In
the sequel we will refer to Ωnc for this phase as ΩSS .

Dynamics during the double-support phase: During the
double-support phase the biped has both feet grounded, this is
expressed by the following 4 constraint equations,8>>><>>>:

xp1 = x− l3 sin(q31)− l4 sin(q31 + q41) = (i− 1)L

yp1 = y + l3 cos(q31) + l4 cos(q31 + q41) = 0

xp2 = x− l3 sin(q32)− l4 sin(q32 + q42) = iL

yp2 = y + l3 cos(q32) + l4 cos(q32 + q42) = 0 .

(7)

To derive the dynamic model one proceeds as for the model
for the SS phase. Hence, the resulting reduced order model
has the form (4) but this time qnc ∈ R3, and it is valid on the
space Ωnc which corresponds to the set where the constraints
Jacobian matrix J2(q) is full rank. A simple computation shows
that this corresponds to the condition q42 6= kπ, k ∈ N, i.e.,
Ωnc = {(qnc, q̇nc) ∈ R3 × R3 : q42(qnc) 6= kπ} . Notice that in this
phase the system is over-actuated since it possesses only 3 degrees
of freedom. For further analysis, we will denote Ωnc for this phase
by ΩDS .

Impacts model: The impact between the swing foot and the
ground is considered as a rigid collision according to [22]. One
may define the impact condition as that implying that the robot
enters in the DS configuration. This is given by equating the second
and fourth equations in (7). To obtain the dynamic model for this
phase we need irregular mechanics laws (cf. for instance [23]).
The contact forces are expressed as impulse forces acting on the
Lagrangian dynamics that is,

H(q)q̈ + C(q, q̇)q̇ + G(q) = Su + δFext (8)

where δFext represents the external contact forces determined by
the constraints. Under Standing assumption 1 and the hypotheses
that: i) the impact is instantaneous, ii) its effective force can be
expressed by an impulse and iii) it leads only to changes in the
velocities but the positions remain continuous; one can deduce the
following formula of the external forces by integration of (8) over
the impact duration i.e.,

H(q)(q̇+ − q̇−) = Fext(t, q, q̇) (9)
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where q̇+ (resp. q̇−) denotes the velocity just after (resp. before)
an impact. See [22] in the context of planar robots with rotational
joints and [23] for a thorough study of impact mechanics. We also
have that the forces of constraint do not produce any work hence,
denoting the last two equations in (7) by φ(q) = 0 and J(q) := ∂φ

∂q

we have that
J(q)q̇+ = 0 (10)

and Fext = J(q)>λ where λ := col[λt, λn] and λt, λn correspond
to the tangential and normal forces at the moment of impact. Solv-
ing equation (9) and (10) for q̇+, λt, and λn yields an expression
for q̇+ in terms of q̇−.�

q+

q̇+

�
= ∆(q)

�
q−

q̇−

�
(11)

where ∆(q) = block-diag{W1, W2(q)}, with W1 :=
block-diag{[0 I2×2 ; I2×2 0] I3×3} and W2(q) := I7×7 −
H−1(q)J>(q)

�
J(q)H−1(q)J>(q)

�−1
J(q). The choice of W1

reflects in particular, that the coordinates between the support
and swing legs commute during the impact. Notice that under
Assumption 1 ∆(q) is uniformly bounded; hence, the impact
dynamics (11) is globally Lipschitz.

3 The control approach

In few words, the control strategy is as follows: during the SS
phase we impose 4 desired reference trajectories for the four limbs
and control the latter, leaving the torso to describe a “free” move-
ment. During the DS phase we chose to control one leg and to
correct the torso deviations from the vertical. We consider that
the impact induces an instantaneous force which may be seen as
a state-dependent perturbation. Hence, the control law for the SS
phase is designed with a certain degree of robustness in order to
ensure that the DS phase starts with appropriate initial conditions
in spite of the impact.

3.1 SS phase control
To reproduce a human gait we impose a trajectory of inverted

pendulum to the support leg while the swing leg follows an “op-
posite” movement. To generate a periodic motion we choose the
initial conditions of each phase as the final conditions of the pre-
vious one. Finally, the reference trajectories must obviously lay
in the sets of validity for each model, ΩSS and ΩDS . Under these
considerations we propose the following reference trajectories (tSS

is the duration of the SS phase),8>>><>>>:
q31d(t) = 1

2
(1− cos( πt

tss
))(q32d(0)− q31d(0)) + q31d(0)

q41d(t) ≡ q41d(0)

q32d(t) = 1
2
(1− cos( πt

tss
))(q31d(0)− q32d(0)) + q32d(0)

q42d(t) = 1
2
(1− cos( 2πt

tss
))α + q42d(0) .

(12)

The torso reference trajectory is left to be defined later in a way
that it satisfies the closed loop differential equations. The param-
eter α is used as a tunning variable to generate trajectories which
are tested (in simulations) to be compatible with non-sliding and
non-bouncing constraints, neglected in the analysis, and to pro-
duce a periodic gait. The length of the step is determined by the
choice of the initial conditions qd(0). One could also choose to
make these values vary at each step in order to allow the length
of steps vary with time however, this shall not be pursued here.
Observe also that the length of the step determines the average
walking velocity for each choice of step duration.

The control strategy is based on one hand, on previous results
on control of robots with holonomic constraints –specifically those

contained in [11] and on the other, on the technique of partial
feedback linearization of [12]. Define

u = S+(M+)>(q)ua (13)

where (·)+ stands for the pseudo-inverse of (·). This control law
achieves a decoupling of the dependent and the independent dy-
namics from (4). Regarding only the first set of equations in (4)
we have that

H∗(q)q̈nc + C∗(q, q̇)q̇nc + G∗(q) = ua (14)

where ua is the control inputs for the 5 independent limbs (indexed
as (·)nc) of the biped however, we remind that only 4 controls are
available hence ua := [u1 0]>, u1 ∈ R4. Furthermore, let us parti-
tion the independent coordinates in single-support phase into actu-
ated and non actuated variables, i.e., qnc := [qa qna]>. Correspond-
ingly, let H∗ := {h11, h12; h21, h22}, C∗ := {c11, c12; c21, c22},
G∗ := {g1; g2}. Then, the system dynamics in this phase becomes

h11q̈a + h12q̈na + c11q̇a + c12q̇na + g1(q) = u1 (15a)

h21q̈a + h22q̈na + c21q̇a + c22q̇na + g2(q) = 0 (15b)

and we stress at this point that there exists hM > 0 such that for
all q ∈ Ω we have that ‖hij(q)‖ ≤ hM for all i, j = 1, 2. Let Kp,
Kd, K′

p, K′
d be diagonal positive definite matrices. The partial

feedback linearizing control law for the independent coordinates
qnc in this phase is given by

u1 = Rq̈ad − h12h
−1
22 (g2 + c21q̇a + c22q̇na) + g1(q) + c11q̇a + c12q̇na + u2

(16)

where R = h11 − h12h
−1
22 h21 is invertible5 and u2 = −R(Kd

˙̃qa +

Kpq̃a) and (̃·) := (·)−(·)d. On the other hand, for the torso we will
analyze its stability with respect to the trajectory qnad(t) defined
by

q̈nad = −h−1
22 h21q̈ad − h−1

22 c21q̇a − h−1
22 c22q̇na − h−1

22 g2(q) + K′
d
˙̃qna + K′

pq̃na

(17)

thus, the closed loop equations become

¨̃qa + Kd
˙̃qa + Kpq̃a = 0 (18a)

¨̃qna + K′
d
˙̃qna + K′

pq̃na = h−1
22 h21[Kd

˙̃qa + Kpq̃a] . (18b)

The torso “reference” trajectory (17) is a function of time which
satisfies the closed-loop equations and allows to analyze the stabil-
ity of the origin of the closed-loop system in the sense of Lyapunov.
Since this trajectory depends on the state variables it is computed
online and consequently, it is not possible to predict a priori a uni-
form bound as t →∞. Nevertheless, for the purposes of the stabil-
ity analysis, it can be shown that the system is forward complete.
That is, each solution of (17), denoted qnad(t, t◦, qnad ◦, q◦, q̇◦) –i.e.,
starting at time t◦ from the initial condition qnad◦ and parameter-
ized in the initial values of the other state variables, q◦, q̇◦,– exists
for all t ≥ t◦ and this, for any initial conditions. The proof to this
claim is omitted here due to space constraints (it is available from
the authors upon request). Having said this, one may show that
the following holds.

5To see this, define H̄ := {h11 h12 ; h>12h−1
22 1}, H̃ :=

{R 0 ; h>12h−1
22 1} and let h12,i denote the i th element of the col-

umn h12. Notice that H̃ is obtained by subtracting the row-vector
h12,i{h>12/h22

−1 1} to each of the first four rows of H̄. Hence, we have

that detH̃ = detH̄. Furthermore, detH̄ = (detH∗)/h22 and is positive
since H∗ is positive definite and h22 > 0. The claim follows computing
detH̃ via the leading minors corresponding to its last column, to see that
detR = detH̃ > 0.
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Proposition 1 The origin of the system (15) in closed loop with
(16) is globally exponentially stable (GES) around the trajectories
(12), (17) for suitable diagonal positive definite matrices Kp, Kd,
K′

p and K′
d. �

Roughly speaking, this result follows observing that the origin of
the system (18) with the right hand side of (18b) equal to zero is
GES and the right hand side of (18b) is bounded (since ‖hij(q)‖ ≤
hM ) by a linear function of

q̃a; ˙̃qa

.
Specifically, one may show that for sufficiently large gains the

function

V (q̃, ˙̃q) =
1

2

� ˙̃q
2

+ q̃>[ KP + εKD ]q̃
�

+ εq̃> ˙̃q (19)

verifies

V̇ (q̃, ˙̃q) ≤ −1

2

�
kDm

 ˙̃q
2

+ εkPm ‖q̃‖2
�

(20)

where V̇ is evaluated along the trajectories of (18) and kDm, kPm

are the smallest components of KD and KP respectively. The
computations to obtain (20) are omitted due to space constraints.

3.2 DS phase control

The biped in this phase is over-actuated that is, it possesses 3
degrees of freedom and 4 controls. The dynamics of the indepen-
dent coordinates (those corresponding to one leg and the torso)
is given by equations of the form (14) but this time ua ∈ R3 and
qnc ∈ R3. The control goal during this phase is to rectify the torso
posture with respect to the vertical. To that end, we completely
feedback linearize the system via the control law

ua := H∗(q)u0 + C∗(q, q̇)q̇nc + G∗(q) (21a)

u0 = q̈ncd + K′′
d (q̇ncd − q̇nc) + K′′

p (qncd − qnc) . (21b)

to obtain the exponentially stable (for positive definite diagonal
gains) linearized system

¨̃qnc + K′′
d

˙̃qnc + K′′
p q̃nc = 0 . (22)

We remark that during either the SS phase or the DS phase the
robot is not controlled in the constrained variables, that is, in the
forces directions but we assume that no sliding, bouncing or takeoff
takes place during these phases.

3.3 Stability of the complete cycle

We have proved that the origin of the closed loop system is ex-
ponentially stable both in SS and DS phases. Asymptotic stability
for almost all initial conditions (i.e., excluding initial configurations
coinciding exactly with an impact phase) shall be guaranteed if the
impact transition phase is such that the trajectories at the end of
each impact remain in the domain where the DS-phase model is
valid.

Proposition 2 Consider the system (1), (2), (11) under Assump-
tion 1 and the standing assumption. Consider the controller (13),
(16), (21), with diagonal positive definite gains. Then, the origin
of the closed loop system is uniformly weakly asymptotically sta-
ble, that is, it is uniformly Lyapunov stable and all the trajectories
converge to zero for almost all t ≥ 0 and uniformly in the initial
conditions. �

Proof . Let Ti > 0 be the time of the i-th impact (in gen-
eral this instant is a function of q but here, it is taken con-
stant since the reference trajectories are designed so that the
impacts take place at precise instants6 ). Let TDS and TSS

be the duration of the double-support and single-support phases
respectively (also assumed constant). Define for each t◦ ≥ 0,
ISS,i := {t ∈ R≥t◦ : t ∈ [T+

i−1 + TDS , T−i )}, II,i := [T−i , T+
i ],

IDS,i := {t ∈ R≥t◦ : t ∈ (T+
i , T+

i + TDS)} and correspondingly,
ISS :=

S
i ISS,i, IDS :=

S
i IDS,i and II :=

S
i II,i. That is, the in-

terval [t◦,∞) for any t◦ ≥ 0 is composed of alternated and disjoint
intervals corresponding to single-support (ISS), impact (II) and
double-support (IDS) phases. The domains where the models for
the single-support and double-support phases are valid, are respec-
tively Ω̃SS := {(q̃, ˙̃q) ∈ R5 × R5} and Ω̃DS := {(q̃, ˙̃q) ∈ R3 × R3 :
q̃42 + q42d 6= kπ , k ∈ N}. With these notations, the closed loop
system can be written as

ΣSS : ¨̃q + Kd
˙̃q + Kpq̃ = F (t, q̃, ˙̃q) ∀ (t, q̃, ˙̃q) ∈ ISS × Ω̃SS(23a)

ΣI :

�
q+

q̇+

�
= ∆(q)

�
q−

q̇−

�
∀ (t, q̃, ˙̃q) ∈ II × R2n(23b)

ΣDS : ¨̃q + K′′
d

˙̃q + K′′
p q̃ = 0, ∀ (t, q̃, ˙̃q) ∈ IDS × Ω̃DS .(23c)

Under the standing assumption the solutions of (23) are defined as
right continuous functions ϕ(·) of bounded variation (cf. [23, 24]).
They coincide with the solutions ϕSS(·) of (23a) on ISS,i and with
those of (23c) on the segments IDS,i.

Considering the extension of ISS and IDS to infinity (that is,
as if the biped never finished the first step or remained grounded
all the time) the respective origins of (23a) and (23c) are exponen-
tially stable. Weak asymptotic stability of the origin of the system
(23) follows if during the impact transition phases, the trajectories
remain in the domain where the DS-phase model is valid. To see
that this is the case, we may quantify the effect of the impact force,
regarding it as a state dependent perturbation of arbitrarily short
duration. Moreover, in view of (9), this force satisfies

‖Fext‖ ≤ hM (
 ˙̃q
+ ‖q̇d‖) hM ≥ ‖H(q)‖ . (24)

Let β > 0 be such that ‖q̇d(t)‖ for all t ∈ II . Considering the time
derivative of V (q̃, ˙̃q) defined in (19) and using (20), we obtain that

V̇ (q̃(t), ˙̃q(t)) ≤ −1

2
(kDm

 ˙̃q(t)
2

+εkPm ‖q̃(t)‖2)+hM [
 ˙̃q(t)

+β][
 ˙̃q(t)

+ε ‖q̃(t)‖]

for all t ∈ ISS ∪ II . Completing squares we obtain that if
kPm ≥ 2hM and kDm ≥ 4hM (1 + ε/2) then V̇ (q̃(t), ˙̃q(t)) ≤
− 1

4
(kDm

 ˙̃q(t)
2

+ εkPm ‖q̃(t)‖2) + βhM [
 ˙̃q(t)

 + ε ‖q̃(t)‖] for all

t ∈ ISS ∪ II . On the other hand, letting (q̃∗, ˙̃q
∗
) be any vectors

such that ‖q̃∗‖ = 8βhM
KP m

,
 ˙̃q
∗ = 8βhM

KDm
and c := V (q̃∗, ˙̃q

∗
) we ob-

tain that V̇ (q̃(t), ˙̃q(t)) ≤ − 1
8
(kDm

 ˙̃q(t)
2

+ εkPm ‖q̃(t)‖2) on the

set {(t, q̃, ˙̃q) : V (q̃(t), ˙̃q(t)) ≥ c}. It follows that V̇ (q̃(t), ˙̃q(t)) and,
consequently

q̃(t) ; ˙̃q(t)
, tend to a closed domain which can be

made small by enlarging the control gains. In words, the pertur-
bation due to the impact may be compensated for to ensure that
each DS phase starts off with the right initial conditions. Expo-
nential stability for almost all t follows since the origin of (23c) is
also exponentially stable. �

6If non constant Ti’s are to be considered the analysis also holds
under suitable assumptions which roughly, are satisfied if the solutions
cross the section S(q, q̇) = 0 which defines the state-dependent impacts
configurations. This assumption holds if the non-sliding and contact
constraints are satisfied. See e.g. [24, 6].
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Remark 1 The argument above is based on the assumption that
‖q̇d(Ti)‖ ≤ βi at the moment of impact. Even though it is not pos-
sible to quantify in general the number βi due to the dependence
of q̇nad on the system’s trajectories and on the impact, the latter is
arbitrarily short in time hence, one may expect that the bound on
qnad on the interval of interest is also relatively small. Notice that
it is not needed that q̇nad(t) be bounded by β for all time for each
set of initial conditions but rather that it be bounded on compact
intervals. This is ensured since the solutions of (23a) exist and are
unique for all t. �

4 Simulation results

In the last page we present some simulation results obtained
for a 7 degrees-of-freedom biped. We have used the simula-
tor created for the prototype of the project “Legged Robots”
(cf. http://www-lag.ensieg.inpg.fr/PRC-Bipedes/) sponsored
by the CNRS, France.

We have fixed the duration of a complete cycle (hence the gait’s
period) to 1.4286 sec. The SS phase constitutes 70% i.e., it lasts 1s
while the DS phase lasts 30% of the cycle i.e., 0.4286s. The impact
is considered to be instantaneous hence, this has been carefully
taken into account by resetting the simulation with different initial
conditions at each impact. The parameter α = 20◦ (cf. reference
trajectories).

We show for one leg and the torso the articular positions in Fig.
1. The intervals over which the positions are constant correspond
to DS phases. One may also appreciate that for the unactuated
coordinate i.e the torso’s, the deviation for the first step is about
8◦ but this error is asymptotically corrected during the succeeding
DS phases. In particular, notice that the coordinate of the torso
remains bounded as expected since the system is forward complete.
It has been observed in simulations that the bound on qna depends
on different parameters such as the length and size of a step but
a general rule cannot be established formally. In Fig. 2 we show
the corresponding velocities of the same leg and the torso. Fig. 3
depicts two of the input torques which remain within the maximal
acceptable boundaries for our prototype (150N). Finally, we show
the reaction tangential and normal forces for both legs in Fig.
4. One may appreciate the switching of phases during which the
normal components are zero, these corresponds to the phases of
SS when one foot is in the air.

5 Conclusion

We have addressed the problem of trajectory control of a planar
7 degrees-of-freedom under-actuated bipedal robot. Our approach
consists on controlling the system independently in the phases of
SS and DS while ensuring a certain degree of robustness during
the impact phase. Our work is inspired by previous results for
mechanical systems under holonomic and unilateral constraints.
We have shown the performance of our controllers on a simulator
of a real biped robot. We expect that experimental results and
more precise theoretical arguments will be available soon. Present
research is carried out on the domain of generation (on line) of
optimal trajectories compatible with all the constraints involved
in the system’s model.
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Figure 1: Articular positions of left leg & torso

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1
VELOCITY OF LEFT THIGH [rad/sec]

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5
VELOCITY OF LEFT SHIN [rad/sec]

Time [sec]

0 1 2 3 4 5 6
−0.5

0

0.5

1

1.5

2
VELOCITY OF TORSO [rad/sec]

Time [sec]

Figure 2: Articular velocities of left leg & torso
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Figure 3: Input torques
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Figure 3: Reaction forces
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