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A New Time-Varying Feedback RISE Control of PKMs:
Theory and Application

Hussein Saied1,2, Ahmed Chemori1, Mohamed Bouri3, Maher El Rafei2, Clovis Francis2 and Francois Pierrot1

Abstract— In this paper, we propose a novel time-varying
feedback control strategy based on the Robust Integral of the
Sign of the Error (RISE). The main motivation is to enhance
the tracking performance of RISE controller at high dynamic
operating conditions. RISE control law ensures a semi-global
asymptotic tracking without introducing severe restrictions on
the uncertain and nonlinearly parametrized systems. More
nonlinearities are added to the original RISE control law
by replacing the static feedback gains with nonlinear ones
which depend on the system state variables. The proposed
contribution is implemented in real-time experiments on a
non-redundant three-degrees-of-freedom parallel manipulator
named Delta. Comparing to the standard RISE controller,
experimental results show better tracking performances of the
proposed time-varying feedback RISE controller.

I. INTRODUCTION

In the last decades, nonlinear control strategies have
been studied extensively by researchers who show a wide
interest in the design and stability analysis of nonlinear
controllers [1]. The conventional linear control performance
degrades while dealing with nonlinear systems and may
lead to instability, while nonlinear control conserves the
stability granting better global performance and robustness.
On the one hand, one of the most studied nonlinear control
algorithms in the literature is the usage of nonlinear functions
as feedback gains instead of the static ones. The simple
Proportional-Integral-Derivative (PID) controller was first
improved towards a NonLinear PID (NLPID) controller in
[2]. The feedback gains in such control type are adjusted
online depending on the system states. On the other hand,
gain-scheduling control approaches have been examined in
[3], showing good robustness and ability to compensate un-
certainties, but still considered complex for implementation
because of their hard tuning process. Moreover, adaptive
feedback control strategies have been also investigated in
the literature [4]. Robust Integral of the Sign of the Error
(RISE) is a nonlinear continuous control strategy developed
recently in [5] for uncertain nonlinear systems, it is based on
limited assumptions on the system dynamics. Lately, several
RISE-based controllers have been developed and applied
in real-time applications demonstrating the robustness and
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disturbances-rejection provided by RISE feedback closed-
loop architecture [6]–[9]. In [10] and [11], RISE-based
adaptive dynamics control schemes have been applied to
Parallel Kinematic Manipulators (PKMs), were it has been
the first and only time RISE control strategy is implemented
to parallel robots, proving the good performance of the
proposed controllers experimentally.

Control of parallel robots is considered a challenging
task due to these factors: nonlinearities which may increase
when operating at high speed, time-varying parameters,
non-modelled phenomena and uncertainties. Several control
solutions have been proposed for PKMs in the world of
control and robotics. The simple linear PID controller [12],
NLPID controller based on nonlinear feedback gains [13],
Computed Torque Control [14], H∞ control [15], PD control
with computed feedforward [16], dual-space control [17],
adaptive dynamics controllers [11], [18] and time-varying
feedback controllers [19], [20] where authors got use of the
nonlinear feedback gains to improve the global performance
of original controllers.

In this paper, a new time-varying feedback RISE con-
troller is proposed and applied experimentally to a parallel
robot. RISE controller is a non-model-based feedback control
robust against uncertainties, disturbances and unstructured
nonlinearities which can be a good control solution of PKMs.
This contribution takes the advantage of using nonlinear
feedback gains that depend on the system states instead of
static feedback gains as in the standard RISE control law,
and without any prior knowledge about the model of the
robot. Additional nonlinearity to RISE control may allow it
to compensate for great percentages of the high nonlinearities
abundant extensively in PKMs. The main motivation behind
this work is to improve the global performance of the original
RISE controller as well as control performance of PKMs
in terms of precision, robustness towards payload variation
and high-speed motions. In order to validate the relevance of
the proposed controller, real time experiments are conducted
on a three-degree-of-freedom (3-DOF) non-redundant PKM
named Delta robot.

The remaining part of the paper is organized as follows.
Section II introduces a brief background on RISE control law.
The proposed control solution is described in section III. In
section IV, the platform description and dynamic modeling
are addressed. The experimental results are presented in
section V. Section VI sums up the main drawn conclusions
and proposes a future work.



II. BACKGROUND ON RISE CONTROL LAW

As reported in [5], RISE control law is a full-state
feedback tracking controller for a class of uncertain MIMO
nonlinear systems. It was shown in [5] that RISE controller
achieves semi-global asymptotic tracking under limited as-
sumptions regarding the system nonlinearities.

Consider the high-order MIMO nonlinear system of the
general form

M(x, ẋ, ...,x(n−1))x(n)+ f (x, ẋ, ...,x(n−1)) = u (1)

where (.)(i)(t) refers to the ith derivative with respect to time,
x(i)(t) ∈ Rm for i = 0, ..,n are the system states, u(t) ∈ Rm

is the control input signal, M(.) ∈ Rm×m and f (.) ∈ Rm

are uncertain nonlinear functions. If x, ẋ ∈L∞ then f (.) is
bounded, and the first and second partial derivatives of M(.)
and f (.) with respect to x, ẋ exist and bounded. Let M(.) be
a symmetric and positive-definite matrix bounded by

m||ξ ||2 ≤ ξ
T M(.)ξ ≤ m(.)||ξ ||2 (2)

where m and m(.) are positive constant, and positive non-
decreasing function respectively. The reference trajectory
xd(t) ∈ Rm is chosen to be a Cn+2 function. The tracking
error e1(t) ∈ Rm is then defined as follows:

e1 = xd− x (3)

A set of auxiliary control signals ei(t) ∈Rm for i = 2,3, ..,n
are given as follows:

ei = ėi−1 + ei−1 + ei−2 (4)

such that en(t) is measurable since it is a function of the
system states and reference trajectories. Then, RISE control
law proposed in [5] is written as follows:

u(t) = (Ks + Im)en(t)− (Ks + Im)en(t0)

+
∫ t

t0

[
(Ks + Im)Λen(τ)+β sgn(en(τ))

]
dτ

(5)

where Ks,Λ,β ∈Rm×m are positive-definite diagonal control
gain matrices, Im ∈Rm×m is the identity matrix, and sgn(.)∈
Rm is defined as sgn(ε) = [sgn(ε1) sgn(ε2) · · ·sgn(εm)] ∀ ε =
[ε1 ε2 · · ·εm]. The second term of equation (5) ensures a zero
input signal at time t0. The standard signum function used in
RISE controller can hold smooth bounded disturbances for
a sufficient condition on the feedback gain β . The stability
analysis detailed in [5] shows that all the system signals
are bounded under closed-loop operation and e(i)1 (t)→ 0 as
t→∞ with i= 0,1, ...,n where the control gain Ks is selected
sufficiently large.

III. PROPOSED CONTRIBUTION: TIME-VARYING
FEEDBACK RISE CONTROLLER

It was reviewed in the introduction of this paper a series
of control algorithms that were enhanced using the online
adjustment of feedback gains through different techniques:
nonlinear functions, gain-scheduling and adaptation. In order
to boost up the tracking performance of the standard RISE

controller, this work suggests to replace some of the static
feedback gains with nonlinear varying ones.

The standard RISE equation of (5) can be divided
into two parts: linear feedback

(
(Ks + Im)en(t) − (Ks +

Im)en(t0) +
∫ t

t0

[
(Ks + Im)Λen(τ)dτ

)
and a nonlinear part(∫ t

t0 β sgn(en(τ))dτ
)
. By modifying the linear feedback gains

Ks,Λ into nonlinear functions Ks(.),Λ(.), the control law
could be more accommodated to nonlinear systems and
compensates for more abundant nonlinearities.

The new time-varying feedback RISE control law is given
as follows:

u(t) = (Ks(.)+ Im)en(t)− (Ks(.)+ Im)en(t0)

+
∫ t

t0

[
(ks +1)ImΛ(.)en(τ)+β sgn(en(τ))

]
dτ

(6)

where Ks(.),Λ(.) ∈ Rm×m are the nonlinear feedback gains
defined as

Ks(en,αKs ,δKs) =

ks|en|αKs−1, |en|> δKs

ksδ
αKs−1
Ks

, |en| ≤ δKs

(7)

Λ(
∫

en,αΛ,δΛ) =

λ |
∫

en|αΛ−1, |
∫

en|> δΛ

λδ
αΛ−1
Λ

, |
∫

en| ≤ δΛ

(8)

where ks,αKs ,δKs ,λ ,αΛ,δΛ are the control parameters of the
nonlinear feedback gains to be tuned.

The selection of αKs and αΛ within the intervals [0.5,1]
and [1,1.5] respectively produces the nonlinear gain behav-
iors depicted in Fig. 1. The nonlinear function Ks(.) gives
high gain values for small combined errors en and small
gain values for large combined errors that could be resulting
in a rapid transition of the closed-loop system states and
favorable damping. Besides, Λ(.) attains high gain values
for large steady state values of the combined error en (Λ(.)
varies as function of the integral of the combined error) and
small gain values for the small steady state combined errors
solving the integral windup problem by reducing the integral
action when the combined error is large.

IV. DELTA ROBOT: DESCRIPTION, MODELING AND
CONTROL APPLICATION

A. Delta robot: description and kinematics

Delta robot is a 3-DOF non-redundant PKM that has been
patented by Prof. Reymond Clavel and developed at Ecole
Polytechnique Federale de Lausanne (EPFL) [21]. Fig. 2

0 0

Fig. 1. The evolution of the nonlinear gains with respect to their arguments.
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Fig. 2. View of Delta robot including 1©: Fixed-base, 2©: Actuator,
3©: Rear-arm, 4©: Forearm, 5©: Traveling-plate.

illustrates the a view of the fabricated Delta robot. It consists
of a fixed-base linked to a moving platform (traveling-
plate or end-effector) through three kinematic chains. Each
kinematic chain is arranged of an actuator (rotational motor),
rear-arm and forearm. The overall assembly allows the end-
defector to perform in three translational motions x,y and
z. Consider 3-dimensional coordinate vector X = [x y z]T

represents the position of the end-effector in the workspace,
and the 3-dimensional coordinate vector q = [q1 q2 q3]

T

represents the actuated joints configuration.

B. Delta robot dynamics

The dynamics of Delta PKM are developed in [11] based
on the virtual work principal reported with some assumptions
for simplification purpose. The traveling-plate is exhibited to
two kind of forces: gravitational force and force due to the
acceleration. These forces are projected into the joint space
to obtain their contribution at the level of motors. From the
actuators side, the forces to be considered are the actuators
torques, the gravitational forces of the rear-arms and the
inertial forces due to the rear-arms rotation.

After applying the virtual work principal and re-arranging
the obtained equation, the inverse dynamic equation of Delta
robot in joint space is written as follows:

M(q)q̈+C(q, q̇)q̇+G(q) = Γ (9)

where M(q)∈R3×3 is the total mass and inertia matrix of the
robot, C(q, q̇) ∈ R3×3 is the Coriolis and centrifugal forces
matrix and G(q)∈R3 is the gravitational forces vector. Note
that the dynamics of Delta robot are considered a particular
case of the nonlinear system of (1) for m = 3 and n = 2.

C. Control application

For comparison purpose, both the original rise controller
and the proposed time-varying feedback RISE controller are
implemented on Delta robot. The tracking error e1(t) and the
combined error e2(t) are defined as follows:

e1 = qd−q, e2 = ė1 + γe1 (10)

where qd ∈R3 denotes the desired joint position vector, γ ∈
R3×3 is a positive-definite gain matrix added to get more
flexibility in tuning process. The standard RISE feedback

control law and the proposed one are implemented the same
as in sections II and III with m = 3 and n = 2.

The tuning process for the proposed controller was done
online directly on the real robot following a similar manner
for the one proposed in [22] to tune the NPD control gains.
The tuning procedure is described as follows: 1) let αKs = 1,
αΛ = 1, λ = 0 and β = 0, 2) increase γ and slightly ks
starting both from zero until the robot shows good dynamic
performance, 3) increase the value of λ to obtain better
tracking performance, then make a trade-off between γ , ks
and λ , 4) find (e2)max and (

∫
e2)max values and select their

halves as the values of δKs and δΛ respectively, 5) decrease
the value of αKs in the interval [0.5, 1] and increase the value
of αΛ in the interval [1, 1.5], regulate again the values of ks
and λ making a compromise among the four values, 6) repeat
steps (4) and (5) until you obtain the best possible root mean
square error, 7) increase β unto obtaining better performance
index. The appropriate obtained values of control parameters
following this procedure are listed in Table I.

One can notice that RISE control law is similar to a
2nd-order SMC where they have used the integral of the
signum function to produce continuous signal. Unlike 2nd-
order SMC, RISE control is not limited to first-order multi-
input systems and can achieve the asymptotic tracking under
limited assumptions on the modeling. Through the proper
selection of β control gain, β sgn(e2) term can compensate
for the unknown and unmeasured nonlinearity [5].

V. EXPERIMENTAL RESULTS

The experimental testbed includes the Delta robot shown
in Fig. 2 connected to a master computer booting via
windows XP equipped with RTX extension. Delta robot is
driven by three direct-drive motors that can reach up to 23
Nm a maximum torque. The control algorithm running at
sampling period 1 ms (frequency 1 KHz) is developed in C++
language through the Visual Studio software from Microsoft.

To validate the proposed time-varying feedback RISE
controller, a comparison study is done with the original RISE
controller through experimental scenarios (speed and payload
variation) conducted over Delta robot. Root Mean Square
Error (RMSE) criteria in Cartesian and joint spaces are used
to quantify both controllers as shown below:

RMSEx =
( 1

N

N

∑
i=1

(
e2

x(i)+ e2
y(i)+ e2

z (i)
))1/2

(11)

RMSEJ =
( 1

N

N

∑
i=1

(
e2

q1
(i)+ e2

q2
(i)+ e2

q3
(i)
))1/2

(12)

TABLE I
CONTROL PARAMETERS

Standard RISE Time-Varying Feedback RISE

γ 360 γ 450 λ 0.66
Ks 0.35 ks 0.35 αΛ 1.45
Λ 0.66 αKs 0.65 δΛ 0.12
β 1.5 δks 0.05 β 2



where ex,ey,ez present the Cartesian position tracking erros
along x,y, and z axes. eq1 ,eq2 ,eq3 denote the joints tracking
errors. N is the number of collected samples.

Note that the direct model is used to compute the Cartesian
error not for giving the absolute error of the robot, but to
indicate the range of errors we can get, since the robot is a
translational robot. Knowing that the kinematic calibration
may not change that much the range of errors, mainly
because the errors between joint and tool space are associated
through the Jacobian matrix, the kinematic model is not
calibrated. All the offset error effects are cancelled after the
derivation. The segment lengths have been measured after
manufacturing and they have been adjusted accordingly. The
desired trajectory is generated according to pick-and-place
motions using semi-ellipses as proposed in [11] which is
mainly used for industrial food packaging applications.

A. Scenario 1: nominal case

In this scenario, the mobile platform of the robot is free of
any additional payload and operating at acceleration of 2.5
G. The evolutions of the tracking errors resulting from both
controllers in the operational and joint spaces are plotted
in Fig. 3 over one cycle of the reference trajectory. It is
clear from Fig. 3 that the range of errors resulting from the
proposed controller is less than that of the original RISE
control. To quantify the improvement of the proposed time-
varying feedback RISE controller, the RMSE in Cartesian
and joint spaces are calculated using (11) and (12) confirming
an enhancement of 18 % in terms of accuracy as shown
in Table II. The evolution of the nonlinear feedback gains
(Ks(.)+ 1) and (ks + 1)Λ(.) overall the reference trajectory
is demonstrated in Fig. 4. The produced adjustments for both
gains with passing time give always strictly positive bounded
values. The generated control inputs over one cycle of the
desired trajectory are always below the actuators limits for
both controllers (see Fig. 5).

Fig. 3. Scenario 1: Evolution of the Cartesian and joint tracking errors.

Fig. 4. Scenario 1: Evolution of the nonlinear feedback gains.

B. Scenario 2: Robustness towards speed and payload vari-
ation

Delta robot is supposed to operate for pick-and-place
applications at high-speed motions. For this, it is important
to test the proposed time-varying feedback RISE controller
with additional payload and increased acceleration. A mass
of 0.225 Kg is attached to the traveling-plate of original
mass 0.305 Kg by the means of an electric magnet, and the
operating speed is adjusted to an acceleration of 7.5 G. From
Fig. 6, one can see the relevant improvements obtained by the
proposed controller in terms of range of errors in Cartesian
and joint spaces. The evaluation criteria for the tracking
errors ensure that the proposed time-varying feedback RISE
overcomes the original RISE controller with 30.5 % for
Cartesian space and 28.3 % for joint space in terms of
precision (see Table II). Thanks to the added nonlinearity
of time-varying feedback RISE control law, experiments
validate its robustness towards different operating conditions
as payload and speed variations and more compensation

Fig. 5. Scenario 1: Evolution of the control input torques.



for the abundant nonlinearities in PKMs. The variations of
the nonlinear feedback gains along the desired trajectory
are represented in Fig. 7. It is obvious that the nonlinear
feedback gains remain positive and bounded even with the
high changes of the dynamic operating conditions.

Fig. 8 demonstrates the growth of the control input signals
overall one cycle of the desired trajectory. It is remarkable
from Fig. 8 that the time-varying feedback RISE controller
reduces the energy consumption producing less input torques
compared to standard RISE controller. To quantify this
energy reduction, the following input-torques-based criterion
is proposed:

EΓ =
3

∑
i=1

N

∑
j=1
|Γi( j)| (13)

where EΓ is the total positive input torque. In this scenario,
the performance in terms of energy consumption is promoted
significantly from 1.7692× 104 Nm for original RISE to
1.4318× 104 Nm for the new time-varying feedback RISE
with a reduction of 19.1 %. Note that the control signals for
both controllers evolve within the safe range of the actuators
capabilities.

C. Performance index versus operating acceleration

In this section, the operating acceleration is increased
gradually starting from 2.5 G reaching up 10 G. Both
controllers have been treated with the same manner in two
cases: with and without additional payload (0.225 Kg). Fig.
9(a) and Fig. 9(b) are two bar graphs showing the variation
of RMSEx in (mm) with respect to the operating acceleration
in (G) in case of no added payload and payload of 0.225 Kg
respectively. The quantified improvement of the new time-
varying feedback RISE controller at each acceleration is
written at the top of the corresponding column. It can be
clear that the performance of time-varying feedback RISE is
better than that of standard RISE in all cases. However, the
gathered improvements of the proposed controller are much

Fig. 6. Scenario 2: Evolution of the Cartesian and joint tracking errors.

Fig. 7. Scenario 2: Evolution of the nonlinear feedback gains.

better in the case of added payload than that of no payload. It
is verified that the proposed nonlinear control law based on
time-varying feedback gains is much appropriate for nature
of PKMs especially when operating at high dynamics such as
payload and acceleration. It is noticeable that at acceleration
of 10 G in the case of added payload, the generated joint
errors override 10 degrees, the specified safety margins for
the robot to turn off, with RISE controller. While time-
varying feedback RISE controller produces acceptable errors
always within the defined safety margins.

VI. CONCLUSIONS AND FUTURE WORK

In this work, the standard RISE control strategy has
been extended to a new time-varying feedback RISE control
law. This approach takes the advantage of the nonlinear
feedback gains which are adjusted online with respect to
the system states, and inserts them instead of the static
feedback gains of standard RISE controller. The validation

Fig. 8. Scenario 2: Evolution of the control input torques.



TABLE II
CONTROL PERFORMANCE EVALUATION

Scenario Control RMSEx [mm] RMSEJ [deg]

RISE 0.993 0.2341
Scenario 1 Time-Varying Feedback RISE 0.8129 0.192

Improvements 18.1 % 18 %

RISE 5.3985 1.2577
Scenario 2 Time-Varying Feedback RISE 3.7542 0.9012

Improvements 30.5 % 28.3 %

of the proposed control law was performed through real-time
experiments on a non-redundant 3-DOF parallel robot called
Delta. Experimental results approved that the performance
of the proposed control solution overcomes the standard
RISE in terms of precision, high-speed motions and robust-
ness towards payload variation. Furthermore, It requires less
control efforts when operating at high dynamic conditions
regarding payload and acceleration. As a future work, this
paper can be extended with the stability analysis of the pro-
posed controller. Furthermore, incorporating the dynamics
of the parallel robot within an adaptive model-based closed-
loop controller can enhance the general performance of the
proposed control approach.
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