
HAL Id: lirmm-02364411
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02364411v1

Submitted on 16 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Dimensional Data Clustering by means of
Distributed Dirichlet Process Mixture Models

Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Masseglia

To cite this version:
Khadidja Meguelati, Bénédicte Fontez, Nadine Hilgert, Florent Masseglia. High Dimensional Data
Clustering by means of Distributed Dirichlet Process Mixture Models. IEEE Big Data 2019 - IEEE
International Conference on Big Data, Dec 2019, Los-Angeles, United States. �lirmm-02364411�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02364411v1
https://hal.archives-ouvertes.fr

High Dimensional Data Clustering by means
of Distributed Dirichlet Process Mixture Models

Khadidja Meguelati
Inria, LIRMM, Univ Montpellier, CNRS

Montpellier, France
khadidja.meguelati@inria.fr

Benedicte Fontez
MISTEA, Montpellier SupAgro, Univ Montpellier

Montpellier, France
benedicte.fontez@supagro.fr

Nadine Hilgert
MISTEA, INRA, Univ Montpellier

Montpellier, France
nadine.hilgert@inra.fr

Florent Masseglia
Inria, LIRMM, Univ Montpellier, CNRS

Montpellier, France
florent.masseglia@inria.fr

Abstract

Clustering is a data mining technique intensively used for
data analytics, with applications to marketing, security,
text/document analysis, or sciences like biology, astronomy,
and many more. Dirichlet Process Mixture (DPM) is a model
used for multivariate clustering with the advantage of dis-
covering the number of clusters automatically and offering
favorable characteristics. However, in the case of high dimen-
sional data, it becomes an important challenge with numerical
and theoretical pitfalls. The advantages of DPM come at the
price of prohibitive running times, which impair its adoption
and makes centralized DPM approaches inefficient, especially
with high dimensional data. We propose HD4C (High Di-
mensional Data Distributed Dirichlet Clustering), a parallel
clustering solution that addresses the curse of dimensionality
by two means. First it gracefully scales to massive datasets
by distributed computing, while remaining DPM-compliant.
Second, it performs clustering of high dimensional data such
as time series (as a function of time), hyperspectral data (as
a function of wavelength) etc. Our experiments, on both
synthetic and real world data, illustrate the high performance
of our approach.
Index terms— Gaussian random process, Dirichlet

Process Mixture Model, Clustering, Parallelism, Reproducing
Kernel Hilbert Space

1 Introduction

Clustering is a data mining technique intensively used for
data analytics, with applications in marketing [1], security [2],
or sciences like astronomy [3] and many more. Clustering
may be used for identification in the new challenge of
digital agriculture, where large amounts of complex data
are collected: for example in herd monitoring, animal
activity is monitored using a collar-mounted accelerometer,
as illustrated in figure 1. One of the main difficulties, for
clustering, is the fact that we do not know, in advance, the
number of clusters to be discovered. To help performing
cluster analysis, despite the unknown tackled number of
clusters, the field of statistics contains several suggestions:

1. Setting a number of clustering runs, with varying value

Figure 1: An accelerometer mounted on a sheep’s collar.

of cluster number, and selecting the one that minimizes a
goodness of fit criteria. It may be a quadratic risk or the
Residual Mean Squared Error of Prediction (RMSEP) [4].
This approach needs the implementation of a cross-
validation algorithm [4]. The clustering approach may
be a mixture model with an Expectation-Maximization
(EM) algorithm [5], or K-means [4] for instance.

2. Performing a hierarchical clustering and then cutting off
the tree at a given depth, usually decided by the end-user.
Different approaches for pruning with advantages and
drawbacks exist, see [4].

3. Using a Dirichlet Process Mixture (DPM) which
automatically detects the number of clusters [6].

In this work, we focus on the DPM approach since it
allows estimating the number of clusters and assigning
observations to clusters, in the same process. Furthermore,
its implementation is quite straightforward in a Bayesian
framework. Such properties of DPM make it a very appealing
solution for many use-cases.

Unfortunately, DPM relies on matrix computations and
is highly time consuming, especially in the case of high
dimensional data. Several attempts have been made to make
it distributed, however these approaches are not adapted
for high dimensional data (see the discussion in Section 3).

We propose HD4C (High Dimensional Data Distributed
Dirichlet Clustering), a novel parallel clustering approach

adapted for high dimensional data, based on a distributed algo-
rithm for Dirichlet Process Mixture. HD4C takes advantage of
the properties of Reproducible Kernel Hilbert Spaces to allow
clustering on the whole data (the whole signal or curve or time
series) [7]. Other approaches that use feature selection and/or
dimensionality reduction (like PCA or SVM) are often inappro-
priate because clusters generally lie in different subspaces [8].

The paper is organized as follows. The problem is stated
in Section 2 with the necessary background. In Section 3 the
related work is discussed. Our distributed solution for high
dimensional data clustering by means of Dirichlet Process Mix-
ture is detailed in Section 4. The efficiency and effectiveness
of our approach are illustrated in Section 5 through an ex-
perimental evaluation. Finally, the conclusion is in Section 6.

2 Problem Definition

The problem we address is as follows. Given a (potentially
big) dataset of records find, by means of a parallel process,
a partition of the dataset into disjoint subsets called clusters,
such that:
• Similar records are assigned to the same cluster.
• Dissimilar records are assigned to different clusters.
• The union of the clusters is the original dataset.

3 Related Work

3.1 High Dimensional Data Clustering

We set our work in the context of high dimensional data
clustering, which covers time series and functional data
(signal) clustering.

For time series clustering, three categories are defined by [9]:
“Whole time-series clustering”, “subsequence clustering”, and
“time point clustering”. Subsequence clustering is performed
on a set of subsequences extracted via a sliding window from
a single long time-series, Keogh and Lin [10] showed that
this type of clustering is meaningless. Time-point clustering
also is applied on a single time series, and it is similar to
subsequences clustering. The focus of our work is “whole
time-series clustering”. The authors of [9] and [11] identified
four different approaches to do this, respectively for time
series and functional data:
1. Work directly with raw data,
2. Work indirectly with features extracted from the raw

data. For example, in [12] a symbolic representation of
time series called SAX is presented,

3. Use a specific distance or dissimilarity, like Dynamic Time
Warping (DTW) for time series or RKHS properties for
functional data (allows to define an inner product and
therefore a distance in a specific space),

4. Build a model to estimate features from the data and
to cluster simultaneously.
A K-means algorithm is often suggested with the first two

identified approaches because of its fast convergence and its
scalability (distributed versions of K-means for multivariate
data are available). The third approach requires to adapt the
K-means, which uses an Euclidean distance, to more complex
cases. Time warp for temporal data does not define a true
distance (no triangular inequality). [13] proposed a generalized

K-means based clustering for temporal data under time warp,
but no version for distributed data is available. In a broader
context, a clustering method for misaligned curves was devel-
oped by [14] based on warping functions. But this approach as-
sumes landmarks, or more generally known warping functions,
to re-align the data and is not proposed for distributed data.

Finally, K-means algorithms for functional data were
proposed by [11] but again the algorithms are not presented
for distributed data.

Moreover, one drawback of the K-means [15] is that it re-
quires the number of clusters k to be specified in advance. In
comparison, the Dirichlet Process mixture (DPM) [6] approach
automatically detects the number of clusters and distributed
versions for multivariate data are now available [16–19]

3.2 Massive Datasets Clustering

There is a significant research on clustering of big data.
Some efforts have focused on making the similarity measures
faster, like, e.g., Zhu et al. [20] who introduced a novel
data-adaptive approximation to DTW which can be quickly
computed. Other studies suggest to make the main clustering
algorithms scalable by means of massive distribution.

In our work, we focused on algorithms inspired by the DPM
which allows estimating the number of clusters and assigning
observations to clusters, in the same process. Unfortunately,
DPM is highly time consuming. Consequently, several at-
tempts have been done to make it distributed. However, while
being effectively distributed, these approaches usually suffer
from convergence issues (imbalanced data distribution on com-
puting nodes) [17,18], or do not fully benefit from DPM prop-
erties [19]. Furthermore, making DPM parallel is not straight-
forward since it must compare each record to the set of existing
clusters, a highly repeated number of times. That impairs
the global performance of the approach in parallel, since com-
paring all the records to all the clusters would call for a high
number of communications and make the process impractical.

In [16] a distributed DPM algorithm called DC-DPM (Dis-
tributed Clustering by Dirichlet Process Mixture) was intro-
duced. It allows each node to have a view on the local results of
all the other nodes, while avoiding exhaustive data exchanges.
The main novelty of this work was to propose a model and
its estimation at the master level by exploiting the sufficient
statistics from the workers, in a DPM compliant approach. It
takes advantage of the computing power of distributed systems
by using parallel frameworks such as Spark [21]. As illustrated
in figure 2, the DC-DPM solution distributes the Dirichlet Pro-
cess by identifying local clusters on the workers and synchroniz-
ing these clusters on the master. These clusters are then com-
municated as a basis among workers for local clustering consis-
tency. The Dirichlet Process is modified to consider this basis
in each worker. By iterating this process the global consistency
of DPM is sought in a distributed environment. The experi-
ments of DC-DPM, using real and synthetic datasets, illustrate
both the high efficiency and linear scalability of the approach.
They report significant gains in response time, compared to
centralized DPM approaches, with processing times of a few
minutes, compared to several days in the centralized case. The

Figure 2: Diagram/workflow of the DC-DPM approach.

workflow of the DC-DPM approach is illustrated by Figure 2.
Our goal is to propose a parallel DPM approach for

high dimensional data clustering based on the DC-DPM
approach [16].

4 HD4C: High Dimensional Data Distributed
Dirichlet Clustering

In this section, we present a novel parallel clustering approach
called HD4C, adapted for high dimensional data and based
on DC-DPM [16] described in section 3.

Actually, DC-DPM is a solution proposed to this issue
when data is multivariate. This solution is based on a dis-
tributed DPM. In our case, the records are high dimensional
data or signals (infinite dimension). In the case of infinite
dimension, matrix computation is no more feasible (no inverse
for example, no matrix product). In HD4C, we are not using
the Lebesgue measure. We assume that observations are
the addition of two gaussian processes : signal and noise.
Therefore, we define a Radom-Nikodym derivative of gaussian
measures [22] in order to compute a likelihood process.

A first attempt to work with this kind of data is to reduce
their dimensionality, by sub-sampling the observations or
projecting them into sub spaces like the one defined by a
truncated basis of B-splines [23] or a truncated basis of kernel
principal composant analysis [24]. Multivariate analysis, like
SVM, k-means or DC-DPM, can then be applied.

A better approach is to continue working in infinite
dimension to keep all information on the data. To compute
a distributed DPM for high dimensional data or signals, we
need to replace a matrix product by an inner product in
an adequate space of functions and to find the adequate
measure to compute the likelihood and the posterior. To
do that, we used the properties of the Reproducible Kernel
Hilbert Spaces (RKHS), as in [7].

RKHS (used for example in the Support Vector Machine
approach) are very popular in machine learning thanks to “the
representer theorem which simplified an infinite dimensional
empirical risk minimization problem into a finite dimensional
problem where the solution is included in the linear span
of the kernel function evaluated at the training points” [25].

4.1 RKHS of Gaussian Process and DPM

We assume that the random variable of interest takes its
values in a space of infinite dimension. Therefore, high
dimensional data will be seen as trajectories of a random
process Y : Y =(Y (t))t∈[0,T], where t stands for the general
index of the Y function, t can be for example a time index in
case of time series or a wavelength index in case of spectrum.
In order to guarantee the existence of necessary conditional
probabilities in the DPM algorithm, we will assume that
the trajectories belong to the space of the integrable square
functions (L2([0,T])) on [0,T] (from [26]). Our work focuses
on Gaussian random process because “of its ability to avoid
simple parametric assumptions and still build in a lot of
structure”, [27]. In addition many calculations are facilitated
in the Gaussian framework. For example, [28] stated that
using Gaussian process for machine learning “turn out to
be much more accurate than for parametric models of equal
flexibility (such as multilayer perceptrons)”.

A Gaussian process GP(m,K) is entirely defined by its
mean function m(t) and its covariance function K(s,t), for
all t,s ∈ [0,T]. The main idea behind the clustering with
Gaussian Process is to use results from signal processing
where the data is the sum of two Gaussian processes, namely
a signal (a trajectory mi issued from a GP(m0,K0)) and
a noise (εi issued from a GP(0,K)):

Yi=mi+εi.

We assume that the signal is smoother than the noise
in order to be able to detect it. To extract the signals and
cluster them, we use the following DPM:

Yi |mi,K ∼ GP(mi,K),i=1,...,N

mi ∼ G

G |m0,K0 ∼ DP(α,GP(m0,K0))

DPM will create clusters of mi where for all observations
in cluster c, mi = φc. To run the DPM with algorithm
8 from Neal [16, 29], we need to define a posterior dis-
tribution GP(m∗,K∗) for φc and the likelihood process
dGP (mi,K)/dGP (0,K) for Yi. From [28], the Reproducing
Kernel Hilbert Space with reproducing kernel K, denoted HK
”will turn out to contain expected values of mi conditioned
on a finite amount of information, thus the posterior mean
function m∗ we are interested in”.

Moreover, there exists a duality between a Gaussian
process GP (m,K) and HK. HK is a space of real functions
defined on [0, T] which verifies the following property:
∀t∈ [0,T], ∀f ∈HK, f(t)=(f,K(.,t))K, where (.,.)K is the
inner product of HK. From [30], we define the random
variable (Y,f)K like a stochastic integral. The properties
of HK allow to define the likelihood process [31,32]:

(Y,K(,t))K=Y (t) (1)

f,g∈HK , (f,g)K=E[(Y,f)K(Y,g)K] (2)

mi∈HK ,
dGP(mi,K)

dGP(0,K)
(Yi)=e(Yi,mi)K−1

2 (mi,mi)K(3)

To ensure that mi ∈ HK, we must choose carefully the
covariance function K0, because the differentiability of mi

up to a given order (and therefore the smoothness of mi)
can be controlled via the covariance function.

Finally, following [7, 33, 34], the posterior distribution
for the signal of a cluster c is a Gaussian process, namely
φc |(Yi)ci=c∼GP(m∗,K∗) with:

m∗(t) = m0(t)+(K0(.,t),(Ȳc−m0))K/nc+K0
(4)

K∗(s,t) = K0(s,t)−(K0(.,s),K0(.,t))K/nc+K0
(5)

where the covariance functions K and K0 are weakly
continuous functions on [0, T] × [0, T]; nc and Ȳc are
respectively the number of observations and the mean

function
(
Ȳc= 1

nc

∑
ci=c

Yi

)
in cluster c.

When K is non singular and weakly continuous, usual
matrix approximations of the inner product results from [31]:

lim
L→∞

tf(L)K(L)−1
g(L) = (f,g)K

lim
L→∞

tY
(L)
i K(L)−1

g(L) = (Yi,g)K

where (tl)l=1...L is dense in [0, T] and f(L) =
(f(t1), ... , f(tL)), g(L) = (g(t1), ... , g(tL)) and K(L) is a
L×L matrix whose elements are K(tl,tj) for 1≤ l,j ≤L.
Oya et al. [35] proposed a generalised numerical approach to
estimate the inner product in Hk. In our approach (Section
IV), we use a known analytical form for the inner product,
which avoids matrix product or inversion and thus allows
to escape the curse of dimensionality.

4.2 Massive Distribution and Spark

Clustering via Dirichlet Process Mixture based on Gibbs
Sampling is unable to scale to large datasets due to its high
computational costs associated with Bayesian inference. For
this reason, we aim to implement a parallel algorithm for
DPM clustering in a massively distributed environment called
Spark which is a parallel programming framework aiming
to efficiently process large datasets. This programming
model can perform analytics with in-memory techniques to
overcome disk bottlenecks. Similar to MapReduce [36], Spark
can be deployed on the Hadoop Distributed File System
(HDFS) [37]. Unlike traditional in-memory systems, the main
feature of Spark is its distributed memory abstraction, called
resilient distributed datasets (RDD), that is an efficient and
fault-tolerant abstraction for distributing data in a cluster.
With RDD, the data can be easily persisted in main memory
as well as on the hard drive. Spark is designed to support
the execution of iterative algorithms [21].

To execute a Spark job, we need a master node to
coordinate job execution, and some worker nodes to execute a
parallel operation. These parallel operations are summarized
to two types: (i) Transformations: to create a new RDD
from an existing one (e.g., Map, MapToPair, MapPartition,
FlatMap); and (ii) Actions: to return a final value to the
user (e.g., Reduce, Aggregate or Count) [21].

4.3 HD4C

Working in infinite dimension (functional data) allows to use
information on the trajectories but also on their derivatives,
which may reveal key information for the data clustering
(see [38]). Indeed an Hilbert space (like the RKHS) is a

space of integrable square functions (L2([0,T])) on [0,T], it
is a special case of a Sobolev space. It means that a RKHS
is a vector space of functions equipped with a norm that
is a combination of Lp-norms of the function itself and its
derivatives up to a given order. The given order is conditioned
by the differentiability of the trajectories and therefore by
the covariance function K of the random process Y .

In our experiments, we defined Yi | θi = mi,K as an
autocorrelated Gaussian process called Ornstein-Uhlenbeck
(OU) whose covariance function is defined as follows:

K(s,t)=
σ2

2β
e−β|s−t|, (6)

where σ and β are two positive real.
Therefore, from [39], HK is a space of differentiable

functions in [0,T] with the scalar product (defining the norm):

(f,g)K=
1

σ2

∫ T

0

(
f ′(t)g′(t)+β2f(t)g(t)

)
dt

+
β

σ2

(
f(0)g(0)+f(T)g(T)

)
.

(7)

To ensure that mi ∈ HK, we used the prior
G=GP(m0,K0), where

K0(s,t)=
σ2

0

2β0
e−β0(s−t)2.

This covariance gives very smooth trajectories (infinitely
differentiable).

Other choice of covariance functions are possible for non
smooth observations (like a Wiener process). Defining the co-
variance function K on the observations is equivalent to defin-
ing the kernel covariance K of the RKHS HK. Defining a ker-
nelK requires defining an inner product inHK, which is equiv-
alent to defining a metric, a distance between two observations
d(i,j)=(mi−mj,mi−mj)K. This led us to use a Sobolev
metric for high dimensional Gaussian data (ie a distance be-
tween trajectories and their derivatives for OU Gaussian data)

instead of the usual euclidean distance
∫ T
0

(mi(t)−mj(t))
2dt,

see the “changing metrics” discussion in [40].
Implementating this algorithm requires:

• The set of indexes used for computing the integrals in the
inner product equation (7); for example in time series, it
could be the observation time steps or not.

• An interpolation of the observations (if needed) to simplify
the computation of the inner product. This interpolation
can be used to adapt the observations to the covariance
function K.

• Computation of the densities at the master and at the
worker level, from equation (3). This requires estimating
the hyperparameters β and σ. To avoid overly complex
modelling, we have chosen to fix them empirically. As
the Yi curves are generated from Gaussian processes with
covariance function K in (6), the parameters β and σ were
determined from the empirical estimation of the intra-class
variance-covariance matrix of the curves discretized in a
few points.

We provide below more specific de-
tails:

Worker level

In the Gaussian process framework, the likelihood process
is defined with respect to the Gaussian measure from
GP(0,K). Using [32] we have

F(yi,φc)=e(yi,φc)K−1
2 (φc,φc)K .

As the density of the predictive prior cannot be expressed
with respect to the same Gaussian measure (GP (0,K)) than
the likelihood, we approximated the integral in the MCMC
algorithm, as suggested in algorithm 8 of [29], by drawing
m realisations of φc.

To improve the variety of new candidate values of φnewc ,
we modified the original algorithm according to the following:
φnewc (t)=m0(t)+ζ(t), where ζ(t) is a trajectory simulated
from GP(m0,K) and m0(t) is randomly simulated from a
truncated polynomial basis (the basis order is also randomly
chosen).

Following [41], we used an inverse Gamma prior to infer
the parameter αj.

The following algorithm 1 summarizes the worker level.

Algorithm 1 DPM at worker j

for each data yi do
Draw m values φnewc

Draw individual cluster label ci in addition to existing
φ1,...,φC
P(ci=c |{cl}l6=i,yi,{φ},{w},αj)∝{

#(c)+αjwc

Nj−1+αj
e(yi,φc)K−1

2 (φc,φc)K ,c=1,...,C
1
m

αjwu

Nj−1+αj
e(yi,φ

new
c)K−1

2 (φnew
c ,φnew

c)K ,c=1,...,m

end for
Update of αj

where the weight wc is the proportion of observations
from cluster c evaluated on the whole dataset and wu
the proportion of non affected observations (awaiting the
creation, innovation, discover of their real clusters), with

wu+
∑C
c=1wc=1. Therefore, these parameters are updated

at the master level during the synchronization.

Master level

Instead of drawing new values φnewc , the proposed
algorithm reuses the center values of the clusters received

from the workers, namely φ
workerj
k .

The approximation of φ is updated by computing the
posterior mean in each cluster, equation (4), to which we
add a noise drawn from a GP(0,K/nc).

Following [16], we use a Dirichlet prior to infer
(w1,...,wK,wu).

The master lever is outlined in algorithm 2.

5 Experiments

The parallel experimental evaluation was conducted on a
computing cluster of 32 machines, each operated by Linux,
with 64 Gigabytes of main memory, Intel Xeon CPU with

Algorithm 2 DPM at master level

for each cluster k from worker j do
Draw cluster label zj,k from
P(zj,k=c |{c}6=j,k,ȳj,k,{φ},γ)∝{

#(c)
N−1+γ e

(ȳj,k,φc)K−1
2 (φc,φc)K ,c=1,...,C

γ
N−1+γ e

(ȳj,k,φ
workerj
k)K−1

2 (φworkerj
k ,φworkerj

k)K

end for
Update of φ and (w1,...,wK,wu)

8 cores and 250 Gigabytes hard disk. We compared our
approach to K-means, which is one of the most commonly
used clustering algorithms. We used an implementation
available at Spark’s machine learning library (MLlib) [42].

The first step of HD4C is a distributed K-means that
sets the initial state (usually we set K to be one tenth of
the dataset size).
Reproducibility : All our experiments are fully re-

producible. We make our code and data available at
https://github.com/khadidjaM/HD4C.

In the rest of this section, we describe the datasets in
Section 5.1 and our evaluation criteria in Section 5.2. Then,
in Section 5.3, we measure the performances, in response
time, of our approach by reporting its scalability and
speed-up. We evaluate the clusters obtained by HD4C in
the case of real and synthetic dataset in Section 5.4.

5.1 Datasets

We carried out our experiments on two real world datasets
and many synthetic datasets.

Our synthetic data was generated using a two-steps
principle. First we generated four cluster centers according
to the following polynomials :

s1(t)= 0.11t3−0.16t2+0.55t
s2(t)= −0.75t4+1.49t3−0.91t2+0.17t
s3(t)= 3.91t5−9.77t4+0.854t3−3.05t2+0.37t
s4(t)= −20.09t6+60.26t5−68.22t4+36t3

−8.71t2+0.76t

In the second step, we generated the data corresponding
to each center, by using a Gaussian process of mean si
and a covariance given by an Ornstein-Uhlenbeckh process
parametrized by β=10 and σ=2.5. We independently gener-
ated a batch of 5 datasets having size 200K, 400, 600, 800K
and 1M time series of 100 points, the latter dataset is about
2 Gigabytes. Figures 3 and 4 give a visual representation
of our synthetic dataset. Each cluster is assigned a color
and represented by 10 time series. This type of generator
is widely used in statistics, where methods are first evaluated
on synthetic data before being applied on real data.

The first real world dataset corresponds to more than five
thousands accelerometer time series which have been mea-
sured by sensor on 13 sheep (as in figure 1). Each time series is
made of 500 observation times and has been visually assigned
to one of six activities (STANDING-GRAZING, STANDING-

https://github.com/khadidjaM/HD4C

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60 70 80 90 100

Figure 3: Visual representation of the synthetic dataset
clusters.

-4

-2

 0

 2

 4

 0 50 100

Cluster 1

-4

-2

 0

 2

 4

 0 50 100

Cluster 2

-4

-2

 0

 2

 4

 0 50 100

Cluster 3

-4

-2

 0

 2

 4

 0 50 100

Cluster 4

Figure 4: Visual representation of the synthetic dataset with
separated clusters.

EATING BRUSH, STANDING-RUMINATING, WALKING,
RUNNING, STANDING-IMMOBILE). Accelerometers cap-
tured 3-axial acceleration at a constant rate of 100Hz. The
sensor signals were pre-processed and for each activity of inter-
est, sampled in fixed-width of 5 seconds (500 values / a time
series). Each of the three axial acceleration gives a different in-
formation for the zoologist, so HD4C clustering was performed
by axis (horizontals (x and y) and vertical (z)). The objective
was to discover the underlying structures of each axis and then
to link these structures to sheep activities. Figures 5 and 6
represent one axis of the accelerometers dataset. Each label
of activity is assigned a color and represented by 5 time series.

The second real dataset corresponds to more than 4K spec-
trum of 680 dimensions representing a protein rate measured
on 10 different products: rapeseed (CLZ), corn gluten (CNG),
sun flower seed (SFG), grass silage (EHH), full fat soya (FFS),

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300 350 400 450 500

Figure 5: One axis visual representation of labeled
accelerometers data

-4

 0

 4

 0 250 500

STANDING-GRAZING

-4

 0

 4

 0 250 500

STANDING-EATING BRUSH

-4

 0

 4

 0 250 500

STANDING-RUMINATING

-4

 0

 4

 0 250 500

WALKING

-4

 0

 4

 0 250 500

RUNNING

-4

 0

 4

 0 250 500

STANDING-IMMOBILE

Figure 6: Separated clusters of one axis accelerometers data

wheat (FRG), sun flower seed (SFG), animal feed (ANF), soya
meal (TTS), mäıs (PEE), milk powder and whey (MPW). Fig-
ure 7 gives a visual representation of the spectral data. Each
product is assigned a color and represented by 50 spectrums.

5.2 Clustering Evaluation Criteria

There are two cases for evaluating the results of a clustering
algorithm. Either there is a ground truth available, or there
is not. In the case of an available ground truth, there are
measures allowing to compare the clustering results to the
reference, such as the Adjusted Rand Index (ARI): it is the
corrected-for-chance version of the Rand Index [43], which
is a function that measures the similarity between two data
clustering results, for example between the ground truth
class assignments (if known) and the clustering algorithm
assignments. ARI values are in the range [-1,1] with a best
value of 1. It is usually exploited for experiments when one
wants to check performances in a controlled environment,

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 100 200 300 400 500 600 700

CLZ

CNG

EHH

FFS

FRG

SFG

ANF

TTS

PEE

MPW

Figure 7: Visual representation of the spectral dataset

on synthetic data or labelled real data.
In the case where there is no ground-truth (which is the

usual case, because we don’t know what should be discovered
in real world applications of a clustering algorithm) the
validation of the results is not straightforward. In our exper-
iment we have checked K, the number of discovered clusters
versus the expected number of clusters according to expert.

5.3 Response Time

In this section we measure the clustering time in HD4C.
Figure 8 reports the response times on our synthetic data,
HD4C is run on a computing cluster of 16 nodes. The
clustering time increases with the number of data, our
approach benefits from linear scalability with the dataset
size. For a dataset of 200K data points, HD4C performs the
clustering in about 12 minutes, while a centralized approach
does not scale and cannot execute on such dataset size, it
needs several days on a single machine.

Figures 9, 10 and 11 illustrate the parallel speed-up of our
approach on 200K time series from the synthetic dataset, on
accelerometers data from the first real world dataset, and on
spectrums from the second real dataset. These experiments
are conducted on 4, 8 and 16 nodes which correspond to 32,
64 and 128 workers (each node has 8 cores). The results show
optimal or near optimal gain. On the accelerometers dataset
there is not a big difference between 8 and 16 nodes because
this dataset is not big, and distributing it on 8 or 16 nodes
is super fast at workers level while the synchronisation at the
master level takes almost the same time. Another reason is
that the computing nodes do not have the same performances,
those who have finished must wait for the slower nodes.

5.4 Clustering Evaluation

In the following experiments, we evaluate the clustering per-
formance of HD4C and compare it to the K-means approach.

Table 1 reports the ARI values computed between the
clustering obtained and the ground truth, the estimated values

of parameters σ̂ and β̂, and the number of clusters, obtained

 0

 10

 20

 30

 40

 50

 60

 70

200K 400K 600K 800K 1M

ti
m

e
 (

m
in

)

number of data

 HD4C

Figure 8: Response time (minutes) of HD4C as a function
of the dataset size.

 0

 10

 20

 30

 40

 50

 2 4 8 16

ti
m

e
 (

m
in

)

number of nodes

 HD4C

Figure 9: Clustering time as a function of the number of
computing nodes on the synthetic data.

with HD4C on our synthetic data while increasing the dataset
size. The HD4C is run on a cluster of 16 nodes. HD4C
performs well, the ARI values are almost equal to 1 (best
value), the number of discovered clusters is equal to the real

number of clusters, the estimated values of σ̂ and β̂ are close
to the parameters used for simulating the data. Note also that

the estimated ratio σ̂2

2β̂
converges to the true simulated ratio σ2

2β ,

which corresponds to the variance on the diagonal of K in (6).
Figure 12 reports the Adjusted Rand Index values

(described in section 5.2) obtained by performing K-means
approach on 200K time series from the synthetic dataset as
a function of the number of clusters, it is run on two nodes
(16 workers). The K-means approach does not reach the best
value 1, the peak of these values is 0.90 but with 9 clusters
which is not the real number in the ground truth, while with
the real number of clusters (4 clusters) the ARI value is 0.79.

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 8 16

ti
m

e
 (

m
in

)

number of nodes

 HD4C

Figure 10: Clustering time as a function of the number of
computing nodes on the accelrometers data.

 0

 10

 20

 30

 40

 50

 60

 2 4 8 16

ti
m

e
 (

m
in

)

number of nodes

 HD4C

Figure 11: Clustering time as a function of the number of
computing nodes on the spectral data.

Table 1: Clustering evaluation criteria obtained with HD4C
(synthetic data).

ARI σ̂ β̂ σ̂2/2β̂ Clusters
200K 1.00 2.57 10.59 0.31 4
400K 1.00 2.13 7.25 0.31 4
600K 0.99 2.15 7.44 0.31 4
800K 1.00 2.28 8.30 0.31 4
1M 0.99 2.13 7.25 0.31 4

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20 25 30 35 40

A
R

I

number of clusters

Kmeans

Figure 12: ARI values of K-means as a function of the
number of clusters.

K-means suffers from the convergence to a local minimum
which may produce ”wrong” results, as illustrated for example
in Table 2. This table shows the results of K-means performed
on 600K time series of the synthetic dataset with the right
number of clusters (4 clusters, each containing 150K data)
and run on 16 nodes. Each line of Table 2 represents one
cluster obtained by K-means and reports the number of data
obtained in each cluster: the cluster 2 obtained by K-means
regroups the two real clusters 1 and 3, while the real cluster
2 is divided between clusters 1 and 3 discovered by K-means.

Table 2: Example of K-means convergence to a local
minimum.

Ground truth
1 2 3 4

1 0 75945 0 0
2 150000 0 150000 0
3 0 74055 0 0
4 0 0 0 150000

By comparison, when applying HD4C on the same dataset,
the right number of clusters is discovered and all the data
except a few ones are affected to the true clusters, as
presented in Table 3.

Repeating the clustering on accelerometers data many
times by HD4C and K-means, we obtained the ARI values
showed on table 4. Our approach performs better than the
K-means approach, the average value obtained by HD4C
is 0.50 which is a good value regarding the shapes of data
in clusters: STANDING-GRAZING, STANDING-EATING
BRUSH, STANDING-RUMINATING, WALKING. The
true labels have been visually assigned by the experts, by
observing the three axes at the same time. It is difficult to
label them by only analysing one axis at a time (see figure 6).

Table 3: Number of data obtained by HD4C in each cluster
compared to the ground truth.

Ground truth
1 2 3 4

1 0 149989 0 0
2 150000 0 1 0
3 0 11 149999 0
4 0 0 0 150000

HD4C is not intended to cluster multidimensional time series.
Table 4 also represents the ARI values obtained with the

real world datasets both for HD4C and K-means. K-means
was processed with the number of clusters found by HD4C.
Each time we repeat the HD4C clustering we find a number
close to the number of labels given by the experts.

Table 4: Clustering evaluation criteria obtained with HD4C
and K-means on real datasets.

HD4C K-means
ARI Clusters ARI

Accelerometers 0.50 8 0.11
Spectrums 0.34 9 0.32

6 Conclusion

We proposed HD4C, a novel and efficient parallel solution
to perform clustering via DPM on large amount of infinite
dimensional data. These infinite dimensional data include
lengthy time series or spectral data for example. We evaluated
the performance of our solution over real world and synthetic
datasets. The experimental results illustrate the high perfor-
mance of HD4C with results that are comparable to K-means,
one of the most commonly used clustering algorithms. Over-
all, the experimental results show that by using our parallel
techniques, the clustering of very large volumes of data can
now be done in small execution times, which is impossible to
achieve using a centralized DPM approach. A nice perspective
of our approach is now to extend the HD4C algorithm to
multivariate functional data, like the accelerometer dataset
which contains time series recorded according to three axes.

7 Acknowledgements

The research leading to these results has received funds from
the European Union’s Horizon 2020 Framework Programme
for Research and Innovation, under grant agreement No.
732051.

This work was also supported by the ‘Infrastructure
Biologie Santé’ PHENOME-EMPHASIS project (ANR-11-
INBS-0012) funded by the National Research Agency and
the ‘Programme d’Investissements d’Avenir’ (PIA).

The accelerometer data come from CLOChèTE project,
supported by CASDAR funds.

The spectrum dataset comes from V. Baeten’s team at
the Walloon Agricultural Research Centre (CRA-W).

References

[1] A. Alamsyah and B. Nurriz, “Monte carlo simulation and
clustering for customer segmentation in business organiza-
tion,” in 2017 3rd International Conference on Science and
Technology - Computer (ICST), July 2017, pp. 104–109.

[2] V. Hodge and J. Austin, “A survey of outlier detection
methodologies,” Artificial Intelligence Review, vol. 22,
no. 2, pp. 85–126, Oct 2004. [Online]. Available:
https://doi.org/10.1023/B:AIRE.0000045502.10941.a9

[3] Ordovás-Pascual, I. and Sánchez Almeida, J., “A fast version
of the k-means classification algorithm for astronomical appli-
cations,” Astronomy & Astrophysics, vol. 565, p. A53, 2014.

[4] G. James, D. Witten, T. Hastie, and R. Tibshirani, An
introduction to statistical learning. Springer, 2013, vol. 112.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the em algorithm,” Jour-
nal of the Royal Statistical Society. Series B (methodological),
pp. 1–38, 1977.

[6] M. D. Escobar, “Estimating normal means with a dirich-
let process prior,” Journal of the American Statistical
Association, vol. 89, no. 425, pp. 268–277, 1994.

[7] D. Juery, C. Abraham, and B. Fontez, “Classification
bayésienne non supervisée de données fonctionnelles,”
Journal de la Socíet́e Française de Statistique, vol. 155, no. 2,
pp. 185–201, 2014.

[8] S. Prasad and L. M. Bruce, “Limitations of principal
components analysis for hyperspectral target recognition,”
IEEE Geoscience and Remote Sensing Letters, vol. 5, no. 4,
pp. 625–629, 2008.

[9] S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah,
“Time-series clustering–a decade review,” Information
Systems, vol. 53, pp. 16–38, 2015.

[10] E. Keogh and J. Lin, “Clustering of time-series subsequences
is meaningless: implications for previous and future research,”
Knowledge and Information Systems, vol. 8, no. 2, pp.
154–177, 2005.

[11] M. L. L. Garćıa, R. Garćıa-Ródenas, and A. G. Gómez,
“K-means algorithms for functional data,” Neurocomputing,
vol. 151, pp. 231–245, 2015.

[12] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing sax:
a novel symbolic representation of time series,” Data Mining
and Knowledge Discovery, vol. 15, no. 2, pp. 107–144, 2007.

[13] S. Soheily-Khah, A. Douzal-Chouakria, and E. Gaussier,
“Generalized k-means-based clustering for temporal data
under weighted and kernel time warp,” Pattern Recognition
Letters, vol. 75, pp. 63–69, 2016.

[14] Y.-H. Cheng, T.-M. Huang, and S.-F. Yang, “A clus-
tering method for misaligned curves,” arXiv preprint
arXiv:1801.00382, 2018.

[15] J. MacQueen et al., “Some methods for classification and anal-
ysis of multivariate observations,” in Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Proba-
bility, vol. 1, no. 14. Oakland, CA, USA, 1967, pp. 281–297.

[16] K. Meguelati, B. Fontez, N. Hilgert, and F. Masseglia,
“Dirichlet process mixture models made scalable and effective
by means of massive distribution,” in SAC: Symposium on
Applied Computing, Limassol, Cyprus, Apr. 2019. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01999453

https://doi.org/10.1023/B:AIRE.0000045502.10941.a9
https://hal.archives-ouvertes.fr/hal-01999453

[17] D. Lovell, R. P. Adams, and V. Mansingka, “Parallel
markov chain monte carlo for dirichlet process mixtures,”
in Workshop on Big Learning, NIPS, 2012.

[18] S. Williamson, A. Dubey, and E. Xing, “Parallel markov chain
monte carlo for nonparametric mixture models,” in Interna-
tional Conference on Machine Learning, 2013, pp. 98–106.

[19] R. Wang and D. Lin, “Scalable estimation of
dirichlet process mixture models on distributed
data,” in Proceedings of the 26th International Joint
Conference on Artificial Intelligence, ser. IJCAI’17.
AAAI Press, 2017, pp. 4632–4639. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3171837.3171935

[20] Q. Zhu, G. Batista, T. Rakthanmanon, and E. Keogh,
“A novel approximation to dynamic time warping allows
anytime clustering of massive time series datasets,” in
Proceedings of the 2012 SIAM international conference on
data mining. SIAM, 2012, pp. 999–1010.

[21] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster computing with working sets,” in
HotCloud, 2010.

[22] L. A. Shepp, “Radon-nikodym derivatives of
gaussian measures,” Ann. Math. Statist., vol. 37,
no. 2, pp. 321–354, 04 1966. [Online]. Available:
https://doi.org/10.1214/aoms/1177699516

[23] C. Abraham, P. A. Cornillon, E. Matzner-Løber, and
N. Molinari, “Unsupervised curve clustering using b-splines,”
Scandinavian Journal of Statistics, vol. 30, no. 3, pp.
581–595, 2003. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1111/1467-9469.00350

[24] M. Fauvel, J. Chanussot, and J. A. Benediktsson, “Kernel
principal component analysis for the classification of hyper-
spectral remote sensing data over urban areas,” EURASIP
J. Adv. Signal Process, vol. 2009, pp. 11:1–11:14, Jan. 2009.
[Online]. Available: http://dx.doi.org/10.1155/2009/783194

[25] K. Ø. Mikalsen, F. M. Bianchi, C. Soguero-Ruiz, and
R. Jenssen, “Time series cluster kernel for learning similarities
between multivariate time series with missing data,” Pattern
Recognition, vol. 76, pp. 569–581, 2018.

[26] R. M. Dudley, “Real analysis and probability. wadsworth
& brooks,” Cole, Pacific Groves, California, 1989.

[27] C. Rasmussen and C. Williams, Gaussian Processes for Ma-
chine Learning. Massachusetts Institute of Technology, 2006.

[28] M. Seeger, “Gaussian processes for machine learning,”
International Journal of Neural Systems, vol. 14, no. 02,
pp. 69–106, 2004, pMID: 15112367. [Online]. Available:
https://doi.org/10.1142/S0129065704001899

[29] R. M. Neal, “Markov chain sampling methods for dirichlet
process mixture models,” Journal of Computational and
Graphical Statistics, vol. 9, no. 2, pp. 249–265, 2000.

[30] E. Parzen, “Regression analysis of continuous parameter
time series,” in Int. ISPASS, 2010.

[31] ——, “Statistical inference on time series by hilbert space
methods, i,” Stanford Univ CA Applied Mathematics and
Statistics Labs, Tech. Rep., 1959.

[32] ——, “Probability density functionals and reproducing kernel
hilbert spaces,” in Proceedings of the Symposium on Time Se-
ries Analysis, vol. 196. Wiley, New York, 1963, pp. 155–169.

[33] M. F. Driscoll, “The signal-noise problem—a solution for
the case that signal and noise are gaussian and independent,”
Journal of Applied Probability, vol. 12, no. 1, pp. 183–187,

1975.

[34] A. W. van der Vaart, J. H. van Zanten et al., “Reproducing
kernel hilbert spaces of gaussian priors,” in Pushing the
limits of contemporary statistics: contributions in honor of
Jayanta K. Ghosh. Institute of Mathematical Statistics,
2008, pp. 200–222.

[35] A. Oya, J. Navarro-Moreno, and J. C. Ruiz-Molina,
“Numerical evaluation of reproducing kernel hilbert space
inner products,” IEEE Transactions on Signal Processing,
vol. 57, no. 3, pp. 1227–1233, 2009.

[36] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” Commun. ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[37] J. Shafer, S. Rixner, and A. L. Cox, “The hadoop distributed
filesystem: Balancing portability and performance,” in Int.
ISPASS, 2010.

[38] N. Coffey and J. Hinde, “Analyzing time-course microarray
data using functional data analysis-a review,” Statistical Appli-
cations in Genetics and Molecular Biology, vol. 10, no. 1, 2011.

[39] A. Berlinet and C. Thomas-Agnan, Reproducing kernel
Hilbert spaces in probability and statistics. Springer Science
& Business Media, 2011.

[40] G. Saporta, “Data analysis for numerical and categorical
individual time-series,” Applied Stochastic Models and
Data Analysis, vol. 1, no. 2, pp. 109–119, 1985. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/
asm.3150010204

[41] M. D. Escobar and M. West, “Bayesian density estimation
and inference using mixtures,” Journal of the American
Statistical Association, vol. 90, no. 430, pp. 577–588, 1995.

[42] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman,
D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen et al., “Mllib:
Machine learning in apache spark,” The Journal of Machine
Learning Research, vol. 17, no. 1, pp. 1235–1241, 2016.

[43] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic
measures for clusterings comparison: Variants, properties,
normalization and correction for chance,” J. Mach. Learn.
Res., vol. 11, pp. 2837–2854, Dec. 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1756006.1953024

http://dl.acm.org/citation.cfm?id=3171837.3171935
https://doi.org/10.1214/aoms/1177699516
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9469.00350
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9469.00350
http://dx.doi.org/10.1155/2009/783194
https://doi.org/10.1142/S0129065704001899
https://onlinelibrary.wiley.com/doi/abs/10.1002/asm.3150010204
https://onlinelibrary.wiley.com/doi/abs/10.1002/asm.3150010204
http://dl.acm.org/citation.cfm?id=1756006.1953024

