
HAL Id: lirmm-02372243
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02372243v1

Submitted on 20 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Handling Missing Values for Mining Gradual Patterns
from NoSQL Graph Databases

Faaiz Hussain Shah, Arnaud Castelltort, Anne Laurent

To cite this version:
Faaiz Hussain Shah, Arnaud Castelltort, Anne Laurent. Handling Missing Values for Mining Gradual
Patterns from NoSQL Graph Databases. Future Generation Computer Systems, 2020, 111, pp.523-
538. �10.1016/j.future.2019.10.004�. �lirmm-02372243�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02372243v1
https://hal.archives-ouvertes.fr

Handling Missing Values for Mining Gradual Patterns from NoSQL Graph
Databases

Faaiz Shah, Arnaud Castelltort, Anne Laurent

LIRMM, University of Montpellier, CNRS, Montpellier, France

Abstract

Graph databases (NoSQL oriented graph databases) provide the ability to manage highly connected data and complex
database queries along with the native graph-storage and processing. A property graph in a NoSQL graph engine
is a labeled directed graph composed of nodes connected through edges with a set of attributes or properties in the
form of (key : value) pairs. It facilitates to represent the data and knowledge that are in form of graphs. Practical
applications of graph database systems have been seen in social networks, recommendation systems, fraud detection,
and data journalism, as in the case for panama papers. Often, we face the issue of missing data in such kind of systems.
In particular, these semi-structured NoSQL databases lead to a situation where some attributes (properties) are filled-in
while other ones are not available, either because they exist but are missing (for instance the age of a person that is
unknown) or because they are not applicable for a particular case (for instance the year of military service for a girl in
countries where it is mandatory only for boys). Therefore, some keys can be provided for some nodes and not for other
ones. In such a scenario, when we want to extract knowledge from these new generation database systems, we face the
problem of missing data that arises need for analyzing them. Some approaches have been proposed to replace missing
values so as to be able to apply data mining techniques. However, we argue that it is not relevant to consider such
approaches because they may introduce biases or errors. In our work, we focus on the extraction of gradual patterns from
property graphs that provide end-users with tools for mining correlations in the data when there exist missing values.
Our approach requires first to define gradual patterns in the context of NoSQL property graph and then to extend
existing algorithms so as to treat the missing values, because anti-monotonicity of the support can not be considered
anymore in a simple manner. Thus, we introduce a novel approach for mining gradual patterns in the presence of missing
values and we test it on real and synthetic data.

Keywords: Gradual patterns; Property graph, Missing values

1. Introduction

With the provision of ever increasing data rates on In-
ternet and open source technologies to the end users, it has
become an increasingly challenging for many enterprises to
process large volumes of data in an efficient manner. In
some cases, traditional database management systems may
not be able to store, process, manage, and analyze data to
get insight of data for efficient decision making.

Data mining involves collecting, cleaning, processing
and gaining useful insight from data. Its applications are
often closely related to one of the four main problems i.e.,
pattern mining, clustering, classification and outlier anal-
ysis [1]. Frequent pattern mining is a process in which the
data patterns having more occurrences than a predefined
threshold mined. It is one of the most investigated domain

∗Corresponding author
Email address: faaiz.shah@lirmm.fr (Faaiz Shah, Arnaud

Castelltort, Anne Laurent)

in data mining [2]. Frequent pattern mining has rapidly
extended from in transactional databases analysis to the
analysis of complex structures having numerical attributes
such as sequences, trees or graphs.

Association rule mining is generally referred to as fre-
quent itemset (pattern) mining and it is used to discover
the association rules (X → Y) between items in trans-
actional data. For mining quantitative data, [3] proposes
a new type of rules to express a kind of “tendency” aka
a gradual dependence between attributes. [3] present a
first interpretation of “gradual dependency” as co-variation
constraint such that “the more A, the more B holds if an
increase in A comes along with an increase in B”. There-
fore, a gradual dependency is defined as a pair of gradual
itemsets on which a causality relationship is imposed [4].

Gradual pattern mining is an extension of frequent pat-
tern mining. Gradual pattern mining is the process of
discovering knowledge from databases as comparable at-
tributes of co-variations. In linguistic expression, it may

Preprint submitted to Journal of Future Generation Computer Systems November 20, 2019

be represented as, “the more/less the value of Xi,. . . , the
more/less the value of Xn”, where i = 1, 2, 3...n, and X1,
X2, X3, . . . to Xn are numerical ordinal attributes [4].
These co-variations can be increasing or decreasing and
these co-variations can be between two or more than two
attributes such as: “The higher the age, the higher the
salary, the higher the tax” or “The more the intensive-diet,
the less the physical-activity-hours, the more the weight”.
A gradual pattern is considered as interesting pattern if it
occurs frequently i.e., the support of that pattern is greater
than the given threshold (minimum support).

Efficient mining of gradual patterns from large numer-
ical databases is a non-trivial task. In particular, when
considering the scalability issues due to ever increasing
volume of data in enterprises. The application of gradual
patterns mining can be found in various fields ranging from
applications for analyzing client databases for marketing
purposes, analyzing patient databases in medical studies,
analysis of climate and environment change. The existing
gradual pattern mining techniques presented in [4, 5] are
mainly for relational databases while some other types are
emerging, as for instance property graphs.

NoSQL graph database engines are purpose built sys-
tems to store nodes and edges natively. Nodes or vertices
(data entities) are created and linked through edges, that
results in much faster query response for this linked data.
The increasing need for such systems has been observed in
use cases including “social networks, recommendation en-
gines, knowledge graphs, fraud detection, network and IT
operations, and life sciences” [6]. In recent years, graph
data management and mining is gaining a lot of interest
in database research community due to its pervasiveness
in the fields such as, social networks, knowledge graphs,
genome and scientific databases, medical and government
record [7].

A property graph data model is a graph structure con-
taining nodes and edges with properties/attributes in form
of (key:value) pairs. Nodes have Labels that define the role
of a node. Edges between two nodes have a Type; they
are directional and may contain (key:value) properties as
nodes. As shown in Figure 1, Patient, Doctor, Medicine
are node labels, whereas Takes, V isits and Advises are
edge types. A node can have one or more labels at the
same time such as nodes with label Patient and Doctor.

Graph modeling is generally an iterative process. For
building a property graph model, labels and relevant prop-
erties are assigned to nodes. Then we identify and assign
the edges between these nodes and the possible properties
that they can have. Property graph data model enables
us to represent the data in a natural way. It allows the
flexibility to incorporate schema changes as and when re-
quired because it does not require a fixed schema prior to
the database creation. Hence, they are also referred to as

id:value
name:value
dept:value

Ta
ke

s
{d

at
e:

va
lu

e}

{date:value}

Visits
{date:value}

id:value
name:value
expire:value

Medicine

id:value
name:value
age:value

Person : Patient Person : Doctor

 A
dvises

Figure 1: Property Graph Model

semi-structured datasets.

When trying to extract gradual patterns from a prop-
erty graph, all the properties of a node may not be present.
This is due to the reason of semi-structured nature of prop-
erty graphs and often they do not have predefined schema.
For example, Patient’s age or lab-tests information may be
missing for some nodes. So, regular algorithms can not be
applied and the problem can be seen as a problem of han-
dling missing data.

The research is being actively pursued for last one
decade in gradual pattern mining such as mining the pat-
terns from large numerical tabular datasets as well as ad-
dressing the scalability issues [4, 5, 8, 9, 10, 11, 12, 13].
Also, the existing gradual pattern mining techniques pre-
sented in [4, 5, 10] are mainly for tabular databases while
some other types are emerging, as for instance property
graphs.

To the best of our knowledge, the extraction of grad-
ual patterns from property graphs is a novel idea. The
objective of this work is to address the following two main
aspects:

(1) Defining gradual patterns in the context of property
graphs;

(2) Mining gradual patterns automatically from property
graphs.

In order to achieve these objectives, we address the issue
of missing data that arises as a consequence when we are
mining graph data.

There may be several ways to define gradual patterns
in the context of property graphs. For example, Intra-
Node-Label gradual patterns, Inter-Node-Label gradual
patterns, Node-properties-with-Edges-count gradual pat-
terns, and Inter-Edge-properties gradual patterns. The fo-
cus of this paper is on two types i.e., Intra-Node-Label and
Node-properties-with-Edges-count gradual patterns. The
details of pattern extraction for these two scenarios are
presented with relevant examples and experimental results

2

on real and synthetic datasets.

The paper is organized as follows. Section 2 describes
the preliminary concepts about gradual patterns, property
graphs, missing data types and their handling techniques.
Section 3 presents the problem statement. In section 4, we
present our proposed approach for mining gradual patterns
in presence of missing data, particularly in the context of
property graphs. In section 5, we show experimental re-
sults and comparisons of proposed approach with imputa-
tion technique. Section 6 presents conclusion and future
perspectives.

2. Preliminary Concepts

In this section we explain gradual patterns mining and
property graphs with relevant examples. Later on, we
present briefly about the types of missing data and their
treatment approaches in literature.

2.1. Gradual Pattern Mining

The objective of gradual pattern mining is to discover
frequent co-variations of the form “the more/less the Xi,
. . . , the more/less theXn”, between two or more attributes
such as: “The higher the age, the higher the salary, the
higher the tax” or “The more the intensive-diet, the less
the physical-activity-hours, the more the weight”. Gradual
item and gradual pattern (aka gradual itemset) defined in
[4] are given as below.

Definition 2.1 (Gradual Item). Let τ be a set of items,
i ∈ τ be an item and ? ∈ {↑, ↓} be a comparison operator.
A gradual item i? is defined as an item i associated to an
operator ?.

Consequently, a gradual pattern is defined as follows:

Definition 2.2 (Gradual Pattern). A gradual pattern
P = (i1?

1, . . . , ik?
k) is a non empty set of gradual items.

A k-itemset is an itemset containing k gradual itemsets.

Example 2.1. For example, let us consider the pattern
“the higher the age, the higher the number of medications”,
formalized by the itemsets from Figure 1 are:

P1 = (Age ↑ , NumberofMedications ↑)

In [4], a precedence graph based algorithm for grad-
ual pattern mining was proposed. In this method, every
pattern of size n being processed is associated with an
(n ∗ n) binary matrix representing the order relations be-
tween tuples regarding that particular pattern. [4] uses
vertical bitmap representation presented in [14] to store
the ordering in the binary matrix. It states, “if there ex-
ists an order relation between two tuples a and b, then the
bit corresponding to the line of a and the column position

Id Age Lab-tests Time-in-Hospital

p1 45 13 35

p2 35 7 20

p3 30 5 25

p4 55 10 28

p5 40 14 38

Table 1: Patients

p1 p2 p3 p4 p5

p1 0 0 0 1 0
p2 1 0 0 1 1
p3 1 1 0 1 1
p4 0 0 0 0 0
p5 1 0 0 1 0

(Age ↑)

p1 p2 p3 p4 p5

p1 0 0 0 0 1
p2 1 0 0 1 1
p3 1 1 0 1 1
p4 1 0 0 0 1
p5 0 0 0 0 0

(Lab-tests ↑)

Figure 2: Binary Matrices for Gradual Items of Size-1

of b is set to 1, and to 0 otherwise”. For instance, Table 1
shows the example data of patients. When considering
the pattern Age ↑, we have from this table that p3(Age30)
precedes p2(Age35) which precedes p5(Age55), etc. This
results in the fact that the value at the intersection be-
tween p3 and p2 in the matrix from Figure 2 (third line,
second column) is 1 (in red bold font).

When considering gradual patterns with several at-
tributes, as for instance (Age ↑, Lab-tests ↑), the binary
matrices of (Age ↑) and (Lab-tests ↑) are mixed to com-
pute the resulting matrix as the Hadamard product. For
instance, Figure 3 shows the precedence graph in which
p3 (Age 30, Lab-tests 5) precedes p2 (Age 35, Lab-tests
7) because we both have 30 < 35 and 5 < 7 following the
pattern (Age ↑, Lab-tests ↑) but p1 and p4 are incompa-
rable as 45 < 55 but 13 > 10. This can also be seen in the
matrix representation of Figure 4. Indeed, in the matrix
the cells [p1][p4] and [p4][p1] are set to 0 which means that
there is no order relation defined between p1 and p4.

The algorithm [5] exploits the rank correlation for grad-
ual pattern extraction. It uses Kendall’s tau rank correla-
tion method of concordant and discordant pairs in order
to mine gradual pattern. Kendall’s tau is one of the most
widely used non-parametric test to measure the associa-

3

P1(45, 13)

P4

(55, 10)

P2 (35, 7)

P3 (30, 5)

P5 (40, 14)

Figure 3: Precedence Graph (Age ↑ , Lab-tests ↑)

p1 p2 p3 p4 p5

p1 0 0 0 0 0
p2 1 0 0 1 1
p3 1 0 0 1 1
p4 0 0 0 0 0
p5 0 0 0 0 0

(Age↑ , Lab-tests↑)

p1 p2 p3 p4 p5

p1 0 1 1 0 0
p2 0 0 0 0 0
p3 0 0 0 0 0
p4 0 1 1 0 0
p5 1 1 1 0 0

(Age↓ , Time-in-hospital↓)

Figure 4: Binary AND of concordant object pairs for gradual pat-
terns

p1 p2 p3 p4 p5

p1 0 0 0 0 1
p2 1 0 1 1 1
p3 1 0 0 1 1
p4 1 0 0 0 1
p5 0 0 0 0 0

(Time-in-hospital ↑)

p1 p2 p3 p4 p5

p1 0 1 1 1 0
p2 0 0 0 0 0
p3 0 1 0 0 0
p4 0 1 1 0 0
p5 1 1 1 1 0

(Time-in-hospital ↓)

Figure 5: Binary matrix representing orders for the dataset shown
in Table 1

tion between two variables for rank correlations [15]. The
algorithm [5] uses binary matrices for representing orders
as shown in Figure 5. It first presents the definition of
gradual dependency based on the order concordance [16]
in the context of ranking comparison measure and then
computes the support. Referring to Theorem 1 in [4] that
a gradual pattern P for gradual items e.g., (i1 ↑ , i2 ↓)
can be generated, if the following relation holds :

P = (i1 ↑ AND i2 ↓)

The computation of binary matrices representing the
set of concordant object pairs for gradual patterns (Age↑
AND Lab-tests↑) and (Age↓ AND Time-in-hospital↓)
is shown in Figure 4. In order to enhance the perfor-
mance of algorithm [4], a scalable implementation is pre-
sented in [10] in which parallelism is exploited by employ-
ing multi-core processors for mining gradual patterns.

2.2. Property Graphs

A property graph helps to represent the information
and knowledge in a natural way in form of graph-like
structure. A NoSQL database engine is a system specif-
ically designed to store, manage, and process such kind
of graph-like data. Such kind of systems are gaining at-
tention as mentioned in [17] “increasing usage of graph
data structure for representing data in different domains
such as: chemical compounds, multimedia databases, so-
cial networks, protein networks and semantic web”. To-
day, the well known NoSQL database systems are: Ama-
zon’s Neptune [18], Microsoft’s Cosmos [19], Titan [20],
and Neo4j [21].

4

Person

Paper

Project

COLLAB.

PUBLISH

RCV GRANT

Figure 6: Example Graph Database Schema

Label Properties Node Count
Person id, name, age, desig, expr, sal 7
Paper id, pr title, type, year 5
Project id, prg title, lab, year 2

Table 2: Nodes Label Summary

Type Properties Edge Count
Collaborate since 14
Publish date 13
Rec Grant date 3

Table 3: Edges Type Summary

Neo4j is an open source NoSQL native graph database
engine. Typically, a property graph does not have a pre-
defined schema, therefore, the changes in graph can be
incorporated as and when required. To present the def-
initions, we create a running example property graph in
Neo4j as shown in Figure 6. The summary of labels with
their properties and node count is given in Table 2 and
Table 3 shows the summary about edge types. The def-
initions for property node, property edge, and property
graph introduced in this paper are given as follows.

Definition 2.3 (Property Node). Let ΛN be a set of
node Labels with NULL ∈ ΛN , ΠN be a set of proper-
ties where every property π ∈ ΠN can take values over a
domain dom(π). PN is the set of all possible pairs (π, v)
with v ∈ dom(π). A property node n is given by the tuple
(idn,Λn, Pn) with

• idn the unique identifier of n,

• Λn ⊆ ΛN the set of labels defining the node,

• and Pn ⊆ PN is the set of properties of n.

Example 2.2. ΛN ={Person, Student, NULL}, ΠN =
{Age, Expr, Sal}, n1 = (2812, { Person, Student}, {(Age
: 32), (Expr : 5), (Sal : 1400)}) is a property node as
shown in Figure 7.

Definition 2.4 (Property Edge). Let N be a set of prop-
erty nodes, ΛR be a set of edge types with NULL ∈ ΛR,
ΠR be a set of properties where every property π ∈ ΠR can

Age : 32
Expr : 5

Sal : 1400

COLLAB.
since : 2017

Person : Student

Figure 7: Property Node for Label “Person”

take values over a domain dom(π). PR is the set of all
possible pairs (π, v) with v ∈ dom(π). A property oriented
relation r is given by the tuple (idr, n1, n2, λr, Pr) with

• idr the unique identifier of r,

• n1 ∈ N ,

• n2 ∈ N ,

• λr ∈ ΛR the Type of the relation,

• and Pr ⊆ PR is the set of properties of r.

Example 2.3. ΛR = { PUBLISH, RCV GRANT , CO-
LAB. }, ΠR = {since, NULL}, r1 = (4213, {Person},
{Person}, {COLAB.}, {(since:2017)} is a property rela-
tion as shown in Figure 7.

Definition 2.5 (Property Graph). Let ΛN be a set of
node Labels with NULL ∈ ΛN , ΠN be a set of properties
of node, PN a set of (key:value) pairs over ΠN , ΛR be a set
of edge Types with NULL ∈ ΛR, ΠR be a set of properties
of edge, PR a set of (key:value) pairs over ΠR.

A property graph G is given by (N,R) where:

• N stands for a set of property nodes defined over ΛN

and PN ,

• R stands for a set of property edges defined over N ,
ΛR and PR.

Neo4j uses “Cypher’ ’, a declarative query language
that uses ASCII-art syntax. Cypher uses specific clauses
to perform queries on graph database. An example Cypher
query to find a node labeled Person, whose name property
value is ‘John’ and who publishes a journal paper can be
written as:

1 MATCH (p : Person) − [v :PUBLISH] -> (q : Paper)
2 WHERE p . name = ‘ ‘ John ’ ’
3 AND q . type = ‘ ‘ journa l ’ ’
4 RETURN p AS PersonName , q AS Paper

Listing 1: Person “John” with Edge “PUBLISH” and Paper

5

21/02/2019 Neo4j Graph Visualization

file:///home/faaiz/Downloads/graph(1).svg 1/1

COLLABORATE

C
O
LLA

B
O
R
AT

E

COLL
ABOR

ATE COLLABORATE

C
O
LLA

B
O
R
AT

E

COLL
ABOR

ATE John

Dave

Emily

Carl

Figure 8: Edges Types Details

The Listing 1 give the details of all papers published by
“John” which are of type “journal”. To visualize the prop-
erty graph for edge type “COLLABORATE”, we execute
the following sample cypher query. The output in Figure 8
shows the “COLLABORATE” edge of user “John” with
all users in graph database.

1 MATCH (p : Person{name : ‘ ‘ John ’ ’ })−
2 [r :COLLABORATE] -> (n : Person)
3 RETURN p , n , r

Listing 2: Person “John” with Edge “COLLABORATE”

2.3. Handling Missing Values

Missing data as defined in [22] “is a statistical problem
characterized by an incomplete data matrix”. The impact
of “missing data bias and error in the reporting of research
results” may vary depending on “the amount of missing
data and the pattern of missing data” [22]. When dealing
with missing data, it is important to consider the type or
nature of missing data. For example, the missing data can
be random, structured, forgotten or sometimes not avail-
able etc. The types of missing data were first described
in [23] as; (i) Missing Completely At Random (MCAR),
(ii) Missing At Random (MAR), and (iii) Missing Not At
Random (MNAR).

In MCAR, the missing data is not related to a specific
value or observed response. When the missing data de-
pends on a set of observed responses, but not related to
specific values it is called MAR. The missing values are dis-
tributed randomly across all the data in MCAR, whereas
in MAR, the missing values are distributed within one or
more sub-samples. If the missing data is neither MCAR
nor MAR, it is then categorized as MNAR. The reason for
missing values in MNAR depends on the missing values
themselves, for instance the unobserved data. The exam-
ple for MNAR can be the people with high income are less
likely to report their income [23].

2.3.1. Handling missing data techniques

Primarily there are two main approaches to deal with
missing values i.e., (i) ignoring / deletion and (ii) impu-
tation. It is important to decide the best strategy that
results the least biased results. This can be performed by
evaluation of the source data and identifying type of miss-
ing data.

Ignoring or deleting techniques include list-wise dele-
tion (i.e., ignoring a row/ object which contains missing
data) and attribute deletion. Imputation techniques in-
clude replacing missing data with fixed constant for in-
stance, replacing with mean of the objects of attribute.
Expectation Maximization presented in [24] is a missing
data treatment technique in which missing values are es-
timated (parameter estimation) based on the maximum
likelihood method.

We are not using list-wise or pair-wise deletion because
in most of the real-case scenarios this could mean remov-
ing all the data. Indeed, the properties attached to nodes
sharing the same label (e.g. Person) may be different (e.g.
“salary and company” on the one side and “school and
degree“ on the other side). For instance, some nodes may
have salary and company information but not school and
degree information and vice-versa. In this case, when com-
bining all properties of all nodes, it will result in the fact
that no node will have all properties filled in. A list-wise
approach will then result in the deletion of all data. Our
approach is more parsimonious because it preserves the
row as long as possible i.e., even if some attributes are
missing, if they are not concerned by the current compu-
tation/step, they are disregarded.

2.3.2. Handling missing data with replacement

Imputation methods involve replacing missing data.
However, we claim that we can not replace missing data in
case of property graphs. Indeed, if the property is missing
in a node, there is often no meaning to add it artificially,
which creates a bias in results, particularly in the case of
real datasets.

The treatment of missing data using imputation is stud-
ied by employing supervised learning algorithms [25, 26,
27]. In [28, 29], an association rules based model is used
to complete missing data.

The use of graphical models for processing of missing
data is presented in [30]. “Graphical models enable an effi-
cient and transparent classification of the missingness”[30]
i.e., whether it is MCAR or MAR. The multiple impu-
tation techniques such as “Amelia” assume the missing-
ness of data as MAR [31]. The authors in [30] state that
“Maximum Likelihood based techniques is a well known
estimation method for missing data that require MAR as-
sumption for consistent estimates”.

6

2.3.3. Handling missing data without replacement

[15] has considered the question of dealing with missing
data for the computation of rank correlation. However, the
paper only considers the case where one or several individ-
uals are missing, meaning in the tabular representation a
full line has missing values, whereas we consider here the
case where single values are missing.

As mentioned in [32], “obviously the best way to treat
missing data is not to have them”. In real world applica-
tions, where data is managed in relational databases, we
often find missing values. [33] has proposed to mine as-
sociation rules in relational databases in the presence of
missing data by segmenting the database into several so-
called valid databases (“vdb”), in such a way that a vdb
does not contain any missing value. Hence, the authors
redefined the concepts of support and confidence for vdb
and suggest that these definitions are fully compatible with
existing association rule mining algorithms.

3. Problem Statement

NoSQL databases rely on semi-structured data. Due
to inherent nature of property graph, a node may not con-
tain all the properties. This data may be missing because
it is not available or it does not exist as it may not be ap-
plicable (for example no salary, or experience in the case
of kids). So, they often contain such missing data where
all properties may not be present for nodes and edges. We
argue that in case of property graphs, it is not possible to
apply directly existing methods for gradual patterns ex-
traction. There are two main reasons:

(1) Property graphs are not the same as tabular data in
their meaning and application;

(2) Property graphs are semi-structured nature of data.

Therefore, the focus of this work is on handling miss-
ing data and extending the existing algorithms to deal with
such missing values for extracting gradual patterns. The
main steps of our approach are; (i) Retrieve the graph
data, (ii) Treat missing data and (iii) Extract gradual pat-
terns.

For mining the gradual patterns, there can be several
ways to define them in the context of property graphs
such as; (i) Intra-Node-Label-Properties, (ii) Inter-Node-
Label -Properties, (iii) Node- Properties-with-Edges-count,
and (iv) Inter-Edge-Properties. In the paper, we present
(i) and (ii). In Intra-Node-Label-Properties, the pattern
extraction process is performed among the properties/at-
tributes of the “same label” nodes. In the Inter-Node-
Label-Properties, gradual patterns are extracted from dif-
ferent labels. And, in Node-Properties-with-edges-count,
the gradual patterns are extracted from node properties
with the edges count that is retrieved from property graph.

0 1 0 1 ?

1 0 1 0 1

1 0 ? 1 0

1 1 1 0 ?

Handling
Missing Data

Mining Gradual
Patterns

NoSQL Graph
Database

Connect Process Extract

Figure 9: Property Graphs Gradual Pattern Mining Process

4. Mining Gradual Patterns with Missing Values

Mining gradual patterns from property graphs is a novel
idea as it involves automatic retrieval of graph data includ-
ing nodes and edges. It becomes more challenging as the
retrieved information often contains missing values due to
inherent nature of property graphs. In such a case, the
traditional mining techniques can not be applied without
treatment of missing values. Therefore, we highlight two
novelties of our approach. The first is that no method ex-
ists for dealing with missing value when extracting gradual
patterns, which is not the same task as regular frequent
patterns as the support cannot be computed object by ob-
ject but requires to consider the ranking of all objects. The
second is that we apply this on NoSQL property graphs
which are more and more used in real world scalable ap-
plications, which is not trivial as all definitions and algo-
rithms must be extended for this particular context.

An overall process flow of gradual pattern mining from
a property graph in presence of missing data is shown in
Figure 9. The process includes:

(1) Connect to graph database engine and retrieve the
graph schema (node labels, edges types and the prop-
erties)

(2) Processing the retrieved data from graph for handling
missing data

(3) Extract the gradual patterns by computing the sup-
port (Section 4.3)

In the first step we retrieve the graph schema from
the databases, which means the retrieval of existing node
labels, edges types, and their respective count. This infor-
mation provides a summary of the nodes and edges as well
as describes which label is connected with whom and in
what frequency (i.e., number of edges). As we know that
a property graph is semi-structured and does not have an
enforced pre-defined schema, so whenever any deletion or
addition of nodes and edges occur in the graph, the data
summary for them will also change and the pattern ex-
traction will be performed by accordingly.

1 MATCH (Nodes)
2 RETURN l a b e l s (Nodes) AS Node Label ,
3 Count (∗) AS Node Count ;

7

Listing 3: Graph Node Count with Labels

The Listing 3 shows the details of all the labels for a
given property graph with its node count. Similarly, the
Listing 4 gives the details about Edges.

1 MATCH () -[Edge] -> ()
2 RETURN type (Edge) AS Edge Type ,
3 Count (∗) AS Edge Count ;

Listing 4: Graph Node Count with Labels

Once this data is received, we extract the properties
for each label and edge. The process then determines the
completeness of data and if the data is missing in proper-
ties, then missing data handling takes palace.

In the second step of the process, we consider the ap-
proach presented in [33] for treatment of missing values
in the context of property graphs. The approach was
presented for relational databases to deal with the miss-
ing data present in items in order to mine association
rules. The approach suggests to cut the dataset into valid
database vdb i.e., by partially ignoring missing values from
the data. For instance, the dataset shown in Table 4, with
the classical definition of support, given the minimum sup-
port threshold is 40%, the resulting association rules will
be:

X1 = a →X4 = c, supp = 50

X1 = b →X4 = d, supp = 50

X4 = c →X1 = a, supp = 50

X4 = d →X1 = b, supp = 50

Taking the same minimum support threshold of 40%
for dataset shown in Table 5, no rules are formed because
the support value except {X2 = b} for all the remaining
items becomes less than 40% as given below:

{X1 = a} =
3

8
= 0.375, {X1 = b} =

3

8
= 0.375

{X2 = b} =
4

8
= 0.5, {X4 = c} =

3

8
= 0.375

{X4 = d} =
3

8
= 0.375

To avoid such a situation due to missing data, the au-
thors [33] propose to partially disable missing data and
calculate the valid database for items so as to form the
association rules. It is important to recall that for grad-
ual patterns mining we are only interested to compute the
support.

In the later part of the section, we explain the vdb cal-
culation based on [33] and thereby propose our approach.

Id X1 X2 X3 X4
1 a a a c
2 a a b c
3 a b c c
4 a b d c
5 b b e f
6 b b f d
7 b c g d
8 b c h d

Table 4: Dataset 1 from [33]

Id X1 X2 X3 X4
1 ? a a c
2 a a b ?
3 a b c c
4 a b d c
5 ? b e f
6 b b f ?
7 b c g d
8 b c h d

Table 5: Dataset 2 from [33]

The next phase of the process includes mining gradual
patterns that involves the matrix representation of items
(properties) and support computation as shown in algo-
rithm 1 and 2. To do so, we first begin by defining gradual
item in property graph as below.

Definition 4.1 (PG Data Gradual Item). Let ΛN be
a set of node Labels with NULL ∈ ΛN , ΠN be a set of
properties, PN a set of (key:value) pairs over ΠN , ΛR be
a set of edge Types with NULL ∈ ΛR, ΠR be a set of
properties, PR a set of (key:value) pairs over ΠR.

Let GD = (N,R) be a graph defined over ΛN , PN , ΛR and
PR. A graph data gradual item is a gradual item i? where
i ∈ ΠN ∪ΠR.

Example 4.1. An example of such property graph data
gradual item could be “The higher the Age” (Age ↑), where
“Age” is a property of a node labeled with “Person”.

We explain the concept of “vdb” by using the running
example of property graph as discussed in Section 2.2. The
nodes and edges visualization of property graph is shown
in Figure 10. The transformation of label “Person” in
tabular representation is given in Table 6. We represent
the missing values in “Age” and “Sal” attributes with “?”
sign.

The “vdb” is the cardinality of an attribute without
missing values. For the sake of simplicity, this cardinality
is said to be the “cardinality of an attribute”. By this, we
mean the cardinality of the subset of tuples for which the
value on the given attribute is not null. In our case, this
attribute is meant to represent a node’s property.

8

 Person

 Paper

 Project

RCV_GR

R
C
V_
G
R

PU
BLI

SH

P
U
B
LI S

H

PUBLISH

C
O
LL
A
B
O
R
AT
E

C
O
LLABO

R
ATE

CO
LLABO

RATE

PUBLISH

COLLABORATE

C
O
LL
A
BO

R
AT
E

P
U
B
LI
S
HC

O
LLABO

R
ATE

PU
BL
IS
H

PU
BLI

SH

COLLABORATE

RCV_GR

PU
BLISH

PUBLIS
H

PU
BLI

SH

COLLABORATE

CO
LL
AB
OR
AT
E

CO
LLABO

RATE

PUBLISH

CO
LL
AB
OR

AT
E

COLLABORATE

CO
LL
AB
OR
AT
E

P
U
B
LI
S
H

PUBLISH

CO
LL
AB
OR

AT
E

RECEIVE

R
E
C
E
IV
E

RE
CE
IV
E

EV
AL
U
AT
E

EVALUATE

EVALUATE

John

Dave Emily

Tim

Carl

Chris

David

GRAPH

LOGIC

FUZZY

RDF

DB

MUSE

CNRS

Figure 10: Graph Visualization

Id Name Age Expr Sal
1 John 45 13 3500
2 Dave ? 7 2500
3 Emily 30 5 ?
4 Tim ? 10 2800
5 Carl 44 14 3800
6 Cris 38 9 2600
7 David 32 5 1400

Table 6: Label “Person” Tabular form

Let n be the number of tuples of an attribute and am
be the number of missing values in that attribute then the
vdb of that attribute of the dataset is:

|vdb(x)| = |n(x)| − |am| (1)

Therefore, the “vdb” calculation for (Age) is 5 and for
(Sal) is 6 as shown in Table 7 and Table 8 respectively.

As discussed in Section 3 that there can be several
ways to first define and then mine the gradual patterns in
property graphs. For the scope of this paper, we present
following two methods:

(1) Intra-Node-Label Gradual Patterns

(2) Node-Properties with Edges Gradual Patterns

We describe the mining process for both of these meth-
ods as follows.

4.1. Intra-Node-Label Gradual Patterns

We investigate the scenario of Intra-Node-Label prop-
erties for gradual pattern extraction i.e., the pattern ex-
traction process is performed among the properties/at-
tributes of the “same label” nodes. For instance, for a
particular label “Person”, we try to find the correlation
among the properties of nodes. An example of the final
extracted pattern can be “the higher the age, the higher the

Id Name Age
1 John 45
3 Emily 30
5 Carl 44
6 Cris 38
7 David 32

Table 7: |vdb (Age)|

Id Name Sal
1 John 3500
2 Dave 2500
4 Tim 2800
5 Carl 3800
6 Cris 2600
7 David 1400

Table 8: |vdb (Sal)|

experience”. It is important to note that in this scenario
there are no edges involved. Considering the label “Per-
son” from graph Figure 10. First, the program retrieves
the data from property graph using Noe4j bolt protocol for
this label. The response of the Cypher query received from
graph database is transformed into tabular representation
as shown in Table 6. At this stage, program creates binary
order matrix for given properties and then computes the
support as described in algorithm [5] for gradual pattern
extraction. But, it requires to handle missing values first,
because the exiting algorithm does not allow to treat miss-
ing data.

Let us see with an example regarding the missing data
and our approach to handle it. In property graph, in re-
sponse to a projection Cypher query, a missing property
(i.e., key) and a missing value of the property are treated
as same. The result of the Cypher query will be “NULL”,
if the node contains a missing value or a missing property
[34]. Once the data is received, we perform binary order
of matrix as explained in Section 2.1. For example, the
binary matrices of (Age ↑) and (Expr ↑) representing the
order are shown in Figure 11. Since, we do not know the
missing value of Dave’s age, so when representing the or-
der between John’s age and Dave’s age, we place “?” sign
in the 2nd row of 1st column of the matrix (Age ↑) in Fig-
ure 11. The same procedure applies for John and Tim’s
missing age, we place “?” sign in the 4th row of 1st column
in the matrix. For the binary AND operation of (Age ↑)
and (Expr ↑), we consider the fact that any bit (1 or 0)
multiplied with “?” sign will result in “?” sign. Hence, the
resulting Hadamard product of these two gradual items in
matrix representation is shown in Figure 12.

When combining several attributes, the value of vdb
reduces. In our approach, it requires us to preserve the
location of missing value, so as to maintain the cardinality
for computing the support when combining multiple at-
tributes. [33] states that, for a given itemset, we cut the
dataset into a valid database “vdb”, such that the “vdb”
must not have any missing values. The vdb representations
in tabular form when combining attributes are shown in
Table 10, and Table 11 respectively. We can observe that
the size of vdb is the same for (Age & Sal) and (Age &
Sal & Experience) because the Expr attribute does not
have any missing value. The calculation of “vdb” for label

9

Id Name Age Expr
1 John 45 13
2 Dave ? 7
3 Emily 30 5
4 Tim ? 10
5 Carl 44 14
6 Chris 38 9
7 David 32 5

Table 9: Dataset for Age & Expr

1 2 3 4 5 6 7

1 0 ? 0 ? 0 0 0
2 ? ? ? ? ? ? ?
3 1 ? 0 ? 1 1 1
4 ? ? ? ? ? ? ?
5 1 ? 0 ? 0 0 0
6 1 ? 0 ? 1 0 0
7 1 ? 0 ? 1 1 0

(Age ↑)

1 2 3 4 5 6 7

1 0 0 0 0 1 0 0
2 1 0 0 1 1 1 0
3 1 1 0 1 1 1 0
4 1 0 0 0 1 0 0
5 0 0 0 0 0 0 0
6 1 0 0 1 1 0 0
7 1 1 0 1 1 1 0

(Expr ↑)

Figure 11: Binary matrix representing orders for Table 9

1 2 3 4 5 6 7

1 0 ? 0 ? 0 0 0
2 ? ? ? ? ? ? ?
3 1 ? 0 ? 1 1 1
4 ? ? ? ? ? ? ?
5 0 ? 0 ? 0 0 0
6 0 ? 0 ? 1 0 0
7 1 ? 0 ? 1 1 0

Figure 12: Hadamard product for Age AND Expr

Id Name Age Expr
1 John 45 13
3 Emily 30 5
5 Carl 44 14
6 Cris 38 9
7 David 32 5

Table 10: |vdb (Age & Expr)|

Id Name Age Sal Expr
1 John 45 3500 13
5 Carl 44 3800 14
6 Cris 38 2600 9
7 David 32 1400 5

Table 11: |vdb (Age & Sal & Expr)|

“Person” is given below:

|vdb(Age)| = 5, |vdb(Sal)| = 6, |vdb(Expr)| = 7

|vdb(Age& Sal)| = 4, |vdb(Age& Expr)| = 5

|vdb(Sal & Expr)| = 6

|vdb(Age& Sal & Expr)| = 4

For the gradual pattern extraction process, this vdb
calculation is an essential part because the value of vdb is
then used for support computation (Section 4.3).

4.2. Node-Properties-with-Edges Gradual Patterns

In “Node-Properties-with-edges- count” scenario, we try
to extract the gradual patterns that involve node proper-
ties for a label as well as the corresponding edges count.
The pattern extraction process will be processed to see if
there exists any correlation between them. In this case,
the correlation can be “the higher the age, the higher the
number of collaborations” or “the higher the experience,
the higher the collaboration”.

To perform this mining we first extract graph sum-
maries. “Graph summarization facilitates the identifica-
tion of structure and meaning in data” [35]. There are var-
ious summarization techniques depending upon the nature
and requirement of the task [7, 35]. These graph summa-
rization techniques include aggregation-based (topology),
attribute-based (topology and attributes) [36], application-
oriented (e.g., graph pattern matching), and domain spe-
cific (e.g., bio-informatics) [7]. In our scenario, program
first extracts the graph topology summary including the
labels and edges count and further uses that for mining
gradual patterns. The output of graph schema summary

10

SrcLabel Edge DstLabel EdgeCnt

Person COLLABORATE Person 14

Person PUBLISH Paper 13

Person RCV GR Project 3

Paper RECEIVE Project 3

Project EVALUATE Person 3

Table 12: Graph Schema Summary with Edge Count

Id Name Age Expr Sal
No. Of

Collaboration
No. of

Publications
No. of
Grants

1 John 45 13 3500 3 3 2

2 Dave ? 7 2500 2 1

3 Emily 30 5 ? 1 1

4 Tim ? 10 2800 1 2

5 Carl 44 14 3800 3 3 1

6 Chris 38 9 2600 3 1

7 David 32 5 1400 1 2

Label “PERSON” Data Edges Count

0

0

0

0

0

Figure 13: Property Graphs Gradual Pattern Mining Process

for running example is shown in Table 12.

After retrieving the graph schema summary, the pro-
gram extracts summary per label with all its nodes and
edges count. The output of this summary in tabular form
for label “Person” is shown in Figure 13. From this point
the process of handling missing values takes place as shown
in Figure 9. After handling missing values, the support
computation takes place to find out the gradual pattern
that have support greater than the minimum support thresh-
old.

4.3. Support Computation

The existing support and confidence measures are mis-
leading when there exist missing data in such a way that
they are lacking in the crucial monotonicity property of
support [37]. We are interested to compute the “support”
with valid databases. We are not computing the confi-
dence as the objective over here is not rules formation.
The anti-monotonicity of the support can not be consid-
ered anymore in a simple manner because support cannot
be computed object by object but requires to consider the
ranking of all objects.

In order to compute the support, we compute the log-
ical AND of gradual items as explained in Section 4.1.
From the resultant matrix, we take the sum of binary ‘1’
bit from the matrices. Consequently, we calculate the sup-
port as given below:

Support(Xi) =
Sum of concordant pairs

|vdb(Xi)| ∗ (|vdb(Xi)| − 1)/2
(2)

where, Xi = itemset

In [33], authors suggest, “To obtain good results a vdb
must be a good sample of the database. This is normally
true if values are missing at random” therefore, a new
parameter “representativity” is introduced. The represen-
tativity is the proportion of the vdb(Xi) over the entire
dataset tuples. The itemset should be representative so
as to be considered for support computation. Representa-
tivity is a user defined parameter. It helps to ensure that
support computation should not take place for the itemset
which is not representative i.e., having value less than user
defined value. For the running example, the representativ-
ity is calculated as follows:

Representativity(Xi) =
|vdb(Xi)|
|n|

(3)

where, Xi = itemset, n = number of tuples

|Rep(Age)| = 5/7, |Rep(Sal)| = 6/7, |Rep(Expr)| = 7/7

|Rep(Age & Sal)| = 4/7, |Rep(Age & Expr)| = 5/7

|Rep(Sal & Expr)| = 6/7, |Rep(Sal & Expr)| = 6/7

|Rep(Age& Sal & Expr)| = 4/7

4.4. Algorithm

An overall mining process is shown in Figure 9. Algo-
rithm 1 shows the procedure for computing the support
based on the vdb method as explained in Section 4.3. Af-
ter the retrieval of data from the graph data, following are
the main steps of Algorithm 1.

• Store the items (properties/attribute(s)) in an array
list.

• Initialize the binary matrix for each item of the list.

• Compute the binary order matrix.

• Compute the sum of high “1” bits and missing data
represented as “?”.

• Compute the vdb (cardinality of valid data) to be
used for support computation.

• Compute the support and update the list

An explanation of these steps is presented as follows. After
the retrieval of data from the graph data, binary matrix
initialization for each property is performed. Then we cal-
culate binary-ordered representation for each item. These
matrices contain 0 or 1 and missing values are represented
by “?” sign. We then calculate the sum of all high-bits
i.e., 1 which represent the concordance for the respective

11

item. A complete row with “?” sign in matrix represents
the missing value in that attribute as shown in Figure 11,
(Age↑) for row 4 i.e., Tim’s age is missing. To keep track
of this, a card variable is used. For instance, in Figure 11
(Age↑), the number of rows containing “?” are 2. The flag
variable is used to track the the length of matrix that in
turns helps to calculate vdb i.e., the cardinality of that item
without missing values. Finally, the support is computed
as expressed in Equation 1. If the item’s support is less
than the minimum support threshold, then it is removed
from the list.

Algorithm 1: Mining Gradual Property-based
Items in the Presence of Missing Values

Input: Properties, minSupport

Output: List of gradual items having
support greater than minSupport

1: Initialize the matrices for each property
and store into list L

2: for all items in list L do
3: for all rows of matrix M for listItem

Li do
4: for all columns of row of M do
5: if Li.M[row][col] == 1 then
6: sum← sum+ 1
7: else if Li.M[row][col]==? then
8: card← card+ 1
9: end if

10: if card == Li.M.length then
11: flag ← flag + 1
12: end if
13: end for
14: end for
15: vdb = (Li.M.length - flag)
16: support = sum / (vdb * (vdb-1)/2)
17: if support < minSupport then
18: remove Li

19: end if
20: end for
21: Update the list L with successful gradual

items of size-1

Once we have the list of successful gradual items, i.e.,
those having (support > minSupport) the program checks
for gradual patterns as defined in Definition 2.2. There-
fore, the Hadamard product of binary AND operation of
gradual items is performed and then the support is calcu-
lated. The successful gradual patterns are updated in the
list and those which do not meet the minimum support
requirement are removed. This is performed by Algorithm
2. Following are the main steps:

• Take the list of input gradual items that are result
of Algorithm 1 and multiply Li item with Lj item.

• Perform the Hadamard product for Li AND Lj .

• Compute the binary order matrix.

• Compute the sum of high “1” bits and missing data
represented as “?”.

• Compute the vdb (cardinality of valid data) to be
used for support computation and compute support.

• Update the list of gradual patterns and go for next
item in Li

• Output the list of successful gradual patterns.

Pattern mining algorithms are known to be NP-hard.
It is concluded that the complexity of enumeration prob-
lem for mining maximal frequent itemsets is NP-hard [38,
39].

5. Experimental Results

The objective of these experiments is to see the feasibil-
ity of mining gradual pattern from property graphs and to
compare the proposed approach (Section 4) with imputa-
tion of missing values approach. This section is subdivided
into three subsections. The first subsection introduces the
experimental protocol, the second subsection presents the
datasets (synthetic or real data). Finally, we show and
discuss the experimental results in the last subsection.

5.1. Experimental Protocol

In this section we briefly describe the program exe-
cution environment, the program’s logical execution pro-
tocol, outlier removal method and memory consumption
metrics used to calculate maximum heap utilization.

5.1.1. Environment

All the experiments have been run on the hardware,
operating system and software packages given below.

• Hardware: Intel Core i7-4610M, 3.00 GHz, quad core
processor, 16 GB RAM

• Operating System: Linux generic kernel 4.4.0-134,
Ubuntu 16.04 LTS

• Software:

– JDK version “1.8.0 181”, jre build 1.8.0 181-
b13, HotSpot java 64-bit server VM (build 25.181-
b13, mixed mode)

– Neo4j graph database community edition 3.4.7,
bolt protocol enabled

– Neo4j-java-driver version 1.4.4

12

Algorithm 2: Mining Gradual Patterns in the
Presence of Missing Values from Gradual Items

Input: List Li of gradual items, minSupport,

Output: Frequent Property-based Gradual
Patterns

1: while items in list |Li| ! = 0 do
2: for all listItem Li do
3: for all listItem Lj = Li + 1 do
4: for all rows of matrix M for

listItem Li do
5: for all columns of row of M do
6: resultM [row][col] =

Li.M [row][col]*
Lj .M [row][col]

7: if resultM[row][col] == 1
then

8: sum← sum+ 1
9: else if resultM[row][col] == ?

then
10: card← card+ 1
11: end if
12: if card== resultM.length

then
13: flag ← flag + 1
14: end if
15: end for
16: end for
17: vdb = (LiresultM.length - flag)
18: support = sum / (vdb * (vdb-1)/2)

19: if support < minSupport then
20: remove Li

21: end if
22: end for
23: end for
24: Update the list L
25: end while
26: Output the frequent patterns

5.1.2. Experiments execution protocol

The execution protocol describes the steps necessary
to produce the results given in the next section.

(1) The java program establishes the connection with graph
database using Neo4j’s bolt protocol (port 7867)

(2) After the successful connection, the program queries
the graph database to retrieve the label’s data for the
required attributes

(3) Once the attribute data is received, for each attribute
the binary matrix initialization is performed as dis-
cussed in Section 2

(4) After the matrix initialization and concordant object
pairs AND operation, the vdb computation is per-
formed as discussed in Section 4

(5) An executable is created and run 5 times. The average
value of each metric is used (outliers are removed, as
discussed in the next subsection)

The source code and output files are available at git [40].
The program takes as parameter the min support.

5.1.3. Outlier Removal

Each data point is plotted by taking the average of
5 executions. In case of any outlier result point in time
or peak heap memory utilization, we use the Three Sigma
rule also known as 68-95-97.7 or “empirical rule”. It states
that for a normal distribution almost all of the data will
be within the range of 3 standard deviations (std.dev).
Empirical rule has three parts i.e., 68% of data will fall
with 1 standard deviation of the mean value, 95% of data
within 2 standard deviations of the mean value and 97.7%
of data within 3 standard deviations of the mean value.
For removing the outliers, we adopt the rule of 2 standard
deviations i.e., (Mean + 2×std.dev) for upper bound point
and (Mean − 2× std.dev) for lower bound point [41].

5.1.4. Memory Consumption Metric

Choosing a metric for memory consumption is an es-
sential task. Java has both heap and non-heap mem-
ory. JVM consider memory pools of type heap or non-
heap [42]. For the memory consumption we take peak used
size of all the memory pools which are of type HEAP and
NON HEAP. For this we use java MemoryPoolMXBean
management interface for a memory pool and call the
method getPeakUsage(). The plots for datasets show the
sum of heap and non-heap peak memory usage. Details of
the source code and its usage is given at [40].

For each program execution, we have used the same
JVM settings. First of all, we have decided to use the
G1 garbage Collector. First introduced with Java 7, this
garbage collector has the unique ability to efficiently and
concurrently deal with very large heaps. It can also be con-
figured not to exceed a maximum pause time. It can so eas-
ily outperform other state-of-the-art GCs on large heaps
that Garbage First (G1). GC is used as default garbage

13

S# Dataset Nodes Properties Missing %
1 Russian tweet 393 6 3
2 Hepatitis 155 6 13
3 Synthetic 10,000 5 25

Table 13: Intra-Node Gradual Pattern Mining

S# Dataset N R P RT M
1 Synthetic Graph 15,000 999,268 6 3 10
2 Hetionet(Gene) 20,945 1,289,190 1 4 1

N = Nodes , R = edges, P = Node Properties,
RT= edges Type, M = Missing Values %

Table 14: Nodes with Edges Gradual Pattern Mining

collector in Java 9. We also set the BiasedLockingStar-
tupDelay to 0 for improving performance of unaccounted
synchronization and we have tuned the Xmx parameter to
fix the maximum size of memory allocation pool. To sum-
marize, the jvm flags as arguments for program execution
are; -XX:+UseG1GC, -XX:BiasedLockingStartupDelay =
0, and -Xmx10G for intra-node and -Xmx12G for nodes
with edges datasets.

5.2. Datasets description

The experiments were performed on two different types
of datasets for intra-node gradual pattern mining and nodes
with edges gradual pattern mining as shown in Table 13
and Table 14 respectively. It is worth noticing that the
proposed approach may be applied to numerical ordinal
attributes only. Therefore, in case of intra-node grad-
ual pattern mining, a pre-processing step is performed to
opt the attributes of datasets that are numerical. For all
these, we have created separated graph databases and run
the program executions accordingly, with the exception of
Hetionet dataset. The Hetionet is a real graph database
which is publicly available at [43].

In each result, for the missing data imputation method,
we made a separate program to perform comparisons of
time consumption, peak memory and number of generated
patterns. The missing data is imputed using R package
Amelia 2 that uses the expectation minimization algo-
rithm [31] for multiple imputation of missing data. The
complete details of source code is available at gitlab [40].
The rest of this subsection is devoted to describe more
details about each dataset.

5.2.1. The Russian tweet troll

The Russian tweet troll is a real dataset taken from [44].
This dataset contains more than 200, 000 tweets that Twit-
ter has tied to “malicious activity” from Russia-linked ac-
counts during the 2016 U.S. presidential election.

User account file contains 14 attributes but we have
selected 7 relevant attributes (userId, followersCount, sta-
tusesCount, timeZone, favouritesCount, friendsCount, and

listedCount) for our experiments. This data is used to cre-
ate a graph DB using cypher import utility. The data is
imported using the following command:

1 LOAD CSV WITHHEADERSFROM
2 ” f i l e : /// u s e r s r u s s i a n t w e e t t r o l l . csv ”
3 AS row
4 MERGE
5 (: User { user Id : row . use r Id ,
6 fo l l owersCount : row . fo l l owersCount ,
7 statusesCount : row . statusesCount ,
8 timeZone : row . timeZone ,
9 favour i t e sCount : row . favour i t e sCount ,

10 f r i endsCount : row . f r i endsCount ,
11 l i s t edCount : row . l i s t edCount })

Listing 5: Cypher import command for Russian-tweet-troll

5.2.2. Hepatitis from UCI Machine Learning Repository

Hepatitis dataset is taken from UCI machine learning
repository [45]. For this dataset, there are 20 attributes,
but we consider only 6 relevant attributes (BILIRUBIN,
ALKphosphate, PROTIME, ALBUMIN, Age, and SGOT])
that have been imported to graph database. Attributes
selection is made considering the numerical attributes re-
quirement of the approach.

1 LOAD CSV WITHHEADERSFROM
2 ” f i l e : /// h e p a t i t i s . csv ” AS row
3 MERGE
4 (: Hepa t i t i s {Age : row . Age ,
5 BILIRUBIN : row .BILIRUBIN ,
6 ALKphosphate : row . ALKphosphate ,
7 SGOT: row .SGOT,
8 ALBUMIN: row .ALBUMIN,
9 PROTIME: row .PROTIME})

Listing 6: Cypher import command for Hypatitis dataset

5.2.3. Synthetic Dataset

For this experiment, we creates a synthetic dataset
by using the java class “Random” to generate a stream
of pseudorandom numbers. The source code for generat-
ing dataset is available at gitlab [40]. We generated the
dataset for 10, 000 nodes and 5 attributes. In order to in-
troduce missing values of 25% in the generated file, we use
R’s package missForest and its method prodNA. This
package uses Random Forest supervised machine learning
algorithm to introduce missing values completely at ran-
dom (MCAR). The database creation command is given
below.

14

0

1

2

3

4

5

6

0.20.30.40.50.60.70.8

T
im

e
(s

e
c)

Support Threshold

(RussiaTweet Troll Dataset)

VDB

Imputation

0

50

100

150

200

250

300

0.20.30.40.50.60.70.8

P
e
a
k

H
e
a
p

 M
e
m

o
ry

(M
B

)

Support Threshold

(RussiaTweet Troll Dataset)

VDB

Imputation

0

10

20

30

40

50

60

0.20.30.40.50.60.70.8

N
u
m

P
a
tt

e
rn

s

Support Threshold

(RussiaTweet TrollDataset)

VDB

Imputation

Figure 14: Russia Tweet troll Dataset

0

0.5

1

1.5

2

2.5

3

0.20.30.40.50.60.70.8

T
im

e
(s

e
c)

Support Threshold

(Hepatitis -UCI ML Repository Dataset)

VDB

Imputation

0

20

40

60

80

100

120

0.20.30.40.50.60.70.8

P
e
a
k

H
e
a
p

M
e
m

o
ry

(M
B

)

Support Threshold

(Hepatitis- UCI ML Repository Dataset)

VDB

Imputation

0

10

20

30

40

50

60

70

0.20.30.40.50.60.70.8

N
u
m

P
a
tt

e
rn

s

Support Threshold

(Hepatitis- UCI ML Repository Dataset)

VDB

Imputation

Figure 15: Hepatitis - UCI ML Repository Dataset

15

1 LOAD CSV WITHHEADERSFROM
2 ” f i l e : ///genData10K . csv ” AS row
3 MERGE
4 (: Synthet i c { Id : row . Id ,
5 A99RO: row .A99RO,
6 B99RO: row .B99RO,
7 C99RO: row .C99RO,
8 D99RO: row .D99RO,
9 E99RO: row .E99RO})

Listing 7: Cypher import command for Synthetic dataset

5.2.4. Synthetic Graph Dataset

We have developed a synthetic graph generator to make
property graphs in Neo4j database. This graph generator’s
web interface is available at [46]. The synthetic graph
dataset contains 3 labels namely Label1, Label2, Label3
and 3 edge types R1, R2, and R3 respectively. The nodes
and edges details are shown in Table 14. We created the
graph database with these specifications to run the ex-
periments for both vdb and imputation methods to com-
pare the time and memory utilization as well as to observe
the difference in generated patterns. The created Neo4j
databases and complete source code is available at [40].
The output plots are shown in Figure 17.

5.2.5. Hetnets in bio-medicine

Hetnet is a research outcome published in [47], which
shows a network of biology, disease, and pharmacology.
It is an integrated network of nodes and edges in which
“the knowledge from millions of biomedical studies over
the last half century have been encoded into this single
system” [47]. The details of the project and its relevant
github resource is available at [48].

In this dataset, we choose the “Gene” label and its
edges. The purpose to choose “Gene” because it has a rel-
evant attribute i.,e number of chromosomes for every gene.
We took all the gene nodes and their edges with other la-
bels like chemical compound, biological process, etc. There
are 7 edge types of “Gene” Label in Hetionet. The sum-
mary of its edges with other labels is shown in Table 15.
The dataset has a total of 47,031 nodes and 2,250,197
edges. In the Gene label, there are 20,945 nodes and
1,289,190 edges with 7 edge types. For our experiments,
we used all the nodes with 4 edge types that connect with
labels other than Gene itself like, PARTICIPATES GpBP,
PARTICIPATES GpMF, PARTICIPATES GpPW and PAR-
TICIPATES GpCC. The output plots are shown in Fig-
ure 18.

5.3. Discussion

It is found from the results of both types of experiments
i.e., intra-nodes and nodes with edge that the percentage

0

50

100

150

200

250

300

350

400

0.20.30.40.50.60.70.8

T
im

e
(s

e
c)

Support Threshold

(Synthetic Dataset)

VDB

Imputation

0

1000

2000

3000

4000

5000

6000

7000

0.20.30.40.50.60.70.8

P
e
a
k

H
e
a
p

M
e
m

o
ry

(M
B

)

Support Threshold

(Synthetic Dataset)

VDB

Imputation

0

5

10

15

20

25

30

0.20.30.40.50.60.70.8

N
u
m

P
a
tt

e
rn

s

Support Threshold

(Synthetic Dataset)

VDB

Imputation

Figure 16: Synthetic Dataset

16

0

100

200

300

400

500

600

0.20.30.40.50.60.70.8

T
im

e
(s

e
c)

Support Threshold

(Synthetic Graph Generator Datasets)

VDB

Imputation

0

2000

4000

6000

8000

10000

12000

14000

16000

0.20.30.40.50.60.70.8

P
e
a
k

H
e
a
p

M
e
m

o
ry

(M
B

)

Support Threshold

(Synthetic Graph Generator Datasets)

VDB

Imputation

0

200

400

600

800

1000

1200

0.20.30.40.50.60.70.8

N
u
m

P
a
tt

e
rn

s

Support Threshold

(Synthetic Graph Generator Datasets)

VDB

Imputation

Figure 17: Synthetic Graph Dataset

0

200

400

600

800

1000

0.30.40.50.60.70.8

T
im

e
(s

e
c)

Support Threshold

(Hetionet Datasets)

VDB

Imputation

0

5000

10000

15000

20000

25000

0.30.40.50.60.70.8

P
e
a
k

H
e
a
p

M
e
m

o
ry

(M
B

)

Support Threshold

(Hetionet Datasets)

VDB

Imputation

0

5

10

15

20

0.30.40.50.60.70.8

N
u
m

P
a
tt

e
rn

s

Support Threshold

(Hetionet Datasets)

VDB

Imputation

Figure 18: Hetionet(Gene) Dataset

17

Src edge Dst RelCnt
Gene PARTICIPATES GpBP Biological Process 559504
Gene REGULATES GrG Gene 265672
Gene INTERACTS GiG Gene 147164
Gene PARTICIPATES GpMF Molecular Function 97222
Gene PARTICIPATES GpPW Pathway 84372
Gene PARTICIPATES GpCC Cellular Component 73566
Gene COVARIES GcG Gene 61690

Table 15: Hetionet “Gene”edges Summary

of missing data has an impact on the total number of ex-
tracted patterns. That is, with higher missing data per-
centage in a dataset, we get more patterns. In the case of
synthetic dataset at support threshold of 0.2, the imputa-
tion approach generates 24 patterns whereas vdb approach
generates 13 patterns. Some of the excessive pattern gen-
erated by imputation approach are (A99RO↑ , B99RO↑),
(A99RO↑, C99RO↑), (B99RO↑, C99RO ↑), (A99RO ↑,
B99RO↑, C99RO↑), and (B99RO ↑, D99RO↑, E99RO↑).
Similarly, for Hepatitis dataset at support threshold of 0.2,
(BILIRUBIN ↑, Age↑, SGOT↓) is an excessive pattern.
Also, there were some patterns in imputation methods
that were not present in vdb such as, (ALKphosphate ↑,
PROTIME↑, ALBUMIN↑) and (ALKphosphate↑ , PRO-
TIME ↑, Age↓). We think that these excessive patterns
may not resemble to the reality and can be better decided
by the domain expert by looking at the actual available
data.

In the experiments for intra-node gradual patterns, it
was observed that imputation method generates more pat-
terns than vdb-based method. This implies that the im-
putation method generates the patterns that might not
actually correlate in reality. Since the Russian-tweet-troll
dataset has only 3% missing data, so there is almost no
difference between both methods (i.e., vdb and imputa-
tion) in terms of patterns being extracted as shown in
the NumPatterns Vs Support Threshold plots Figure 14.
The same fact is visible in Figure 15 for Hepatitis dataset.
Whereas, in Synthetic dataset plot Figure 16, at smaller
support thresholds like 0.2, the difference of generated pat-
terns is almost double. This shows that with higher per-
centage of missing data, the imputation method generates
more biased results.

In the experiments for nodes with edges scenario for the
datasets shown in Table 14, we observed the similar fact
that with more percentage of missing data the imputation
method generates more patterns as shown in numPatterns
in Figure 17. For the imputation method, this fact may be
crucial in the case of real graph databases where practi-
tioners or domain experts involvement becomes necessary
to remove the false positives (i.e., the excessive patterns).
The same is observed in Hetionet graph database at sup-
port threshold of 0.3, where we found (chromosome ↑ ,
PARTICIPATES GpPW ↑) as an excessive pattern.

For the memory utilization results, with the exception
of couple of instances, the vdb based method performs
better than imputation method for all the three datasets.
The program’s time utilization results also show that time
difference is almost doubles between both methods in all
the three datasets of intra-node experiments. whereas,
the time utilization in case of node with edges scenario is
almost same as observed in Figure 17 and Figure 18 re-
spectively.

It is deduced form the results that when the percentage
of missing values is higher the imputation method gener-
ates more pattern than vdb approach and these excessive
patterns might now reflect to the reality. Because the data
is artificially imputed in missing places, the imputation
method generates more co-variance for the objects that
are not actually present.

6. Conclusion

In this article, we are dealing with mining gradual pat-
terns from NoSQL graph databases, which raises the prob-
lem of dealing with missing data. We propose a new ap-
proach based on valid databases and show the performance
comparison with imputation method.

Further works include the integration of our proposal
in the database engine. To achieve this goal, we aim at
using GraphX Apache Spark’s API for graphs and graph-
parallel computation. Indeed, one of our further work is
to provide a scalable distributed implementation of grad-
ual pattern mining algorithm compatible with the use of
missing values.

Another field of research is to explore the other scenar-
ios for gradual patterns from property graphs like, Inter-
Node-Label-Properties i.e., gradual patterns are to be ex-
tracted from the properties of nodes with different labels
and Inter-Edge-Properties i.e., gradual patterns are to be
extracted from the properties of different edge types.

References

References

[1] C. C. Aggarwal, An introduction to data mining, in: Data Min-
ing: The Textbook, Springer International Publishing, 2015,
pp. 1–26 (2015). doi:10.1007/978-3-319-14142-8_1.

[2] C. C. Aggarwal, M. A. Bhuiyan, M. Al Hasan, Frequent pat-
tern mining algorithms: A survey, in: Frequent pattern mining,
Springer, 2014, pp. 19–64 (2014).

[3] E. Hüllermeier, Association rules for expressing gradual depen-
dencies, in: Proc. of PKDD’02, 2002, pp. 200–211 (2002).

[4] L. Di-Jorio, A. Laurent, M. Teisseire, Mining frequent grad-
ual itemsets from large databases, in: N. M. Adams, C. Ro-
bardet, A. Siebes, J. Boulicaut (Eds.), Advances in Intelli-
gent Data Analysis VIII, 8th International Symposium on In-
telligent Data Analysis, IDA 2009, Lyon, France, August 31 -
September 2, 2009. Proceedings, Vol. 5772 of Lecture Notes in
Computer Science, Springer, 2009, pp. 297–308 (2009). doi:

18

https://doi.org/10.1007/978-3-319-14142-8_1
https://doi.org/10.1007/978-3-642-03915-7_26
https://doi.org/10.1007/978-3-642-03915-7_26
https://doi.org/10.1007/978-3-642-03915-7_26

10.1007/978-3-642-03915-7_26.
URL https://doi.org/10.1007/978-3-642-03915-7 26

[5] A. Laurent, M. Lesot, M. Rifqi, GRAANK: exploiting rank
correlations for extracting gradual itemsets, in: T. Andreasen,
R. R. Yager, H. Bulskov, H. Christiansen, H. L. Larsen (Eds.),
Flexible Query Answering Systems, 8th International Confer-
ence, FQAS 2009, Roskilde, Denmark, October 26-28, 2009.
Proceedings, Vol. 5822 of Lecture Notes in Computer Sci-
ence, Springer, 2009, pp. 382–393 (2009). doi:10.1007/

978-3-642-04957-6_33.
URL https://doi.org/10.1007/978-3-642-04957-6 33

[6] B. R. Bebee, D. Choi, A. Gupta, A. Gutmans, A. Khandel-
wal, Y. Kiran, S. Mallidi, B. McGaughy, M. Personick, K. Ra-
jan, S. Rondelli, A. Ryazanov, M. Schmidt, K. Sengupta, B. B.
Thompson, D. Vaidya, S. Wang, Amazon neptune: Graph data
management in the cloud, in: M. van Erp, M. Atre, V. López,
K. Srinivas, C. Fortuna (Eds.), Proceedings of the ISWC 2018
Posters & Demonstrations, Industry and Blue Sky Ideas Tracks
co-located with 17th International Semantic Web Conference
(ISWC 2018), Monterey, USA, October 8th to 12th, 2018., Vol.
2180 of CEUR Workshop Proceedings, CEUR-WS.org, 2018
(2018).
URL http://ceur-ws.org/Vol-2180/paper-79.pdf

[7] A. Khan, S. S. Bhowmick, F. Bonchi, Summarizing static and
dynamic big graphs, Proc. VLDB Endow. 10 (12) (2017) 1981–
1984 (Aug. 2017). doi:10.14778/3137765.3137825.
URL https://doi.org/10.14778/3137765.3137825

[8] S. Ayouni, S. Ben Yahia, A. Laurent, P. Poncelet, Fuzzy gradual
patterns: What fuzzy modality for what result?, in: SoCPaR:
International Conference of Soft Computing and Pattern Recog-
nition, Paris, France, 2010, pp. 224–230 (2010).
URL https://hal-lirmm.ccsd.cnrs.fr/lirmm-00798797

[9] M. Quintero, A. Laurent, P. Poncelet, Fuzzy orderings for
fuzzy gradual patterns, in: International Conference on Flexible
Query Answering Systems, Springer, 2011, pp. 330–341 (2011).

[10] T. D. T. Do, A. Termier, A. Laurent, B. Négrevergne,
B. Omidvar-Tehrani, S. Amer-Yahia, PGLCM: efficient par-
allel mining of closed frequent gradual itemsets, Knowl.
Inf. Syst. 43 (3) (2015) 497–527 (2015). doi:10.1007/

s10115-014-0749-8.
URL https://doi.org/10.1007/s10115-014-0749-8

[11] S. Ayouni, S. B. Yahia, Fuzzy set-based formalization of gradual
patterns, in: 2014 6th International Conference of Soft Com-
puting and Pattern Recognition (SoCPaR), IEEE, 2014, pp.
434–439 (2014).

[12] A. Laurent, B. Négrevergne, N. Sicard, A. Termier, Efficient
parallel mining of gradual patterns on multicore processors, in:
Advances in Knowledge Discovery and Management, Springer,
2012, pp. 137–151 (2012).

[13] T. Ngo, V. Georgescu, A. Laurent, T. Libourel, G. Mercier,
Mining spatial gradual patterns: Application to measurement of
potentially avoidable hospitalizations, in: International Confer-
ence on Current Trends in Theory and Practice of Informatics,
Springer, 2018, pp. 596–608 (2018).

[14] J. Ayres, J. Flannick, J. Gehrke, T. Yiu, Sequential pattern
mining using a bitmap representation, in: Proceedings of the
Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’02, ACM, New York, NY,
USA, 2002, pp. 429–435 (2002). doi:10.1145/775047.775109.
URL http://doi.acm.org/10.1145/775047.775109

[15] T. Papaioannou, S. Loukas, Inequalities on Rank Correlation
with Missing Data, Journal of the Royal Statistical Society Se-
ries B (Methodological) 46 (1) (1984) 68–71 (1984).

[16] F. Berzal, J.-C. Cubero, D. Sanchez, M.-A. Vila, J. M. Serrano,
An alternative approach to discover gradual dependencies, Int.
Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems 15 (5) (2007) 559–570 (2007).

[17] S. Sakr, G. Al-Naymat, Querying graph databases: An
overview, in: Advanced Database Query Systems: Techniques,
Applications and Technologies, IGI Global, 2011, pp. 304–322
(2011). doi:10.4018/978-1-60960-475-2.ch013.

[18] Amazon, Amazon neptune: Fast, reliable graph database built
for the cloud, page accessed: Jan 2019.
URL https://aws.amazon.com/neptune/

[19] Microsoft, Azure cosmos db: Globally distributed, multi-model
database service, page accessed: Jan 2019.
URL https://azure.microsoft.com/en-gb/services/cosmos-db/

[20] T. Aurelius, Titan: Distributed graph database, page accessed:
Jan 2019.
URL http://titan.thinkaurelius.com/

[21] Neo4j, Neo4j - the fastest path to graph success, page accessed:
Jan 2019.
URL https://neo4j.com/

[22] D. A. Newman, Missing data: Five practical guidelines, Or-
ganizational Research Methods 17 (4) (2014) 372–411 (2014).
doi:10.1177/1094428114548590.
URL https://doi.org/10.1177/1094428114548590

[23] D. B. RUBIN, Inference and missing data, Biometrika 63 (3)
(1976) 581–592 (1976). arXiv:/oup/backfile/content_

public/journal/biomet/63/3/10.1093/biomet/63.3.581/2/

63-3-581.pdf, doi:10.1093/biomet/63.3.581.
URL http://dx.doi.org/10.1093/biomet/63.3.581

[24] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood
from incomplete data via the em algorithm, Journal of the Royal
Statistical Society. Series B (Methodological) 39 (1) (1977) 1–38
(1977).
URL http://www.jstor.org/stable/2984875

[25] G. E. A. P. A. Batista, M. C. Monard, An analysis of four miss-
ing data treatment methods for supervised learning, Applied
Artificial Intelligence 17 (2003) 519–533 (2003).

[26] E. R. Hruschka, E. R. Hruschka, N. F. F. Ebecken, Evaluat-
ing a nearest-neighbor method to substitute continuous missing
values, in: T. T. D. Gedeon, L. C. C. Fung (Eds.), AI 2003:
Advances in Artificial Intelligence, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003, pp. 723–734 (2003).

[27] W. Shahzad, Q. Rehman, E. Ahmed, Missing data imputa-
tion using genetic algorithm for supervised learning, Interna-
tional Journal of Advanced Computer Science and Application
(IJACSA) 8 (2) (2017) 438–445 (feb 2017).

[28] C.-H. Wu, C.-H. Wun, H.-J. Chou, Using association rules for
completing missing data, in: Hybrid Intelligent Systems, 2004.
HIS ’04. Fourth International Conference on, 2004, pp. 236–241
(Dec 2004). doi:10.1109/ICHIS.2004.91.

[29] L. Ben Othman, F. Rioult, S. Ben Yahia, B. Crémilleux, Miss-
ing values: Proposition of a typology and characterization with
an association rule-based model, in: T. B. Pedersen, M. K. Mo-
hania, A. M. Tjoa (Eds.), Data Warehousing and Knowledge
Discovery, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009,
pp. 441–452 (2009).

[30] K. Mohan, J. Pearl, Graphical models for processing missing
data, arXiv:1801.03583v1 [stat.ME] (2018) 1–34 (jan 2018).

[31] J. Honaker, G. King, M. Blackwell, Amelia ii: A program for
missing data, Journal of Statistical Software 45 (7) (2011) 1–47
(2011).

[32] T. Orchard, M. A. Woodbury, A missing information principle:
theory and applications, in: Proceedings of the Sixth Berkeley
Symposium on Mathematical Statistics and Probability, 1972,
pp. 1: 697–715 (1972).

[33] A. Ragel, B. Crémilleux, Treatment of missing values for as-
sociation rules, in: X. Wu, K. Ramamohanarao, K. B. Korb
(Eds.), Research and Development in Knowledge Discovery and
Data Mining, Second Pacific-Asia Conference, PAKDD-98, Mel-
bourne, Australia, April 15-17, 1998, Proceedings, Vol. 1394 of
Lecture Notes in Computer Science, Springer, 1998, pp. 258–
270 (1998). doi:10.1007/3-540-64383-4.
URL https://doi.org/10.1007/3-540-64383-4

[34] A. Bowman, Understanding non-existent properties and work-
ing with nulls, page accessed: Jan 2019.
URL https : / / neo4j . com / developer / kb /
understanding-non-existent-properties-and-null-values/

[35] Y. Liu, T. Safavi, A. Dighe, D. Koutra, Graph summariza-
tion methods and applications: A survey, ACM Comput. Surv.

19

https://doi.org/10.1007/978-3-642-03915-7_26
https://doi.org/10.1007/978-3-642-03915-7_26
https://doi.org/10.1007/978-3-642-04957-6_33
https://doi.org/10.1007/978-3-642-04957-6_33
https://doi.org/10.1007/978-3-642-04957-6_33
https://doi.org/10.1007/978-3-642-04957-6_33
https://doi.org/10.1007/978-3-642-04957-6_33
http://ceur-ws.org/Vol-2180/paper-79.pdf
http://ceur-ws.org/Vol-2180/paper-79.pdf
http://ceur-ws.org/Vol-2180/paper-79.pdf
https://doi.org/10.14778/3137765.3137825
https://doi.org/10.14778/3137765.3137825
https://doi.org/10.14778/3137765.3137825
https://doi.org/10.14778/3137765.3137825
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00798797
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00798797
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00798797
https://doi.org/10.1007/s10115-014-0749-8
https://doi.org/10.1007/s10115-014-0749-8
https://doi.org/10.1007/s10115-014-0749-8
https://doi.org/10.1007/s10115-014-0749-8
https://doi.org/10.1007/s10115-014-0749-8
http://doi.acm.org/10.1145/775047.775109
http://doi.acm.org/10.1145/775047.775109
https://doi.org/10.1145/775047.775109
http://doi.acm.org/10.1145/775047.775109
https://doi.org/10.4018/978-1-60960-475-2.ch013
https://aws.amazon.com/neptune/
https://aws.amazon.com/neptune/
https://aws.amazon.com/neptune/
https://azure.microsoft.com/en-gb/services/cosmos-db/
https://azure.microsoft.com/en-gb/services/cosmos-db/
https://azure.microsoft.com/en-gb/services/cosmos-db/
http://titan.thinkaurelius.com/
http://titan.thinkaurelius.com/
https://neo4j.com/
https://neo4j.com/
https://doi.org/10.1177/1094428114548590
https://doi.org/10.1177/1094428114548590
https://doi.org/10.1177/1094428114548590
http://dx.doi.org/10.1093/biomet/63.3.581
http://arxiv.org/abs//oup/backfile/content_public/journal/biomet/63/3/10.1093/biomet/63.3.581/2/63-3-581.pdf
http://arxiv.org/abs//oup/backfile/content_public/journal/biomet/63/3/10.1093/biomet/63.3.581/2/63-3-581.pdf
http://arxiv.org/abs//oup/backfile/content_public/journal/biomet/63/3/10.1093/biomet/63.3.581/2/63-3-581.pdf
https://doi.org/10.1093/biomet/63.3.581
http://dx.doi.org/10.1093/biomet/63.3.581
http://www.jstor.org/stable/2984875
http://www.jstor.org/stable/2984875
http://www.jstor.org/stable/2984875
https://doi.org/10.1109/ICHIS.2004.91
https://doi.org/10.1007/3-540-64383-4
https://doi.org/10.1007/3-540-64383-4
https://doi.org/10.1007/3-540-64383-4
https://doi.org/10.1007/3-540-64383-4
https://neo4j.com/developer/kb/understanding-non-existent-properties-and-null-values/
https://neo4j.com/developer/kb/understanding-non-existent-properties-and-null-values/
https://neo4j.com/developer/kb/understanding-non-existent-properties-and-null-values/
https://neo4j.com/developer/kb/understanding-non-existent-properties-and-null-values/
http://doi.acm.org/10.1145/3186727
http://doi.acm.org/10.1145/3186727

51 (3) (2018) 62:1–62:34 (Jun. 2018). doi:10.1145/3186727.
URL http://doi.acm.org/10.1145/3186727

[36] Y. Wu, Z. Zhong, W. Xiong, N. Jing, Graph summarization for
attributed graphs, in: 2014 International Conference on Infor-
mation Science, Electronics and Electrical Engineering, Vol. 1,
2014, pp. 503–507 (April 2014). doi:10.1109/InfoSEEE.2014.

6948163.
[37] T. Calders, B. Goethals, M. Mampaey, Mining itemsets in the

presence of missing values, in: Proceedings of the 2007 ACM
Symposium on Applied Computing, SAC ’07, ACM, New York,
NY, USA, 2007, pp. 404–408 (2007). doi:10.1145/1244002.

1244097.
[38] G. Yang, The complexity of mining maximal frequent itemsets

and maximal frequent patterns, in: Proceedings of the Tenth
ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, Seattle, Washington, USA, August 22-25,
2004, 2004, pp. 344–353 (2004). doi:10.1145/1014052.1014091.
URL https://doi.org/10.1145/1014052.1014091

[39] J. Han, H. Cheng, D. Xin, X. Yan, Frequent pattern mining:
current status and future directions, Data Mining and Knowl-
edge Discovery 15 (1) (2007) 55–86 (Aug 2007).

[40] F. Shah, Gradual pattern extraction- java code, page accessed:
Jan 2019.
URL https://gite.lirmm.fr/shah/handlingmissingdata

[41] B. Narasimhan, The normal distribution, page accessed: Jan
2019.
URL http : / / statweb . stanford . edu / ∼naras / jsm /
NormalDensity/NormalDensity.html

[42] oracle, Java memory types (2018).
URL https://docs.oracle.com/javase/7/docs/api/java/lang/
management/MemoryPoolMXBean.html

[43] D. Himmelstein, Hetnets in neo4j, page accessed: Jan 2019.
URL https://neo4j.het.io/browser/

[44] NBC-News, Russian troll tweets (2018).
URL https : / / www . nbcnews . com / tech / social-media /
now-available-more-200-000-deleted-russian-troll-tweets-n844731

[45] UCI-Machine-Learning-Repository, Hepatitis data set (1988).
URL https://archive.ics.uci.edu/ml/datasets/hepatitis

[46] F. Shah, Synthetic graph generator, page accessed: Jan 2019.
URL https://faaizshah.github.io/graphgenerator/

[47] D. S. Himmelstein, A. Lizee, C. Hessler, L. Brueggeman,
S. L. Chen, D. Hadley, A. Green, P. Khankhanian, S. E.
Baranzini, Systematic integration of biomedical knowledge pri-
oritizes drugs for repurposing, eLife 6 (2017) e26726 (sep 2017).
doi:10.7554/eLife.26726.
URL https://doi.org/10.7554/eLife.26726

[48] S. B. Daniel Himmelstein, Hetnets in biomedicine, page ac-
cessed: Jan 2019.
URL https://het.io/

20

https://doi.org/10.1145/3186727
http://doi.acm.org/10.1145/3186727
https://doi.org/10.1109/InfoSEEE.2014.6948163
https://doi.org/10.1109/InfoSEEE.2014.6948163
https://doi.org/10.1145/1244002.1244097
https://doi.org/10.1145/1244002.1244097
https://doi.org/10.1145/1014052.1014091
https://doi.org/10.1145/1014052.1014091
https://doi.org/10.1145/1014052.1014091
https://doi.org/10.1145/1014052.1014091
https://gite.lirmm.fr/shah/handlingmissingdata
https://gite.lirmm.fr/shah/handlingmissingdata
http://statweb.stanford.edu/~naras/jsm/NormalDensity/NormalDensity.html
http://statweb.stanford.edu/~naras/jsm/NormalDensity/NormalDensity.html
http://statweb.stanford.edu/~naras/jsm/NormalDensity/NormalDensity.html
https://docs.oracle.com/javase/7/docs/api/java/lang/management/MemoryPoolMXBean.html
https://docs.oracle.com/javase/7/docs/api/java/lang/management/MemoryPoolMXBean.html
https://docs.oracle.com/javase/7/docs/api/java/lang/management/MemoryPoolMXBean.html
https://neo4j.het.io/browser/
https://neo4j.het.io/browser/
https://www.nbcnews.com/tech/social-media/now-available-more-200-000-deleted-russian-troll-tweets-n844731
https://www.nbcnews.com/tech/social-media/now-available-more-200-000-deleted-russian-troll-tweets-n844731
https://www.nbcnews.com/tech/social-media/now-available-more-200-000-deleted-russian-troll-tweets-n844731
https://archive.ics.uci.edu/ml/datasets/hepatitis
https://archive.ics.uci.edu/ml/datasets/hepatitis
https://faaizshah.github.io/graphgenerator/
https://faaizshah.github.io/graphgenerator/
https://doi.org/10.7554/eLife.26726
https://doi.org/10.7554/eLife.26726
https://doi.org/10.7554/eLife.26726
https://doi.org/10.7554/eLife.26726
https://het.io/
https://het.io/

	Introduction
	Preliminary Concepts
	Gradual Pattern Mining
	Property Graphs
	Handling Missing Values
	Handling missing data techniques
	Handling missing data with replacement
	Handling missing data without replacement

	Problem Statement
	Mining Gradual Patterns with Missing Values
	Intra-Node-Label Gradual Patterns
	Node-Properties-with-Edges Gradual Patterns
	Support Computation
	Algorithm

	Experimental Results
	Experimental Protocol
	Environment
	Experiments execution protocol
	Outlier Removal
	 Memory Consumption Metric

	 Datasets description
	 The Russian_tweet_troll
	 Hepatitis from UCI Machine Learning Repository
	Synthetic Dataset
	Synthetic Graph Dataset
	Hetnets in bio-medicine

	Discussion

	Conclusion

