C. C. Aggarwal, An introduction to data mining, in: Data Mining: The Textbook, pp.1-26, 2015.

C. C. Aggarwal, M. A. Bhuiyan, and M. Hasan, Frequent pattern mining algorithms: A survey, in: Frequent pattern mining, pp.19-64, 2014.

E. Hüllermeier, Association rules for expressing gradual dependencies, Proc. of PKDD'02, pp.200-211, 2002.

L. Di-jorio, A. Laurent, and M. Teisseire, Mining frequent gradual itemsets from large databases, Advances in Intelligent Data Analysis VIII, 8th International Symposium on Intelligent Data Analysis, vol.5772, pp.297-308, 2009.

A. Laurent, M. Lesot, M. Rifqi, ;. Andreasen, R. R. Yager et al., Flexible Query Answering Systems, 8th International Conference, GRAANK: exploiting rank correlations for extracting gradual itemsets, vol.5822, pp.382-393, 2009.

B. R. Bebee, D. Choi, A. Gupta, A. Gutmans, A. Khandelwal et al., Amazon neptune: Graph data management in the cloud, Proceedings of the ISWC, 2018.

, Posters & Demonstrations, Industry and Blue Sky Ideas Tracks co-located with 17th International Semantic Web Conference (ISWC 2018), vol.2180, p.2018, 2018.

A. Khan, S. S. Bhowmick, and F. Bonchi, Summarizing static and dynamic big graphs, Proc. VLDB Endow, vol.10, pp.1981-1984, 2017.

S. Ayouni, S. Ben-yahia, A. Laurent, and P. Poncelet, Fuzzy gradual patterns: What fuzzy modality for what result?, SoCPaR: International Conference of Soft Computing and Pattern Recognition, pp.224-230, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00798797

M. Quintero, A. Laurent, and P. Poncelet, Fuzzy orderings for fuzzy gradual patterns, International Conference on Flexible Query Answering Systems, pp.330-341, 2011.
URL : https://hal.archives-ouvertes.fr/lirmm-00608361

T. D. Do, A. Termier, A. Laurent, B. Négrevergne, B. Omidvar-tehrani et al., PGLCM: efficient parallel mining of closed frequent gradual itemsets, Knowl. Inf. Syst, vol.43, issue.3, pp.497-527, 2015.
URL : https://hal.archives-ouvertes.fr/lirmm-01381085

S. Ayouni and S. B. Yahia, Fuzzy set-based formalization of gradual patterns, 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR), pp.434-439, 2014.

A. Laurent, B. Négrevergne, N. Sicard, and A. Termier, Efficient parallel mining of gradual patterns on multicore processors, Advances in Knowledge Discovery and Management, pp.137-151, 2012.

T. Ngo, V. Georgescu, A. Laurent, T. Libourel, and G. Mercier, Mining spatial gradual patterns: Application to measurement of potentially avoidable hospitalizations, International Conference on Current Trends in Theory and Practice of Informatics, pp.596-608, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01828664

J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, Sequential pattern mining using a bitmap representation, Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '02, pp.429-435, 2002.

T. Papaioannou and S. Loukas, Inequalities on Rank Correlation with Missing Data, Journal of the Royal Statistical Society Series B (Methodological), vol.46, issue.1, pp.68-71, 1984.

F. Berzal, J. Cubero, D. Sanchez, M. Vila, and J. M. Serrano, An alternative approach to discover gradual dependencies, Int. Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol.15, issue.5, pp.559-570, 2007.

S. Sakr and G. Al-naymat, Querying graph databases: An overview, Advanced Database Query Systems: Techniques, Applications and Technologies, pp.304-322, 2011.

. Amazon, Amazon neptune: Fast, reliable graph database built for the cloud, 2019.

. Microsoft, Azure cosmos db: Globally distributed, multi-model database service, 2019.

T. Aurelius, Titan: Distributed graph database, 2019.

. Neo4j, Neo4j -the fastest path to graph success, 2019.

D. A. Newman, Missing data: Five practical guidelines, Organizational Research Methods, vol.17, issue.4, pp.372-411, 2014.

D. B. Rubin, Inference and missing data, Biometrika, vol.63, issue.3, pp.581-592, 1976.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the em algorithm, Journal of the Royal Statistical Society. Series B (Methodological), vol.39, issue.1, pp.1-38, 1977.

G. E. Batista and M. C. Monard, An analysis of four missing data treatment methods for supervised learning, Applied Artificial Intelligence, vol.17, pp.519-533, 2003.

E. R. Hruschka, E. R. Hruschka, and N. F. Ebecken, Evaluating a nearest-neighbor method to substitute continuous missing values, AI 2003: Advances in Artificial Intelligence, pp.723-734, 2003.

W. Shahzad, Q. Rehman, and E. Ahmed, Missing data imputation using genetic algorithm for supervised learning, International Journal of Advanced Computer Science and Application (IJACSA), vol.8, issue.2, pp.438-445, 2017.

C. Wu, C. Wun, and H. Chou, Using association rules for completing missing data, Hybrid Intelligent Systems, 2004. HIS '04. Fourth International Conference on, pp.236-241, 2004.

L. Ben-othman, F. Rioult, S. Ben-yahia, and B. Crémilleux, Missing values: Proposition of a typology and characterization with an association rule-based model, Data Warehousing and Knowledge Discovery, pp.441-452, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01012128

K. Mohan and J. Pearl, Graphical models for processing missing data, pp.1-34, 2018.

J. Honaker, G. King, M. Blackwell, and A. Ii, A program for missing data, Journal of Statistical Software, vol.45, issue.7, pp.1-47, 2011.

T. Orchard and M. A. Woodbury, A missing information principle: theory and applications, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol.1, pp.697-715, 1972.

A. Ragel and B. Crémilleux, Treatment of missing values for association rules, Research and Development in Knowledge Discovery and Data Mining, Second Pacific-Asia Conference, PAKDD-98, vol.1394, pp.258-270, 1998.

A. Bowman, Understanding non-existent properties and working with nulls, 2019.

Y. Liu, T. Safavi, A. Dighe, and D. Koutra, Graph summarization methods and applications: A survey, ACM Comput. Surv, vol.51, issue.3, pp.1-62, 2018.

Y. Wu, Z. Zhong, W. Xiong, and N. Jing, Graph summarization for attributed graphs, 2014 International Conference on Information Science, Electronics and Electrical Engineering, vol.1, pp.503-507, 2014.

T. Calders, B. Goethals, and M. Mampaey, Mining itemsets in the presence of missing values, Proceedings of the 2007 ACM Symposium on Applied Computing, SAC '07, pp.404-408, 2007.

G. Yang, The complexity of mining maximal frequent itemsets and maximal frequent patterns, Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.344-353, 2004.

J. Han, H. Cheng, D. Xin, and X. Yan, Frequent pattern mining: current status and future directions, Data Mining and Knowl, Discovery, vol.15, issue.1, pp.55-86, 2007.

F. Shah, Gradual pattern extraction-java code, 2019.

B. Narasimhan, The normal distribution, Java memory types, 2018.

D. Himmelstein, Hetnets in neo4j, 2019.

. Nbc-news, , 2018.

. Uci-machine-learning-repository, Hepatitis data set, 1988.

F. Shah, Synthetic graph generator, 2019.

D. S. Himmelstein, A. Lizee, C. Hessler, L. Brueggeman, S. L. Chen et al., Systematic integration of biomedical knowledge prioritizes drugs for repurposing, p.26726, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02154787

S. B. Daniel-himmelstein, Hetnets in biomedicine, pp.page ac- cessed, 2019.