W. Epstein and J. R. Beckwith, Regulation of gene expression, Ann. Rev. Biochem, vol.37, pp.411-436, 1968.

E. Valen and A. Sandelin, Genomic and chromatin signals underlying transcription start-site selection, Trends Genet, vol.27, pp.475-485, 2011.

F. Muller and L. Tora, Chromatin and DNA sequences in defining promoters for transcription initiation, Biochim Biophys. Acta, vol.1839, pp.118-128, 2014.

L. J. Core, Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers, Nat. Genet, vol.46, pp.1311-1320, 2014.

A. L. Roy and D. S. Singer, Core promoters in transcription: old problem, new insights, Trends Biochem Sci, vol.40, pp.165-171, 2015.

L. Vo-ngoc, Y. L. Wang, G. A. Kassavetis, and J. T. Kadonaga, dThe punctilious RNA polymerase II core promoter, Genes Dev, vol.31, pp.1289-1301, 2017.

Y. M. Danino, D. Even, D. Ideses, and T. Juven-gershon, The core promoter: at the heart of gene expression, Biochim Biophys. Acta, vol.1849, pp.1116-1131, 2015.

W. K. Lai and B. F. Pugh, Understanding nucleosome dynamics and their links to gene expression and DNA replication, Nat. Rev. Mol. Cell Biol, vol.18, pp.548-562, 2017.

B. S. Scruggs, Bidirectional transcription arises from two distinct hubs of transcription factor binding and active chromatin, Mol. Cell, vol.58, pp.1101-1112, 2015.

S. T. Smale and J. T. Kadonaga, The RNA polymerase II core promoter, Annu Rev. Biochem, vol.72, pp.449-479, 2003.

P. Carninci, Genome-wide analysis of mammalian promoter architecture and evolution, Nat. Genet, vol.38, pp.626-635, 2006.

I. Pinto, W. H. Wu, J. G. Na, and M. Hampsey, Characterization of sua7 mutations defines a domain of TFIIB involved in transcription start site selection in yeast, J. Biol. Chem, vol.269, pp.30569-30573, 1994.

M. A. Ghazy, S. A. Brodie, M. L. Ammerman, L. M. Ziegler, and A. S. Ponticelli, Amino acid substitutions in yeast TFIIF confer upstream shifts in transcription initiation and altered interaction with RNA polymerase II, Mol. Cell Biol, vol.24, pp.10975-10985, 2004.

K. Kasahara, Y. Ohyama, and T. Kokubo, Hmo1 directs pre-initiation complex assembly to an appropriate site on its target gene promoters by masking a nucleosome-free region, Nucleic Acids Res, vol.39, pp.4136-4150, 2011.

Q. Wang and D. Donze, Transcription factor Reb1 is required for proper transcriptional start site usage at the divergently transcribed TFC6-ESC2 locus in Saccharomyces cerevisiae, Gene, vol.594, pp.108-116, 2016.

B. J. Venters and B. F. Pugh, A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome

, Genome Res, vol.19, pp.360-371, 2009.

H. S. Rhee and B. F. Pugh, Genome-wide structure and organization of eukaryotic pre-initiation complexes, Nature, vol.483, pp.295-301, 2012.

D. Challal, General Regulatory Factors Control the Fidelity of Transcription by Restricting Non-coding and Ectopic Initiation, Mol. Cell, vol.72, pp.955-969, 2018.

S. N. Maity and B. De-crombrugghe, Role of the CCAAT-binding protein CBF/ NF-Y in transcription, Trends Biochem Sci, vol.23, pp.174-178, 1998.

D. Dolfini, R. Gatta, and R. Mantovani, NF-Y and the transcriptional activation of CCAAT promoters, Crit. Rev. Biochem Mol. Biol, vol.47, pp.29-49, 2012.

S. N. Maity, NF-Y (CBF) regulation in specific cell types and mouse models, Biochim Biophys. Acta, vol.1860, pp.598-603, 2017.

M. Nardini, Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination, Cell, vol.152, pp.132-143, 2013.

E. M. Huber, D. H. Scharf, P. Hortschansky, M. Groll, and A. A. Brakhage, DNA minor groove sensing and widening by the CCAAT-binding complex, Structure, vol.20, pp.1757-1768, 2012.

A. J. Oldfield, Histone-fold domain protein NF-Y promotes chromatin accessibility for cell type-specific master transcription factors, Mol. Cell, vol.55, pp.708-722, 2014.

J. D. Fleming, NF-Y coassociates with FOS at promoters, enhancers, repetitive elements, and inactive chromatin regions, and is stereo-positioned with growth-controlling transcription factors, Genome Res, vol.23, pp.1195-1209, 2013.

N. Kaplan, The DNA-encoded nucleosome organization of a eukaryotic genome, Nature, vol.458, pp.362-366, 2009.

A. N. Imbalzano, H. Kwon, M. R. Green, and R. E. Kingston, Facilitated binding of TATA-binding protein to nucleosomal DNA, Nature, vol.370, pp.481-485, 1994.

M. Bellorini, CCAAT binding NF-Y-TBP interactions: NF-YB and NF-YC require short domains adjacent to their histone fold motifs for association with TBP basic residues, Nucleic Acids Res, vol.25, pp.2174-2181, 1997.

L. J. Core, J. J. Waterfall, and J. T. Lis, Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters, Science, vol.322, pp.1845-1848, 2008.

A. C. Seila, Divergent transcription from active promoters, Science, vol.322, pp.1849-1851, 2008.

P. Preker, RNA exosome depletion reveals transcription upstream of active human promoters, Science, vol.322, pp.1851-1854, 2008.

A. Siepel, Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes, Genome Res, vol.15, pp.1034-1050, 2005.

R. Dikstein, Transcription and translation in a package deal: the TISU paradigm, Gene, vol.491, pp.1-4, 2012.

N. T. Ingolia, S. Ghaemmaghami, J. R. Newman, and J. S. Weissman, Genomewide analysis in vivo of translation with nucleotide resolution using ribosome profiling, Science, vol.324, pp.218-223, 2009.

M. Jovanovic, Dynamic profiling of the protein life cycle in response to pathogens, Science, vol.347, p.1259038, 2015.

Y. Liu, Impact of alternative splicing on the human proteome, Cell Rep, vol.20, pp.1229-1241, 2017.

K. Wethmar, The regulatory potential of upstream open reading frames in eukaryotic gene expression, Wiley Inter. Rev. RNA, vol.5, pp.765-778, 2014.

T. G. Johnstone, A. A. Bazzini, and A. J. Giraldez, Upstream ORFs are prevalent translational repressors in vertebrates, EMBO J, vol.35, pp.706-723, 2016.

Z. Cheng, Pervasive, coordinated protein-level changes driven by transcript isoform switching during meiosis, Cell, vol.172, pp.910-923, 2018.

J. Chen, Kinetochore inactivation by expression of a repressive mRNA, Elife, vol.6, p.27417, 2017.

M. Chia, Transcription of a 5' extended mRNA isoform directs dynamic chromatin changes and interference of a downstream promoter, Elife, vol.6, p.27420, 2017.

R. I. Sherwood, Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape, Nat. Biotechnol, vol.32, pp.171-178, 2014.

F. Lu, Establishing chromatin regulatory landscape during mouse preimplantation development, Cell, vol.165, pp.1375-1388, 2016.

Z. Tao, Embryonic epigenetic reprogramming by a pioneer transcription factor in plants, Nature, vol.551, pp.124-128, 2017.

C. Romier, F. Cocchiarella, R. Mantovani, and D. Moras, The NF-YB/NF-YC structure gives insight into DNA binding and transcription regulation by CCAAT factor NF-Y, J. Biol. Chem, vol.278, pp.1336-1345, 2003.

C. Liberati, A. Di-silvio, S. Ottolenghi, and R. Mantovani, NF-Y binding to twin CCAAT boxes: role of Q-rich domains and histone fold helices, J. Mol. Biol, vol.285, pp.1441-1455, 1999.

F. Coustry, Q. Hu, B. De-crombrugghe, and S. N. Maity, CBF/NF-Y functions both in nucleosomal disruption and transcription activation of the chromatinassembled topoisomerase IIalpha promoter. Transcription activation by CBF/ NF-Y in chromatin is dependent on the promoter structure, J. Biol. Chem, vol.276, pp.40621-40630, 2001.

M. C. Motta, G. Caretti, G. F. Badaracco, and R. Mantovani, Interactions of the CCAAT-binding trimer NF-Y with nucleosomes, J. Biol. Chem, vol.274, pp.1326-1333, 1999.

I. Kukimoto, S. Elderkin, M. Grimaldi, T. Oelgeschlager, and P. D. Varga-weisz, The histone-fold protein complex CHRAC-15/17 enhances nucleosome sliding and assembly mediated by ACF, Mol. Cell, vol.13, pp.265-277, 2004.

M. Frontini, NF-Y recruitment of TFIID, multiple interactions with histone fold TAF(II)s, J. Biol. Chem, vol.277, pp.5841-5848, 2002.

A. Dorn, Conserved major histocompatibility complex class II boxes-X and Y-are transcriptional control elements and specifically bind nuclear proteins, Proc. Natl Acad. Sci. USA, vol.84, pp.6249-6253, 1987.

E. A. Rach, Transcription initiation patterns indicate divergent strategies for gene regulation at the chromatin level, PLoS Genet, vol.7, p.1001274, 2011.

R. Asada, N. Takemata, C. S. Hoffman, K. Ohta, and K. Hirota, Antagonistic controls of chromatin and mRNA start site selection by Tup family corepressors and the CCAAT-binding factor, Mol. Cell Biol, vol.35, pp.847-855, 2015.

E. Segal, A genomic code for nucleosome positioning, Nature, vol.442, pp.772-778, 2006.

A. V. Lobanov, A. A. Turanov, D. L. Hatfield, and V. N. Gladyshev, Dual functions of codons in the genetic code, Crit. Rev. Biochem. Mol. Biol, vol.45, pp.257-265, 2010.

S. R. Starck, Leucine-tRNA initiates at CUG start codons for protein synthesis and presentation by MHC class I, Science, vol.336, pp.1719-1723, 2012.

T. E. Dever, Molecular biology. A new start for protein synthesis, Science, vol.336, pp.1645-1646, 2012.

S. E. Calvo, D. J. Pagliarini, and V. K. Mootha, Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans, Proc. Natl Acad. Sci. USA, vol.106, pp.7507-7512, 2009.

C. Vilela and J. E. Mccarthy, Regulation of fungal gene expression via short open reading frames in the mRNA 5'untranslated region, Mol. Microbiol, vol.49, pp.859-867, 2003.

S. Cinghu, Intragenic enhancers attenuate host gene expression, Mol. Cell, vol.68, p.6, 2017.

E. Heard, C. Rougeulle, D. Arnaud, P. Avner, C. D. Allis et al., Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation, Cell, vol.107, pp.727-738, 2001.

L. H. Williams, Pausing of RNA polymerase II regulates mammalian developmental potential through control of signaling networks, Mol. Cell, vol.58, pp.311-322, 2015.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memoryefficient alignment of short DNA sequences to the human genome, Genome Biol, vol.10, p.25, 2009.

D. Kim, TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions, Genome Biol, vol.14, p.36, 2013.

C. Trapnell, Differential gene and transcript expression analysis of RNAseq experiments with TopHat and Cufflinks, Nat. Protoc, vol.7, pp.562-578, 2012.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

R. Patro, G. Duggal, M. I. Love, R. A. Irizarry, and C. Kingsford, Salmon provides accurate, fast, and bias-aware transcript expression estimates using dual-phase inference, Nat Methods, vol.14, pp.417-419, 2017.

S. Nechaev, Global analysis of short RNAs reveals widespread promoterproximal stalling and arrest of Pol II in Drosophila, Science, vol.327, pp.335-338, 2010.

T. Henriques, Stable pausing by RNA polymerase II provides an opportunity to target and integrate regulatory signals, Mol. Cell, vol.52, pp.517-528, 2013.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet Journal, vol.17, pp.10-12, 2011.

S. Anders and W. Huber, Differential expression analysis for sequence count data, Genome Biol, vol.11, p.106, 2010.

A. Dobin, STAR: ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, pp.15-21, 2013.

T. L. Bailey, MEME SUITE: tools for motif discovery and searching, Nucleic Acids Res, vol.37, pp.202-208, 2009.

M. Thomas-chollier, Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs, Nat. Protoc, vol.6, pp.1860-1869, 2011.

A. Mathelier, JASPAR 2016: a major expansion and update of the openaccess database of transcription factor binding profiles, Nucleic Acids Res, vol.44, pp.110-115, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01281181

K. S. Pollard, M. J. Hubisz, K. R. Rosenbloom, and A. Siepel, Detection of nonneutral substitution rates on mammalian phylogenies, Genome Res, vol.20, pp.110-121, 2010.