
HAL Id: lirmm-02386429
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02386429v1

Submitted on 29 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DZI: An Air Index for Spatial Queries in
One-dimensional Channels

Kwangjin Park, Alexis Joly, Patrick Valduriez

To cite this version:
Kwangjin Park, Alexis Joly, Patrick Valduriez. DZI: An Air Index for Spatial Queries
in One-dimensional Channels. Data and Knowledge Engineering, 2019, 124, pp.101748.
�10.1016/j.datak.2019.101748�. �lirmm-02386429�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02386429v1
https://hal.archives-ouvertes.fr

DZI: An Air Index for Spatial Queries in One-dimensional

Channels

Kwangjin Park, Alexis Joly, and Patrick Valduriez 1

Wonkwang University, Korea, Inria, Montpellier, France, Inria, Montpellier, France

Abstract

The wireless data broadcast environment characteristics cause the data to be delivered se-
quentially via one-dimensional channels. A space-filling curve has been proposed for recent
wireless data broadcast environments. However, air indexing introduces various problems,
including the increase in the size of the index, conversion costs, and an increase in the search
space because of an inefficient structure. In this paper, we propose a distribution-based
Z-order air index and query processing algorithms suitable for a wireless data broadcast
environment. The proposed index organizes the object identification (hereafter called ID)
hierarchically only in terms of objects that are present. We compare the proposed technique
with the well-known spatial indexing technique DSI by creating equations that represent
the access time and tuning time, followed by conducting a simulation-based performance
evaluation. The results from experimental show that our proposed index and algorithms
support efficient query processing in both range queries and K-nearest neighbor queries.

Keywords: Moving objects, mobile computing, selective tuning, and spatial index.

1. Introduction1

Most studies of Location-Based Services (LBS) technologies and services have been2

conducted with a server-centric approach. However, having all the work handled entirely3

by a server leads to problems such as high dependence of the client on the server, lack4

of consideration for moving objects, and privacy invasion [12][25-27]. Furthermore, query5

processing time can increase due to the overload of the server that processes individual6

clients’ query requests. In particular, real-time information processing tasks for a large7

number of moving objects can put a heavy burden on the server [2] [9-11] [24]. Service8

delays due to server workloads in an environment where query targets and requesters move9

at the same time may result in wrong query results. To solve this problem, the workload of10

the server can be reduced by disallowing the server to access the client’s individual queries.11

In wireless data broadcast systems, popular information is periodically disseminated12

through one-dimensional communication channels (i.e. a channel in which information13

is sequentially delivered from a server) to mobile clients. The wireless data broadcast14

method is a one-to-many communication method that sends packets to the entire wireless15

network and is not affected by the number of clients [1-10][23][34][38]. In recent years, there16

Preprint submitted to Data and Knowledge Engineering August 7, 2019

has been a renewal of interest in spatial data1 delivery related to wireless data broadcast17

environments [2] [9-11]. The wireless data broadcast method provides simple periodic18

delivery of the target object (e.g., hotels, gas-stations, and taxis) to mobile clients. In other19

words, the server and the client take on the roles and responsibilities of service processing20

at the same time. For example, a user may issue a query through a mobile device (hereafter21

called client), such as “give me the names and addresses of the hotels near my location.”22

Then, the client downloads a spatial index through a wireless data broadcast channel from23

a server. A spatial index contains information that indicates all locations of objects (e.g.,24

hotels) near the client. The client can determine its current location via some positioning25

technology, such as Global Positioning System (GPS). Finally, the client returns the final26

query result to the user through the spatial query processing after confirmation of the27

spatial index. In addition, the protection of privacy can also be supported by the wireless28

data broadcast method [41], because the client’s individual position and the contents of29

the query cannot be known. However, to answer queries, the clients have to stay in active30

mode to receive the requested data objects and index information. Recently, a Distributed31

Spatial Index (DSI) [13, 17] was proposed to improve the problem. The DSI is designed to32

reduce access time by configuring the index into a distributed structure using a Hilbert-33

Curve (HC). The DSI has the advantage of reducing probe wait2 by adding distributed34

pointers. However, the amount of data to send increases due to overlapping pointers so35

that the server’s broadcasting periods become longer. In distributed spatial indexing, the36

index information is increased by N × (log2N + 2)), where N be the number of data37

objects. This means that the index size grows rapidly as the number of data objects38

increases. A distributed spatial index allows a reduction in the tuning time via increasing39

efficiency of selective tuning by the client. However, the increased index information that40

is associated with it gives rise to increased latency time, which leads to a longer query41

processing time. Therefore, index structures are necessary where overlapping pointers42

can be removed while reducing probe wait for efficient query processing. In a previous43

work [29], we have exploited a broadcast-based data dissemination scheme, called BBS44

(Broadcast-Based LDIS Scheme). In BBS, the server periodically broadcasts the IDs and45

coordinates of the data objects, without an index segment, to the clients. These broadcast46

data objects are sorted sequentially, according to the locations of the data objects, before47

being transmitted to the clients.48

In this paper, we propose a distribution-based Z-order index suitable for spatial queries49

in one-dimensional channels, as well as a technique in which the capabilities of the client’s50

independent query processing have been enhanced. The proposed index does not configure51

the index for all zones as the existing space-filling curve3 does, and indicates only the52

area in which the required object is present, using a grid cell. Thus, the use of data53

1Spatial data is the data or information that identifies the geographic location of features and boundaries
on earth, oceans etc.

2The average duration for getting to the next index segment is called probe wait [6,7]
3A space-filling curve is a continuous path that visits every space in a k-dimensional grid once without

crossing itself.

2

caused by an unnecessary identifier can be reduced during index configuration. Moreover,54

our proposed index does not give location identifier information for a region where the55

object is not present. Therefore, information regarding moving objects can be efficiently56

managed, because the location of moving objects can be determined with a small amount57

of information.58

The main contributions of this paper are as follows:59

- We propose a lightweight spatial index that assigns a tree-based hierarchy ID (iden-60

tification) only to objects that are present, and can manage the positions of moving61

objects. The main difference between our index and the conventional index, such62

as quadtree-based or grid-based index, is that the proposed index divides space and63

assigns bit-codes only to those regions where objects exist.64

- We propose breadth-first and depth-first spatial query search algorithms whose appli-65

cation depends on the location distribution of the objects. The breadth-first provides66

excellent for tuning time especially when the object is evenly distributed. On the67

other hand, the depth-first provides excellent for access time by determining the final68

query result by listening to the partial data information.69

- We propose a data delivery model that is in accordance with the location distribution70

of objects.71

- We propose an algorithm for the continuous spatial query processing of moving ob-72

jects that supports and facilitates the determination of the location of future objects,73

using the client’s own calculation.74

The remainder of this paper is organized as follows. Section 2 discusses related work.75

Section 3 discusses major performance factors and defines the system model. Section 476

describes the distribution-based Z-order index. Section 5 describes the data dissemination77

and selective tuning algorithms. Section 6 describes an efficient method for the location of78

moving objects. Section 7 evaluates the performance of distribution-based Z-order index79

with DSI and BBS. Finally, Section 8 concludes.80

2. Related Work81

First, we discuss the data broadcasting methods. Then, we discuss the spatial index482

techniques for the wireless data broadcast environment.83

2.1. Data Broadcasting84

The server transmits the information that the client wants by identifying that infor-85

mation in advance through a broadcast channel. For instance, advertisements, weather86

4A spatial index is a special access method used to retrieve spatial data from within the data-store.

3

forecasts, traffic information, flight and train information, and other information can be87

regularly sent to unspecified individuals [31].88

In [14], the authors introduce a technique for delivering data objects to the clients in89

asymmetric environments. In the environments, the network characteristics in downlink90

direction is faster than those in uplink direction. In this technique, groups of pages, such91

as hot and cold groups, with different broadcast frequencies are multiplexed on the same92

channel. Then, the items stored on the faster disks are broadcast more often than those93

items on the slower disks. In [19], the authors present the Broadcast on Demand (BoD)94

model to provide timely broadcast according to requests from users. The goal is to maxi-95

mize performance with respect to satisfaction of deadline constraints and achieve efficient96

use of available bandwidth. In [20], the authors investigate how to efficiently generate the97

broadcast schedule in a wireless environment. They consider the access pattern formed by98

all the requests where the data dependency and access frequency can be represented by a99

weighted directed acyclic graph (DAG). In [21], the authors observe that in general, clients100

are divided into several groups, each one in a different location, with the members of each101

group having similar demands. Then, they propose a mechanism that exploits locality102

of demand in order to increase the performance of wireless data broadcast systems. In103

[22], the authors define two optimization problems, such as MCDR (Minimum Cost Data104

Retrieval) and LNDR (Largest Number Data Retrieval). MCDR aims at downloading a105

set of data items with the minimum energy consumption, whereas LNDR aims at down-106

loading the largest number of requested data items in a given time interval. In this paper,107

authors consider data retrieval scheduling over multiple channels. In [32], authors address108

the problem of answering KNN (K-Nearest Neighbor), range, and RNN (Reverse Nearest109

Neighbor) queries in road networks via broadcast channels. Then, they propose ISW (index110

for spatial queries in wireless broadcast environments)-index for spatial queries in wireless111

broadcast environments. The ISW provides a pair of distance bounds, which is effective112

for pruning the search space. The search space is reduced by using ISW and subsequently113

the client can download as less as possible data for query processing, which can conserve114

the energy. In [40], authors discuss the problem of spatial keyword query processing in115

road networks in wireless broadcast environments. Then they provide algorithms for var-116

ious queries, such as boolean range, top-k and ranked spatial keyword queries. In [33],117

authors address the problem of processing CNN (Continuous Nearest Neighbor) queries in118

road networks under wireless broadcast environments. Then, they propose a method to119

construct and partition the NVD (Network Voronoi Diagram) structure of the underlying120

road networks to derive an NVD quadtree and then transfer the tree into a linear sequence121

of data packets. In BBS[29], the data objects broadcast by the server are sequentially122

ordered based on their locations. Therefore, it is not necessary for the client to wait for123

the index segment if the desired data object is able to be identified before the associated124

index segment has arrived. In BBS, the structure of the broadcast affects the distribution125

of the data object. BBS provides the fast access time since no index is broadcast along126

with the data and, thus, the size of the entire broadcast cycle is minimized. The techniques127

discussed above focus on efficient data transfer by analyzing users’ requests. However, most128

of them do not consider spatial queries, as we do in this paper.129

4

Search
range

Figure 1: Access time with HC value for range query.

2.2. Spatial Index on Air130

DSI has a distributed structure that mixes multiple search paths into a linear index131

structure that is distributed into the broadcast cycle. In DSI, a pointer of each data132

instance is repeated as many times as the number of entries of an index in a broadcast cycle133

to facilitate multiple search paths. Access time represents the period of time elapsed from134

the moment a user issues a query to the client to the moment when the required data item is135

received by the client. In each frame of the index, a pointer that is increased exponentially136

is stored; its role is to support fast access and selective tuning, i.e. mobile devices only137

selectively tune into broadcast channels when required. HC-based index techniques set138

up the value of the HC order based on the distribution of the object, and assign an139

identification number to every vertex of the basic curve, regardless of the presence or140

non-presence of the object. In this case, because the HC order does not represent a 1-1141

mapping of the order of data delivery, an object mapping process is required for calculating142

the object position after confirmation of the HC-value. In the process, the conversion time143

of O(b2) is consumed, with b denotes the number of bits needed for the coordinates of144

the object. Also, in case the objects are located close to each other, the value of the HC145

of order, which is used to distinguish the position of the object, increases. As a result,146

many IDs are required, even though the total number of objects is not large. Furthermore,147

because of the nature of the HC, problems may occur, depending on the location and scope148

of the query. An increased search space is needed in order to navigate through unnecessary149

blocks. For example, as can be seen in Figure 1, the client can obtain the final results only150

after waiting until objects 2 to 13 have been transmitted from the server for range query151

processing. The AT (access time) and TT (tuning time) will be increased further if the152

number of objects is to be increased and the query processing zones include more objects.153

In the KNN query processing, more serious problems will occur, depending on the value154

of ‘K’.155

The problem with the HC-based distributed index can be summarized as follows:156

- Even if a pointer is used that is exponentially increased by the exponential base e,157

when the number of the total data equals N , the number of the pointers will increase158

5

as much as LogeN in each index frame when N increases. As a result, the size of the159

index will be increased, and the amount of information that needs to be listened to160

will increase significantly.161

- Even if the existing index structures based on HC have hierarchical structures, in162

order to obtain the desired results, indexes should be sequentially read from the163

beginning of the exploration to its end. Tuning time may be reduced by proposing164

a distributed index structure consisting of overlapping pointers for selective tuning,165

but the increased index information lengthens the exploration time.166

- In order for the object to confirm the location information, additional mapping, a167

conversion process for the HC value, and the location calculation of the object are168

required.169

In [2], the authors propose an air indexing structure for supporting moving data ob-170

jects. The goal is to reduce the power consumption and response time at the client side.171

They design algorithms for snapshot and continuous queries, over static or dynamic data172

with a regular grid. They apply other space-filling curves such as Peano curve for their173

index. However, this technique also presents the same structural problems (inefficient174

selective tuning) as the Hilbert-curve-based index. In [36], authors argued that bitmap-175

based indexing can be highly effective for running range query workloads on spatial data176

sets. Then, they introduced a compressed spatial hierarchical bitmap, called cSHB, index177

structure that takes a spatial hierarchy and uses that to create a hierarchy of compressed178

bitmaps to support spatial range queries. In [42], authors propose a multi-leveled air in-179

dexing scheme in non-flat data broadcasting (MLAIN) to process window queries with the180

popularity of spatial data items. MLAIN partitions the data space by recursively sub-181

dividing it into four quadrant cells of multiple levels until all cells satisfy the constraint182

that the number of data items in a cell is not over a specified number. In MLAIN, each183

cell having one or more hot data items, called a hot cell, is broadcast more frequently184

than regular cells to help clients quickly access hot data items on the channel. In [35], we185

proposed the Hierarchical Grid Index (HGI) to remedy the Hilbert-curve-based index. For186

the HGI, the location of the object is expressed by dividing grids until one grid contains187

one object. Because grid division and index ID distribution only occurs in the area with188

the object, the index pointer size can be reduced along with the index deciphering time189

and TT. The delivery order considers an object’s location and delivers it using the grid190

recognizers’ order to be awake, which occurs only when information close to the query191

point is received, and to process the final query results. However, to confirm the object’s192

location information, coordinate information from the lowest level grid must be confirmed.193

[37] explores the problem of spatial query processing in road sensor networks by means194

of wireless data broadcast. The authors present a method to partition the record-keeping195

information about the underlying road sensor network and its associated objects, by a196

distributed air index, called integrated exponential index, based on an extended version197

of the Hilbert-curve. They also propose client-side algorithms to facilitate the processing198

of spatial queries. In [38], the authors propose a skewed spatial index considering clients’199

6

skewed access patterns in the non-uniform wireless broadcast environments. The index200

information considering the non-uniform broadcast is interleaved with the spatial objects201

on the wireless channel to support efficient access. In [39], we examine the problems expe-202

rienced in the existing wireless broadcast environment and propose a novel system model203

and index technique. Instead of receiving spatial data information from the server, the204

client in the proposed system environment receives spatial data for part of the area from205

a sub server to reduce the query processing time. In this manner, the model selectively206

tunes to the data located within the partial area most suitable for the query.207

In parks or train stations, smartphone users may utilize location-based advertising208

messages to find information about nearby restaurants, hotels, and shops. If this makes209

their smartphone be flooded with a burst of advertising messages, they are likely to turn210

off advertising messaging services. In order to overcome the above problems, an index211

structure is required that gives the identification number by considering only the location212

of the objects actually present. In addition, fast and efficient algorithm for supporting213

spatial queries in wireless data broadcast environments should be developed.214

3. Preliminaries215

In this section, we examine the main problems affecting the performance evaluation.216

Then, we present the system model.217

3.1. Problem Statement218

In a wireless data broadcast environment, the increase of ‘index size’ and ‘the irregular219

delivery order of data’ increase AT and TT at the client side. First, let us consider the220

impact of the increase of index size on AT and TT. The conventional indexing schemes221

based on a space-filling curve, such as DSI allocates the index IDs to all zones even there222

is no object, thereby increasing the index size. This gives rise to the following problems:223

- AT increases as the amount of data that is delivered during a single broadcast cycle224

increases.225

- TT increases as the amount of data that needs to be read and processed by the client226

increases.227

As shown in Figure 2, the pointer size directly influences the wireless data broadcast228

cycle. Figure 2(a) shows a single broadcast cycle in cases where overlapping pointers are229

not used and Figure 2(b) shows a single broadcast cycle in cases where overlapping pointers230

are used in the distributed index to reduce probe wait time. Let us assume that a logical231

time unit of both data object and index pointer be 1. Let N be the total number of232

objects. In distributed index, which uses overlapping pointers, the number of pointers233

increases by logeN as N increases [11]. Let the value of N be 9 and e be 2. Then, each234

data object contains 4 pointers in distributed index. As a result, the total logical time of235

a single broadcast cycle for non overlapping pointers is 9, whereas distributed index is 36236

(9×4). Figure 2 shows an example which demonstrates the impact of adding the forwarding237

7

0 1 2 3 4 5 6 7 8

23222120

1
2
4
8

2
3
5
0

3
4
6
1

0
1
3
7

0 1

6 4 3 2 0 5
3
2184273108

1

Start broadcasting

If N=9, then a single broadcast cycle time for
distributed index is 36.

1 2 4 5 7 80 3 6

08
6

5 4 3
2

1

Start broadcasting

If N=9, then a single broadcast cycle time for non
overlapping pointers is 9.

7

(a) (b)

Figure 2: Access time according to the size of index pointers.

pointer to the existing spatial index on the broadcast cycle. The total logical time can be238

changed depending on the parameter value of e and N and the applying algorithms.239

Second, let us consider the impact of the irregular delivery order of data on AT and TT.240

Let index data be the size of an index that represents objects. If the delivery order ignores241

the location of the object, the query result can only be confirmed after the locations of242

all objects have been confirmed at the time of spatial query processing. Therefore, if the243

user data is delivered along with the index data, it becomes AT = N × index data, TT =244

N × index data. On the other hand, about half of the ordinary AT and TT are needed245

when data are delivered according to a certain predefined rule. Therefore, we get AT =246

N×index data
2

, TT = N×index data
2

.247

We then define the problem as follows:248

Input249

- Locations of spatial objects250

- Directions of spatial objects251

- Velocities of spatial objects252

Output253

- Spatial index254

Objective255

8

- Minimize index data256

- Minimize TT and AT257

- Provide client’s self-process for spatial query of a mobile object258

In this paper, we aim to provide a lightweight spatial index that allows fast and efficient259

data access and tuning by delivering objects in a certain ordered fashion. In addition, the260

proposed index exploits the location, direction, and velocity of mobile objects to enable261

self-spatial query processing at the client.262

3.2. System Model263

Our system model can be summarized as follows:264

- Server: The server receives reports regarding position, direction, and speed information265

from the moving object, and configures the index based on these reports. It then delivers266

the index, together with the user data, through the wireless data broadcast channel.267

- Client: It is the user terminal that requests the service to a server. The client, which268

receives the user query, takes the following actions: (i) tries to listen to the index through269

the wireless data broadcast channel in wake-up mode; (ii) reads the index and is set to sleep270

mode after confirming all the information needed, and at what point it will be delivered;271

and (iii) wakes up selectively at the time of information delivery, and then tunes, after272

which it delivers the final result to the user.273

- Objects: This refers to fixed objects (e.g., department stores, gas stations) or moving274

objects (e.g., people, taxis). These objects deliver information regarding their location,275

direction, and speed to a server in the jurisdiction area. In this paper, we assume that the276

points-of-interest belongs to the same types (e.g., gas stations, restaurants.) of queries.277

- Data: Data can be classified into ‘index data’ and ‘user data’. Index data includes278

the pointer for the object, its position, direction and speed, delivery time, etc. The index279

data includes the arrival time information of the adjacent index. If we assume that the280

client wakes up at random times, and if the first data that it listens to is the index data, it281

confirms the arrival time information of the adjacent index, and then waits again in sleep282

mode until the adjacent index arrives for power conservation. On the other hand, the user283

data represents specific information about the object (e.g., photos of goods, prices and284

maps in a department store).285

Let N be the total number of objects, d be the user data size, and p be the index286

pointer size.287

- Channels: These are wireless data broadcast channels through which the server delivers288

the information, and the uplink channel through which the object conveys information289

regarding its location, direction, speed, etc. In this paper, we assume that spatial indexes290

and data be transmitted through a single wireless channel.291

We assume that a server collects the locations of hotels, gas stations, and certain292

moving objects and manages them integrally. The client and object can identify their293

locations through the use of location measurement technologies such as GPS. The data294

9

Table 1: Definition of Notations.

Notation Description
query
point

The location where the query is issued

K The closest K points to a query point
bcast n A broadcast cycle n
Gi A grid node i which contains at least one object
Oi An object i
QKNN K-nearest neighbor query
t The time stamp (time interval)
N The total number of data objects
e the exponential base (e > 1)
w The quantity of the objects that is kept in the queue
N ′ The tuned total number of data
f The total index tuple size of the next pointers in each index table
h The Hilbert-curve order
D The size of data
Te1 The total size of the exponential pointer during a broadcast cycle
ℜ The number of objects that are contained in the grid nodes
pn The child node of the root grid node Rn

zn The number of grid nodes that belong to Rn

GID The grid identifier included in Rn

z
′n The number of grid-nodes included in the Rn

that is delivered from the server is delivered at constant cycle intervals according to the295

rules given, and the client wakes up at random times.296

Table 1 summarizes the notations used in this paper.297

4. Distribution-based Z-order Index298

The main performance factors we consider are AT and TT. These two factors are299

affected directly by the distribution and the number of objects, index size, and the order300

of delivery. We can summarize the conditions to be considered in this regard as follows.301

- The client, without having to listen to the entire index data in order to handle spatial302

queries, can reduce AT.303

- Having the client quickly determine the portion of the index information that does304

not need to be listened to can reduce TT. The client wakes up only when the needed305

data is delivered by identifying the part that is not a query target, and then tuning306

to the index data and user data.307

10

(a)

G0
G1

G2
G3

300

(b)

3032 3303020100

G0
G1

G2 G3

00

2

0302

01

300

303

33

Figure 3: DZI index structure: (a) partitioning a region using a grid, (b) fit in one-dimensional environment.

- The reduction in the size of the index, which is composed of information regarding308

the object location and delivery time, can reduce AT and TT at the same time.309

In order to satisfy these conditions, we can simplify the index data and user data to fit310

them in a one-dimensional environment.311

In the proposed Distribution-based Z-order Index (hereafter called DZI), the index312

structure is determined on the basis of the location and distribution of the objects, and313

the server periodically rebuilds the index so that it reflects the mobility of the objects.314

DZI represents the locations of the objects in a grid structure. The order of delivery of an315

object is determined by the order of the numbers in the grid. The major different between316

DZI and Hilbert-curve-based index is that the Hilbert-curve-based index must allocate bit-317

codes to represent the whole regions regardless of whether there exists an object, whereas318

DZI divides space and assigns bit-codes only to those regions where objects exist. Thus,319

DZI supports to reduce the pointer size and search cost.320

A grid number is assigned in the order of the character ‘Z’ of the alphabet by dividing321

the total area into four divisions. Each number in the grid is used as the identification322

number that represents the location of the object.323

DZI is based on the assumption that objects are delivered in order of ‘Z’. However,324

AT and TT are not influenced even if objects are delivered in other kinds of order-e.g.,325

delivered in order of ‘N’.326

The basic structure of DZI is similar to a quadtree. However, the quadtree is an appro-327

priate structure for a disk-based index, where the server receives and processes the clients’328

requests in an on-demand environment. On the other hand, DZI is an appropriate structure329

for an air-index, where the server transfers the broadcast programming information and330

the actual broadcast contents in sequence via wireless broadcast channels and the clients331

use the received index data to selectively tune to the necessary broadcast [35]. That is,332

11

The whole map area G (level 0)

grid Gx (level 1)

grid Gxy (level 2)

grid Gxyz (level 3)

A grid that
contained
object(s)

A empty grid

level GID
G0
G2
G3
G00

G01

G02
G03
G30
G33
G300
G303

1

2

3

Figure 4: DZI hierarchy and its ID.

DZI provides ID only to objects that are present that enables more powerful accesses with333

a lightweight spatial index that allows fast and efficient data access and tuning.334

We note that it is not necessary to wait until the beginning of the next broadcast335

cycle even though a client loses some data since grid ID represents its location similar336

to the point number of HC-based index [13]. In the DZI, the partitioning process varies337

according to the relative locations and distribution among the objects (see Figure 3(a)).338

The biggest difference between the existing HC-based index and a grid-based index is339

that the identification number of the DZI is granted only to objects that are present as340

targets. The search costs for index, mapping, and conversion can be reduced by reducing341

the amount of unnecessary ID information. This actually avoids having pointers on empty342

regions and reduces the index size. Then, the client can confirm an object’s location using343

only its grid identification number, which has a hierarchical structure; in this way, the344

client is able to perform selective tuning. Another feature of DZI is that the index pruning345

ability is enhanced by means of a vertical hierarchy at the time of index browsing. The346

division of the grid repeats the division into four parts, depending upon the distribution or347

location of an object, and divides the parent nodes (top grid) into child nodes (sub-grid)348

until it contains only the last single object. In this scheme, the parent node becomes G0,349

G1, G2, G3, after which the four nodes will again have child nodes. For example, let us350

assume that the G0 node has objects in all four regions; they will then have child nodes351

of G00, G01, G02, G03. Let us assume that the G00 node has all the objects in the four352

division regions; they will then again have child nodes with identification numbers of G000,353

G001, G002, and G003. Consider Figure 4 and the object status on the G0, G1, G2, G3 grid:354

- G0: only one object is present in all four grids, including G00, G01, G02, and G03.355

- G1: none of objects is present.356

- G2: a single object is present.357

12

- G3: one of each object is present in three different grids: G300, G303, and G33.358

This object status is expressed in one-dimensional structures shown in Figure 3(b). The359

structure of the tree is affected by the distribution of the objects. For example, a child360

node is not blindly divided into four grids. Rather, if the objects are distributed evenly,361

the tree will have parallel balance, and if the objects are located in a particular area of362

focus, they will exhibit an imbalanced appearance. Figure 4 shows the DZI hierarchy and363

ID. As the lower down object goes in the lower levels, the GID (Grid ID) number increases.364

The client can read the GID number and the number of digits and infer the search area365

and the range.366

DZI is composed of root, intermediate and leaf entries. We can now define the parent367

and leaf of the DZI as follows.368

369

Definition 1. (DZI Parent) Parent’s grid ID represents the location of the grid on a map.370

The parent node contains a pointer of the child node(s) that represents the delivery time371

of each child node. The parent node has four child nodes and above two child nodes of the372

parent node have an object or at least one child node of the parent node has above two ob-373

jects. That is, the division process only occurs to the grid node which has above two objects.374

375

Definition 2. (DZI Leaf) The leaf node contains a pointer of the object (user data) which376

represents the delivery time of each object.377

378

The DZI division satisfies the following property:379

380

Property 1. (DZI division) In a given set of data regions, a grid Gi repeats the hierarchy381

division process until it contains only one object. A parent grid can have four or none382

immediate child grids, and a child grid will have one parent grid.383

384

The number of objects contained in a grid Gi in the DZI satisfies the following property:385

386

Property 2. (Number of objects inside Gi) Let num obj Gi be the number of objects in-387

side Gi, which has child nodes. Let num obj G′i be the number of objects inside Gi’, which388

has no child node. Then, num obj Gi ≥ 1 and num obj Gi’ ≥ 0.389

390

The main components of an index segment are: the next broadcast start time; the first391

delivery data arrival time, according to the level (or grid ID) number; user data arrival392

time, object’s x- y coordinates, and the number of objects within the grid. Figure 5 shows393

the detailed structure of the index data for one complete broadcast cycle. At the beginning394

of the index, it contains information that indicates the starting time of each block. We395

assume that the delivery order of object Oi is delivered sequentially according to the grid396

numbers.397

13

Grid
IDs

Number of objects
inside gridi

Details of
object

Arrival time for the first data
item of each level (or grid id)

Next broadcast
cycle time

Arrival time
for user data

Information indicating
the starting time of each block

Figure 5: A detailed structure of the index data.

Parameters:
Gi: A grid node which contains at least one object
S: A set of objects
Input: Object location, speed, and direction.
Output: Requested object
1: for each bcast
2: Disseminate the first data transfer time information for each level
3: for each level according to the top-down structure of DZI
4: for each grid Gi sorted by Z-ordering
5: Disseminate ID of Gi and num obj Gi (step 1)
6: if Gi doesn’t have a child node (step 2)
7: Put ’ mark
8: for each object Oi ∈ S by Z-ordering // bottom level of DZI
9: Disseminate location, moving direction, and velocity of Oi

(step 3)

Figure 6: Data Dissemination algorithm for BFD.

5. Data Dissemination and Selective Tuning on Air398

The server configures DZI in the form of a snapshot, based on the locations of objects399

within the service region, which are delivered periodically. The lowest level of the index in400

the configuration of a hierarchical grid node includes information regarding an object, i.e.,401

its coordinates, speed of movement, and direction. The information regarding an object is402

updated and delivered in each cycle. In the DZI at the time of spatial query processing,403

because the objects are delivered from the server after being divided into a particular order404

sequentially and are hierarchically based on the location, they can selectively tune to only405

the objects in the region that they want to listen to. Our method supports selective tuning406

to the index with reference to each object’s position, orientation, and maximum speed, not407

only in the case of a selective index tuning to static objects but also in the case of continuous408

spatial query processing of moving objects. To support efficient query processing, we divide409

our delivery method into BFD (breadth-first-delivery) and DFD (depth-first-delivery).410

5.1. Breadth-First-Delivery411

BFD delivers nodes in order from the top level of the index tree to the lower levels.412

BFD progresses by delivering the first root node of the DZI that appears and thus going413

deeper and deeper until a leaf node is delivered. The algorithm of BFD is shown in Figure414

6. Please refer the following steps. The server in each level unit delivers the ID of Gi415

and the number of objects inside of Gi (step 1). If Gi no longer contains a child node, it416

inserts an apostrophe (’) and informs that the grid is not divided any further (step 2). At417

the lowest level, the details of an object, i.e., its x-y coordinates, speed, and direction, are418

delivered (step 3). The information regarding how many child nodes the top node has, and419

the number of contained objects, can be obtained and considered at the time ofKNN query420

14

G0 G11

G20

G212

G213

1
2

4

65

G0' G1 G2

O
1

G
11'

G
20'

G
21

O2 O
4

G212' G213'

O5 O6

Object

Grid
node

Range
query

G
0

G
1

G
2

G
11

G
20

G
21

G
212

G
213

O
1

O
2

O
3

O
4

O
5

awake sleep awake sleep

(a) (b)

(c)

Level0

Level1

Level2

Level3

3
G12

G
12'

O
3

G
12

O
6

Tuned
data

Figure 7: Breadth-First-Delivery: (a) objects and hierarchical grid division. (b) grid tree structure. (c) data listening.

processing. Because BFD has to listen to the data at the lowest level for the last query421

processing, the efficiency of AT is lower. However, it is possible to listen selectively by422

pruning the part that may not need to listen to by checking the top node first. Therefore,423

BFD provides the efficiency of TT; in particular, the object is evenly distributed and the424

efficiency of the search is excellent. We note that, in BFD, AT might decrease when the425

object data and the index data are delivered at the same level. However, in this case,426

additional information regarding the arrival time of object and index data deliveries at427

each level is required, which can lead to increase both AT and TT. Thus, our indexing428

scheme assumes that there is a distinction between the object data delivery and the index429

data delivery in BFD.430

In Figure 7, let us look at the process of spatial query processing that uses BFD. Let431

us assume the range query for ease of understanding. In Figure 7(a), G1 is included in432

the query range (a possible object for the answer of range query). The grid and the circle433

indicated in light gray denote the data that the client needs to listen to. After listening to434

level 0, the client finds that there are two objects in G1 (see Figures 7(a) and 7(b)). After435

verifying up to the G20 at level 1, the client can find each of G11 and G12 in G1 with an436

object within. The query range is set to include G11 and G13, and no object is present in437

G13. The client is switched to sleep mode after listening as far as G20 in level 1, and wakes438

up at the time of object delivery of level 3. It then obtains the object for O2, and returns439

the final query result. In Figure 7(c), when a logical time unit is denoted by 1, TT is 7,440

and AT is 11.441

Table 2 shows the order of delivery according to the level of BFD. The client’s KNN442

algorithm for BFD (see Figure 8) is as follows (the range query algorithm is omitted because443

it is similar and simpler to that of KNN). Please refer the following steps.444

The client confirms the number of objects that are included in the ID of nodes Gi and445

Gi for each level units (leaf nodes are excluded) (step 1-step 3). If Gi belongs to the KNN446

query range (a possible object for the answer of KNN query) when the query point and447

15

Table 2: The order of delivery of the index data and the user data according to level of BFD.

Level No. data
0 G0(1’), G1(2), G2(3)
1 G11(1’), G12(1’), G20(1),

G21(2)
2 G212(1’), G213(1’)
3 O1, O2, O3, O4, O5, O6

Parameters:
KNN’: KNN candidate
Input: Index
Output: Requested object
1: for each bcast
2: for each level except leaf level (step 1)
3: for each grid Gi in Z-order (step 2)
4: read num obj Gi (step 3)
5: check whether Gi is located inside KNN’ range or not
6: if Gn is located inside KNN range
7: KNN’ ← KNN’∪Gn(step 4)
8: else KNN’= KNN’-Gn (step 5)
09: for each object Oi ∈ Gn from leaf level, where Gn ∈KNN ’
10: check whether Oi is located inside KNN range or not
11: if Oi is located inside KNN range
12: KNN’ ← KNN’∪Oi

13: else KNN’= KNN’-Oi

14:return KNN objects, where object∈KNN’ (step 6)

Figure 8: KNN algorithm for BFD.

16

Parameters:
Gi: A grid node which contains at least one object
S: A set of objects
Input: Object location, speed, and direction.
Output: Requested object
1: for each
2: Disseminate the first data transfer time information for each grid
3: for each grid ID according to the structure of DZI
4: for each level according to the top-down structure of DZI
5: Disseminate ID of Gi, num obj Gi (step 1)
6: if Gi doesn’t have a child node (step 2)
7: Put ’ mark
8: for each object Oi ∈ S by Z-ordering
9: Disseminate location, moving direction, and velocity of Oi

(step 3)

Figure 9: Data Dissemination algorithm for DFD.

the distance of Gi are compared, it is included in the KNN candidate set (step 4). If Gi448

does not belong to the KNN query range, it is excluded from the KNN candidate set and449

the next Gi is checked. The client reads the object on the inside of Gi that is contained450

in the KNN candidate set at the level of the last leaf, and returns the final KNN result451

(step 5). It is important to notice that in the search process, Gi that belongs to KNN can452

be changed continuously. In other words, the most distant Gi that has previously been an453

element of KNN is excluded from KNN when a new Gi is included.454

5.2. Depth-First-Delivery455

The following DFD technique delivers information that belongs to the same grid, first.456

The components of the index and the delivery order consist of the number of each grid457

and delivery time, number of objects inside a grid, and object information (i.e., location,458

speed, direction, etc.). The algorithm of DFD (see Figure 9) is as follows. For each grid ID459

unit, the server delivers the number of objects that are included in the ID and Gi for node460

Gi, which contains the objects (step 1). If Gi no longer contains child nodes, it informs the461

client that the grid is not being divided any further by inserting an apostrophe (’) (step462

2). DFD delivers details about the object that belongs to the end Gi, which is not divided463

further according to Z-ordering, the x-y coordinates of the object, speed and direction, etc.464

(step 3). Because the division node and object information are immediately delivered by465

the grid at the time of spatial query processing, query processing can be performed without466

having to wait unconditionally until the lowest level, as in BFD. Therefore, compared to467

BFD, AT gets much better. In particular, the performance gets better when the distri-468

bution of objects is clustered in a particular area. Note that we assume that the index469

information is delivered by a certain t time interval. Therefore, it is possible for the client470

to predict when the desired index information arrives, because of the nature of the index,471

which is delivered sequentially according to the order of the location at an interval of t472

hours.473

Let us consider the range query processing that uses DFD, keeping Figures 10(a) and474

10(b) in mind. In the figure, the query range is shown to be located within G1. The grid475

17

G0 G11

G20

G212

G213

1
2

4

65

G
0'

O
1

G
11'

G20'

O
2

O4 G212' G213'O
5

O6

Object

Grid
node

Range
query

G
0

O
1

G
1

G
11

O
2

G
2

G
20

O
4

G
21

G
212

O
5

G
213

O
6

awake

(a)
(b)

(c)

G
1

G2 G21

Grid0

Grid1

Grid2

sleep

G12 3
O3G

12'

G
12

O
3

Tuned
data

Figure 10: Depth-First-Delivery: (a) objects and hierarchical grid division. (b) grid tree structure. (c) data listening.

Table 3: The order of delivery of the index data and the user data according to GID.

Level No. data
0 G0(1’), O1

1 G1(2), G11(1’), O2, G12(1’),
O3

2 G2(3), G20(1’), O4, G21(2),
G212(1’), O5, G213(1’), O6

3 null

Parameters:
KNN’: KNN candidate
Input: Index
Output: Requested object
1: for each bcast
2: for each grid id (step 1)
3: for each grid Gi in Z-order (step 2)
4: read num obj Gi (step 3)
5: check whether Gi is located inside KNN range or not
6: if Gn is located inside KNN range
7: KNN’ ← KNN’∪Gn(step 4)
8: else KNN’= KNN’-Gn (step 5)
09: for each object Oi ∈ Gn, where Gn ∈KNN ’
10: check whether Oi is located inside KNN range or not (step 6)
11: if Oi is located inside KNN range
12: KNN’ ← KNN’∪Oi

13: else KNN’= KNN’-Oi

14:return KNN objects, where object∈KNN’ (step 7)

Figure 11: KNN algorithm for client DFD.

18

and circle in light gray indicate the data that the client needs to listen to. The client476

checks the first data delivery time information of each grid. Next, the client wakes up at477

the G1-level and listens to the data up to G2(3) in level G2, then finally checks to confirm478

that objects O2 and O3 are in grid1, and that the object that belongs to the range query is479

O2. In 10(c), when one unit of logical time is denoted as 1, TT is 6, which is the wake-up480

time, and AT is 8, which is the sleep time + wake-up time. Selective tuning is possible481

using the grid ID in the case of DFD. In this case, the grid that is the query result target482

must be tuned to entirely until it finds the desired object. Thus, the amount of information483

that the client must tune to in its waking state is increased according to the distribution484

and the number of objects. In this case, more tuning time can be consumed than BFD.485

Table 3 shows the order of delivery of the index data and the user data according to GID.486

The client’s KNN algorithm for DFD (see Figure 11) is as follows (the range query487

algorithm is omitted because it is similar to that of KNN). The client checks the ID of488

node Gi and the number of objects that are included in Gi by each grid ID unit (step 1489

- step 3). If Gi belongs to the KNN query range, which is determined by comparing the490

distance between the query point and Gi, it is included in the KNN candidate set (step 4).491

If Gi is outside the scope of the KNN query range, it is excluded from the KNN candidate492

set, and then the next Gi is checked (step 5). The client reads the objects within Gi that493

are included in the KNN candidate set, and configures the KNN candidate set by checking494

if it is included in the KNN query range (step 6). It then returns the final results of KNN495

(step 7).496

In summary, BFD, which searches through the indexes at all levels, has a longer access497

time than does DFD, which locates desired data objects via partial index information.498

However, BFD yields better tuning time because it exploits high-level index information499

to prune unnecessary search ranges beforehand. By contrast, DFD examines every data500

object in each partitioned zone via a depth-first search, making its tuning time longer501

than that of BFD. The server delivers the object location information periodically, using502

the information regarding the object’s location, direction, and speed. The client performs503

spatial query processing by taking advantage of the object information that was delivered504

from the server. The client wipes off the objects that are not taken into account by using the505

information on location, direction, speed, and stores, etc., and manages only those objects506

that will affect future query results. Therefore, this process can reduce the computation507

time for updating and can reduce the dependence on the server. If the speed or direction508

of an object exceeds the predicted scope within the range and time where it is desired to509

be looked for, the server data of the next cycle must be tuned to.510

When search ranges for KNN queries are updated by the client, the BFD and DFD511

algorithms utilize the following two principles. First, when the K in KNN queries is512

decreased, the existing query processing results are used without the need to listen to the513

broadcast server. Second, when the K in KNN queries is increased, query processing is514

repeated by once again listening to the servers broadcast channel.515

19

0 2

2

A B

C

Qy

x
t=0

2

0 2

A
B

C

Qy

x
t=1

0 2

A

B

C

Qy

x
t=2

2

0 2

E

D
C

Qy

x
t=3

2

Figure 12: 3NN objects for a period of time T0-T3.

6. Client’s Own Calculation for KNN Queries on Moving Objects516

In this section, we examine a client’s method to self-process a spatial query of a mobile517

object. For ease of presentation, we describe the query processing method focusing on518

snapshot KNN queries over static query point and dynamic objects. The client’s query519

processing can be summarized as follows:520

- The client performs its own future spatial query processing without having to rely on521

a server by receiving the information from the server regarding the object’s location,522

speed, and direction of movement.523

- The quantity of objects that is kept in the client’s queue (w), and the objects that are524

at a greater distance than the information stored in the queue among the information525

transmitted from the server, are excluded from the KNN target.526

- The point in time at which the time stamp t is changed is the point in time at which527

the target of KNN or the priority can be changed.528

Figure 12 shows an example with K = 3 (3-NN) in the client’s KNN query processing.529

In the figure, let us assume that object A and object D move at 0.5 increments of the530

maximum travel distance (with maximum speed) for the unit time t, and that object B,531

object C, and object E move at increments of 1 (with maximum speed). As can be seen532

in the figure, 3-NN is processed up to T0-T3 using the object’s information received from533

the server in the first cycle. In T3, new objects D and E have been added, with the object534

information received from the server in the second cycle, and objects B and A are excluded535

from the KNN results target. Table 4 shows the 1st NN, 2nd NN, and 3rd NN resulting536

objects according to Tn. The table shows that the client performs its own spatial query537

processing without having to rely on a server for a period of time, by using an index that538

has been delivered through a wireless data broadcast channel. The client is then passed539

through a wireless data broadcast channel using an index for a period of time, in order540

to perform its own query processing of spatial information. Let us assume that objects541

travel over a period of time in a straight line, like cars on the highway. The client’s query542

processing can then be explained using the example in Figure 13. Observe the range queries543

and 3-NN processing by dividing the query processing time into logical time units of up to544

T0-T3. Assume that the server’s broadcasting of object information of up to 1-4 to bcast1545

20

Table 4: 3NN resulting objects according to Tn

Time stamp 1st NN 2nd NN 3rd NN
T0 A B C
T1 B A C
T2 C B A
T3 D C E

(a)

1

2 3

4

1

2

4

1

2

4

(b) (c)

q
()2 1

555

3

33

q
()2 1 3

q
()2 1 3

()3 1
q

5

Range={2}, 3NN={2, 1, 3}

Range={2}, 3NN={2, 1, 3}

Range={1, 2}, 3NN={1, 3, 2}

Range={1, 3, 5}, 3NN={3, 1, 5}

T0, bcast=1

T1, bcast=1

T2, bcast=2

T3, bcast=2

T0 ~ T1 T2 T3

5

2
(d)

K-NN
query point

Range query
search range

Figure 13: 3NN query processing for moving objects.

is the first broadcast cycle, and that it broadcasts the object information of 1-5, including546

new object 5, to bcast2. In Figure 13, the empty box represents the query point in theKNN547

query; the gray box, the range query; the black circles and arrows (e.g., O1, O2, O3, O4),548

the objects that have been confirmed for the location and direction from the server; and549

the empty circles with arrows (e.g., O5), objects that have not yet been confirmed by the550

server. The objects such as cars, trains, bikes, and boats have the maximal travel speed.551

For example, a moving car may not exceed a speed of 300 km/h. An arrow represents552

the travel direction of an object, and the length of a line represents the maximum travel553

speed of an object, which increases by one scale every time Tn increases. The client can554

predict the object’s location in advance at the time of Tn + n, with reference to the object’s555

current location, movement speed, and direction of travel, since the logical time Tn. In556

Figure 13(d), the parentheses in a range of segments indicate the range query region, and557

the numbers in parentheses in the query results for 3NN are listed in order of the closest558

object. We assume that the client’s queue can store a maximum of three objects, using w559

= 3.560

Let us consider the snapshot of KNN query processing at the time T0-T3, considering561

the movement of the object. The KNN algorithm is as follows (the range query algorithm562

21

Parameters:
t Order: A period of time that the result set and its KNN order
does not change.
t Entity: A period of time that the result set does not change.
Tn: A logical time unit of client.
Input: index data which includes location, max velocity, moving direction.
Output: Requested object
The value of n of Tn is initially set to 0
Initially QKNN result set={∅}
1: for each bcast
2: read index (step 1)
3: for each object Oi∈S
4: if Oi is located in a range of QKNN
5: QKNN result set←QKNN result set ∪ Oi (step 2)
6: Find t order, t Entity (step 3)
7: for each Tn

8: if Tn≤t order (step 4)
9: QKNN result set remains the same
10: else if t order <Tn≤t Entity (step 5)
11: for each object Oi∈S
12: if Oi is located in a range of QKNN
13: QKNN result set←QKNN result set∪Oi

14: else tune to the next bcast (step 6)

Figure 14: KNN algorithm for snapshot query.

is omitted because it is similar to that of KNN).563

Let us now explain the KNN algorithm by applying it to the example in Figure 14. The564

client listens to the index received from the server (step 1). If the location of the object565

is included in 3NN, it is included in Q3NN result set (step 2). The client then looks for566

t Order and t Entity with reference to the object’s location, direction of movement, and567

speed, which have been listened to (step 3). The index that has been delivered by the568

server in bcast1 is then read, and the Q3NN result set = {O2, O1, O3}, which represents569

the query results from T0-T1, ensures that it does not change (step 4). Thus, up to T0-T1570

can obtain the same 3NN query result without listening to the server’s index information571

or confirming the distance between the query point and the object. In addition, the order572

of the query results in T2 is changed to Q3NN result set = {O1, O3, O2}, but we can see573

that there is no object that can be included in the query result apart from objects O1, O2,574

O3, O4, which have been listened to in bcast1 (step 5).575

The reason for this is that O5 is not included in the 3NN query results by T2, which have576

not been listened to in bcast1. In Figure 13, we can see that the target of KNN and the577

order of KNN at up to T0-T1 do not change. Thus, the client can return the stored value578

in the query result queue to the same KNN query result without the need for a separate579

comparison calculation during the period T0-T1. We can also see that the target has not580

been changed, even though the order of the objects for the KNN query result have been581

changed at up to T0-T2. Thus, from T0-T2, the client can obtain KNN query results by582

comparing the object’s location, direction of movement, and speed, which have been stored583

in the queue, without having to rely on the broadcast data of the server. After T3, the584

client listens to the bcast2 information that is delivered by the server, because a new object585

(see O5 in Figure 13(c)) can affect the 3NN query processing results (step 6). It checks586

22

the information regarding the new O5 using bcast2 information. In T3, the query result of587

Q3NN result set = {O3, O1, O5} is obtained by additionally reflecting the information on588

the location, speed, and direction of O5 to the range query and 3NN. Let t Order be the589

time range from the present time until the query result target object and the KNN order590

are not changed (T0-T1 of Figure 13), and t Entity be the time range from the present591

time until the query result target object is changed (T0-T2 of Figure 13). Thus, the client592

maintains information about objects as much as is allowed within the range of the queue,593

and is able to process spatial queries on its own by using t Entity and t Order, without594

having to rely on the broadcast data of the server over a period of time.595

In order to support client’s self-process for spatial query of a mobile object, we propose596

two heuristics, each defining the unchangeable time period in which the target object of597

KNN does not change. Let us also assume that (1) objects that are present may disappear598

and new objects may be added in M , which denotes all service regions, in every bcast of599

the server, and (2) the server delivers the information regarding all present objects in M600

in each cycle.601

602

Heuristic 1. (The unchangeable time period in which the target object of KNN does not603

change). Let us assume that the time point that has received the object via the most recent604

bcast is Tlatest, and that any future time point is Tfuture. Let A be the set of objects605

included in KNN at Tlatest (e.g., O1, O2, and O3 in Figure 13(a)), B be the objects located606

outside of the scope of KNN as Tlatest (e.g., O4 and O5 in Figure 13(a)), C be the the607

objects to be included in KNN as Tfuture (e.g., O1, O3, and O5 in Figure 13(c)), and608

D be the objects to be located outside of the KNN scope as Tfuture (e.g., O2 and O4 in609

Figure 13(c)). t Entity denotes the time range in which all objects included in A can also610

be included in C. Thus, A.D or B.C in which B and D are included are excluded from611

consideration as a t Entity target. That is, A.C (e.g., O1, O2, O3, and O5 in Figure 13)612

∋ t Entity, which can be entirely included in the KNN range at Tlatest and Tfuture.613

614

If we assume that the time range of t Entity time is 60 minutes according to Heuristic615

1 and that the broadcast cycle is 20 minutes, the client can process KNN by itself, without616

tuning to the data on the server for up to a maximum of three cycles.617

618

Heuristic 2. (The unchangeable time period in which the order of the target object of619

KNN does not change). Let E be the set of objects that do not change in the order of KNN620

from t Entity to Tfuture. Let F be the set of objects that change in the order of KNN from621

t Entity to Tfuture (e.g., O1, O2 and O3 for a period of time T0-T1 in Figure 13). Let F622

be the set of objects that change in the order of KNN from t Entity to Tfuture. T Order623

defines the time range in which all objects that satisfy A.C maintain the same in the order624

of KNN. That is, it becomes A.C.E ∋ T Order.625

626

23

If we assume that the time range of t Entity is 60 minutes for Heuristic 2 and a627

broadcast cycle of 20 minutes, and for T Order for a cycle of 20 minutes, the client can628

return the value stored in the query result queue to the KNN query result as it is for 20629

minutes, without having to listen to the server’s data for a maximum of three cycles.630

7. Performance Evaluation631

BBS [29] and DSI [13] are both major indexes, which exploit the wireless data broadcast632

environment’s characteristics for spatial queries. BBS provides excellent AT because it633

delivers the data sequentially based on the object’s location, without separating the index634

information. On the other hand, DSI is the most widely used index for the selective635

tuning of clients in a wireless data broadcast environment. Unlike Broadcast Grid Index636

(BGI) [2] is designed for continuous queries, both DSI and BBS are basically designed637

for snapshot queries. Moreover, the BGI method is an extended version of the existing638

DSI method that is suited for continuous spatial queries. Similarly to the previous spatial639

indexing methods, BGI suffers from the fast-growing index size problem related to the index640

overlapping pointer. Thus, in this paper, we compare our methods with DSI and BBS.641

The client’s self-processing algorithm is not included in our experimental study. This is642

because DSI and BBS, the main indexing techniques against which the proposed technique643

is compared, do not contain the client’s self-processing algorithm. Instead of carrying out644

an experimental study, we defined two heuristic methods (Heuristic 1 and Heuristic 2)645

regarding the client’s self-processing algorithm, and we predicted its performance in the646

assumed query processing conditions.647

7.1. Performance Analysis648

In this section, we analyze DZI and DSI. DSI uses distributed exponential pointers649

from each data item. With the exponential pointer, each data object contains pointers650

that point the IDs of the data items that will subsequently be broadcast. In section 7.1.1651

and section 7.1.2, we assume that the average time taken to find a single object in either652

KNN queries (i.e., K = 1) or range queries.653

7.1.1. Access Time for DSI and DZI654

Let us compare the access times of the DZI and DSI methods. Because DZI and DSI655

algorithms have a distributed index structure, the probe wait time can be ignored. We656

now compare the access time of DSI and DZI.657

- DSI: let e be the exponential base e, N be the total number of data, and f be the658

total index tuple size of the next pointers in each index table5, h be the Hilbert-curve659

order, D be the size of data, Te1 be the total size of the exponential pointer during a660

broadcast cycle, where k= logeN and ID be the object ID. Then Te1 is obtained by:661

5Each index table in DSI has the next pointers that increase exponentially within the range of N , the
total r amount of data. For example, if N=1024, a single index table has 9 next pointers of 1, 2, 4, 8, and
up to 1024.

24

Te1 =
k∑

f=0

N (1)

Then, the access time for DSI is662

AT DSI =
Te1 +N ×D +N × h+N × ID

2
(2)

Let ℜ be the number of objects that are contained in the grid nodes that belong to663

the root grid R, pn be the child node of the root grid node Rn, z
n be the number of grid664

nodes that belong to Rn, GID be the grid identifier included in Rn, and z
′n be the number665

of grid-nodes included in the Rn (because the number of leaf nodes in ℜ is 0, it is not666

necessary to indicate it, and therefore, the lowest grid node is excluded from the number).667

Then, the access time for DZI is668

AT DZI =

∑3
Rn=0

∑zn

pn=0GID +
∑3

Rn=0

∑z
′n

pn=0ℜ+D ×N

2
(3)

7.1.2. Tuning Time for DSI and DZI669

Energy consumption of the indexing techniques can be indirectly compared by mea-670

suring how long the client has to stay in active mode to acquire the desired data objects.671

Measuring the actual energy consumption requires consideration of various factors, such672

as the size of a single data item and the channel bandwidth. This paper simply uses the673

client’s tuning time as a measure of energy consumption. We now compare the tuning674

time for DSI and DZI to prove the energy efficiency of our proposed algorithms during675

spatial query processing. While DSI uses the exponential pointer, which has a redundant676

structure, our algorithm using DZI allows selective tuning with the ID and the number of677

objects without the exponential pointer.678

Let N ′ be the tuned total number of data and Te2 be the number of indexes from f ′679

to k′, where k′= logeN
′ which the client wakes up and listens to until the desired data are680

obtained. We obtain:681

Te2 =
k′∑

f ′=0

N ′ (4)

Then, the tuning time (TT) for DSI:682

TT DSI = h+ Te2 +D (5)

Let Ln be the number of grid nodes in Rn up to the grid level n, until the query683

processing is completed and Ln′
be the number of grid nodes excluding the leaf grid node684

25

in the Rn up to the grid level n, until the query processing is completed. Let Lm be the685

beginning grid node for tuning, and Lm′
be the beginning grid node for tuning excluding686

the leaf grid node.687

Now, we have:688

TT DZI =
Ln∑

Rn=Lm

Ln∑
pn=Lm

GID +
Ln′∑

Rn=Lm′

Ln′∑
pn=Lm′

ℜ+D (6)

7.2. Performance Experiments689

Let us now evaluate the efficiency of our algorithms through experimentation. We690

implemented all methods in C++ and conducted experiments on a machine with a Pentium691

3.16 GHz CPU and 3 GByte of RAM. We assume that the client’s mobility pattern follows692

the Random Waypoint Mobility Model [28], which is widely used.693

In our experiments, each object begins by pausing for a fixed number of seconds. Then,694

object selects a random destination in the simulation area and a random speed between695

0 and the maximum speed. The object moves to this destination and again pauses for a696

fixed period before another random location and speed. This behaviour is repeated for the697

length of the simulation. We now describe the ratio of energy consumption for these states.698

A mobile client begins by staying in one location for a certain period of time t. We assume699

two energy states: sleep and active mode. In a processor, the doze mode has extremely low700

power consumption. We assume that the wireless data broadcast channel has a bandwidth701

of 2 Mbps as the same applied in [2, 29]. We use a uniform dataset (hereafter called702

D1) with 50,000 points and a real dataset (hereafter called D2) containing 39,231 data703

objects of MBRs for Montgomery County roads6 (see Figures 15(a) and 15(b)). We assign704

8 bytes for each pointer and 8 bytes for 2D coordinates. The default parameter setting705

in our synthetic data set test is: number of objects = 10,000, size of data = 256 bytes,706

exponential value e = 2, moving distance = 100m, the value of K for KNN search is 3,707

and a search range for range query is 300m × 300m. Assuming that the data objects are708

distributed on a 10km × 10 km area.709

The total exploration time from when the client reads an index at a certain time point710

after receiving a user’s request to obtain the desired final result is assumed as AT. The711

total amount of time to be awake in order to obtain the desired final result is assumed as712

TT.713

First, we make a comparison between AT for BFD and DFD, according to the increase714

in the size of the user data for KNN query. As can be seen in Figure 16, DFD has excellent715

AT compared to BFD. The user data in BFD is delivered in batches after the index data716

delivery. Thus, all the index information must be tuned to in order to listen to the user717

data that will be delivered to the next order. Because the index search method also uses718

BFD, all index information from the top of the tree must be tuned to first, in order to719

6The dataset available at http://chorochronos.datastories.org/?q=node/17

26

(a) (b)

Figure 15: Datasets for Performance Evaluation. (a) UNIFORM dataset (D1). (b) REAL dataset (D2).

1 2 3 4 5
50

100

150

200

250

300

350

400

450

500

A
cc

es
s

tim
e

(m
s)

Size of data (KB)

 BFD
 DFD

Figure 16: AT for the BFD and the DFD, according to the increase in the size of the user data.

access the sub-index information. The user data is applied to the same process. For this720

reason, the time consumed in order to obtain the desired information increases according721

to the increase in the index pointer and data sizes. On the other hand, DFD can obtain722

the final query result even in the status that involves only listening to the index from the723

upper part of the tree and the user data. The reason for this is that the index data and724

the user data are delivered one after another in DFD.725

Figure 17(a) shows the results of the measurement of AT according to the increase in726

KNN. As the KNN value increases, BFD and DFD must navigate the index data and727

user data in a broader range. Thus, the search range and AT increase. In particular, we728

can see that BFD, which can confirm the final query result only after listening to all the729

index information, shows poor AT results as compared to those of DFD when the K value730

increases.731

Figure 17(b) shows the evaluation of AT in response to an increase in the navigation732

area of the range query. Similar to the case of KNN, in BFD, AT increases sharply,733

because it must wait until all the index data has been transmitted in order to obtain the734

user data, and the number of user data required to be confirmed increases as the search735

region increases. On the other hand, DFD shows far superior AT than BFD, because it is736

possible to do the query processing via depth-first search, without waiting for the lowest737

level for no reason.738

27

1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

4000

A
cc

es
s

tim
e(

m
s)

The value K of KNN

 BFD
 DFD

(a)

40 60 80 100 120 140 160 180 200 220

0

5000

10000

15000

20000

A
cc

es
s

tim
e

(m
s)

Search range (m)

 BFD
 DFD

(b)

Figure 17: (a) AT according to the increase in KNN. (b) AT in response to an increase in the navigation area of the range

query.

50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

Tu
ni

ng
 T

im
e

(m
s)

Size of Data (KB)

 BFD
 MLAIN

(a)

50 100 150 200 250
0

5000

10000

15000

20000

25000

30000
Tu

ni
ng

 T
im

e
(m

s)

Size of Data (KB)

 BFD
 MLAIN

(b)

Figure 18: TT results for the case in which three index techniques are applied to the range query. (a) applying in D1 (b)

applying in D2.

In the experiment, the energy efficiency was evaluated by comparing the time during739

which clients stay in active mode. The proposed method enables clients to choose the DFD740

algorithm to increase search speed or the BFD algorithm to improve energy efficiency.741

In this experiment, the performance of the proposed method using BFD was compared742

with that of the MLAIN method. The MLAIN method adopts the depth-first traversal743

strategy to process a query. In MLAIN, clients stay in active mode while listening to each744

and every sub-node of a target node Gi. This increases the active mode time and thus745

decreases the energy efficiency. On the other hand, BFD can enhance energy efficiency via746

selective listening the nodes that are not necessary for acquiring query results are pruned747

in advance, at a higher level. Figure 18(a) and 18(b) show the energy efficiency of the748

proposed and MLAIN methods with regard to data size changes. As can be seen in the749

figures, the proposed method with BFD has a shorter active mode time than MLAIN,750

gaining higher energy efficiency. Figure 19(a) and 19(b) present the energy efficiency with751

search range changes in kNN and range queries. Here, the proposed method also achieves752

better energy efficiency than MLAIN.753

28

1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

Tu
ni

ng
 T

im
e

(m
s)

The value K of KNN

 BFD
 MLAIN

(a)

1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

8000

Tu
ni

ng
 T

im
e

(m
s)

Search range (km)

BFD
 MLAIN

(b)

Figure 19: TT results for the case in which three index techniques are applied to the range query. (a) applying in D1 (b)

applying in D2.

100 200 300 400 500
0

2000

4000

6000

8000

10000

12000

14000

16000

Tu
ni

ng
 T

im
e

(m
s)

Size of data (KB)

 DFD
 DSI
 BBS

(a)

100 200 300 400 500
0

2000

4000

6000

8000

10000

12000

Tu
ni

ng
 T

im
e

(m
s)

Size of data (KB)

 DFD
 DSI
 BBS

(b)

Figure 20: TT for DFD, DSI, and BBS to KNN queries. (a) applying in D1 (b) applying in D2.

29

100 200 300 400 500
0

2000

4000

6000

8000

10000

12000

Tu
ni

ng
 T

im
e

(m
s)

Size of data (KB)

 DFD
 DSI
 BBS

(a)

100 200 300 400 500
0

20000

40000

60000

80000

100000

Tu
ni

ng
 ti

m
e

(m
s)

Size of data (KB)

 DFD
 BBS
 DSI

(b)

Figure 21: TT results for the case in which three index techniques are applied to the range query. (a) applying in D1 (b)

applying in D2.

We compare DFD and DSI according to the increase in data size, and evaluate the754

performance of TT and AT with regard to the BBS techniques. BFD, which displayed755

relatively poor AT in the previous experiment is excluded from this evaluation. First, TT756

in D1 is compared by applying three index techniques to KNN queries. As can be seen in757

Figure 20(a), DFD shows quite excellent TT. The reason is that in DSI, a client repeatedly758

wakes up and falls asleep in the course of the search process on a large number of duplicate759

pointers, while, in DFD, a client can wait in sleep mode for a longer time because it is760

possible to listen selectively, using only the identification number of the grid. On the other761

hand, we find that BBS displays the relatively worst TT, because even though the index762

size is the smallest because it does not have a pointer that indicates the data location, it763

does not have a pointer that supports selective tuning, so the time spent in active mode764

is longer. Figure 20(b) shows the TT results for the three indexes were applied to a KNN765

query in D2. We find that DFD shows the relatively best TT for the same reason as in D1.766

On the other hand, we can also see that BBS, which must remain awake for the longest767

time, displays the poorest TT.768

Figures 21(a) and 21(b) show the TT results for the case in which three index techniques769

are applied to the range query in D1 and D2. We find that DFD, also for similar reasons770

as in the previous experiments, displays quite excellent TT in the range query.771

Next, we compare AT by applying three indexes to a KNN query in D1 and D2. As772

can be seen in Figures 22(a) and 22(b), unlike in the previous experimental results, DSI773

displays the poorest AT, and BBS displays relatively good AT. DSI performs the worst774

during the time it takes to obtain the final query, due to the burdens of the pointer size and775

the search cost of a Hilbert-curve. On the other hand, DFD shows excellent AT because its776

pointer size is relatively small, and it can quickly determine the region not to be listened777

to, due to the hierarchical tree structure that considers the location. BBS also displays778

good results compared to the previous TT test, because the burden of the index pointer is779

on the low end, and it can obtain the final query result without having to listen to all the780

data. BBS that minimizes the size of the index information reduces the broadcast cycle,781

which allows for a faster access time in spatial query processing. However, BBS doesn’t782

30

100 200 300 400 500
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

A
cc

es
s

Ti
m

e
(m

s)

Size of data (KB)

 BBS
 DSI
 DFD

(a)

100 200 300 400 500
0

5000

10000

15000

20000

25000

30000

35000

40000

A
cc

es
s

Ti
m

e
(m

s)

Size of data (KB)

 DFD
 DSI
 BBS

(b)

Figure 22: AT by applying three indexes to a KNN query. (a) applying in D1 (b) applying in D2.

100 200 300 400 500
0

5000

10000

15000

20000

25000

30000

35000

40000

A
cc

es
s

Ti
m

e
(m

s)

Size of data (KB)

 DFD
 DSI
 BBS

(a)

100 200 300 400 500
10000
20000
30000
40000
50000
60000
70000
80000
90000
100000
110000
120000
130000
140000
150000
160000

A
cc

es
s

tim
e

(m
s)

Size of data (KB)

 DFD
 DSI
 BBS

(b)

Figure 23: AT for three index techniques applying to a range query.(a) applying in D1 (b) applying in D2.

perform well because of the limitation of selective tuning ability. In general, the client’s783

access time decreases and tuning time increases as the index information decreases.784

Figures 23(a) and 23(b) show the results of a comparison between AT in D1 and D2, in785

which three index techniques are applied to a range query. In this case as well, DSI displays786

the poorest AT, due to the burden of pointer size and the inefficiency of the search method,787

because the increase in data size increases the number of data that must be listened to.788

Next, we perform a test comparing TT according to an increase in KNN (see Figures789

24(a) and 24(b)). As can be seen in Figures 24(a) and 24(b), DFD shows excellent results,790

because an increase in the KNN value incurs an increased cost for searching the index791

data and user data. Figures 25(a) and 25(b) both show the results in D1 and D2 for a792

comparison of AT, in which the value of KNN is increased from 1 to 5. As shown in the793

previous experiment’s results, BBS minimizes the index size and improves the access time.794

DFD shows excellent results, because an increase in the KNN value incurs an increased795

cost for searching the index data and user data. Also, there is the least amount of data to796

be listened to in the active mode, because of the relatively low burden on the index pointer,797

and the least burden of the mapping calculation of the user data from the index. In BBS,798

the distribution of objects in a dataset has a direct influence on the data delivery order799

31

1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

Tu
ni

ng
 ti

m
e

(m
s)

The value K of KNN

 DFD
 DSI
 BBS

(a)

1 2 3 4 5
0

1000

2000

3000

4000

5000

Tu
ni

ng
 ti

m
e

(m
s)

The value K of KNN

 DFD
 DSI
 BBS

(b)

Figure 24: A comparison according to an increase in KNN. (a) applying in D1 (b) applying in D2.

1 2 3 4 5

1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000
18000
19000

A
cc

es
s

tim
e

(m
s)

The value K of KNN

 DFD
 DSI
 BBS

(a)

1 2 3 4 5
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

A
cc

es
s

tim
e

(m
s)

The value K of KNN

 DFD
 DSI
 BBS

(b)

Figure 25: A comparison of AT, in which the value of KNN is increased from 1 to 5. (a) applying in D1 (b) applying in

D2.

32

1 2 3 4 5

0

2000

4000

6000

8000

10000

12000

14000

Tu
ni

ng
 ti

m
e

(m
s)

Search range (km)

 DFD
 DSI
 BBS

(a)

1 2 3 4 5

0

50000

100000

150000

200000

250000

Tu
ni

ng
 ti

m
e

(m
s)

Search range (km)

 DFD
 BBS
 DSI

(b)

Figure 26: A comparison for TT in which the search range is increased from 1 km to 5 km. (a) applying in D1 (b) applying

in D2.

1 2 3 4 5
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

A
ce

ss
 ti

m
e

(m
s)

Search range (km)

 DFD
 DSI
 BBS

(a)

1 2 3 4 5
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

A
cc

es
s

tim
e

(m
s)

Search range (km)

 DFD
 DSI
 BBS

(b)

Figure 27: A comparison according to increases in the search range in the range queries. (a) applying in D1 (b) applying

in D2.

and search efficiency the objects at the leftmost are delivered first, followed by delivering800

those at the right-hand side. In the experiment results shown in Figure 25(a), BBS has801

faster access time than DFD. On the other hand, DFD has a slightly better access time802

than BBS in Figure 25(b) because of the difference in object distributions.803

Figures 26(a) and 26(b) both show the results of a comparison for TT in D1 and D2804

in which the search range is increased from 1 km to 5 km. We can see that DFD shows805

that, as the search range increases, the highest level of performance is also in TT, for the806

same reason as in the previous test.807

Next, we perform a test comparing AT according to increases in the search range in the808

range queries. Figures 27(a) and 27(b) both show the results of a comparison of AT in D1809

and D2, in which the search range is increased from 1 km to 5 km. The results show that810

DSI had the worst result when the search range is increased, for reasons similar to those811

in the KNN query processing.812

We now compare AT in D1 in terms of an increase in the size of objects. An increase in813

the number of objects leads to an increase in the size of the pointer, which represents the814

33

2000 4000 6000 8000 10000
0

200
400
600
800
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800

Tu
ni

ng
 ti

m
e

(m
s)

No. of data items

 DFD
 DSI
 BBS

(a)

2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

Tu
ni

ng
 ti

m
e

(m
s)

No. of data items

 DFD
 DSI
 BBS

(b)

Figure 28: A comparison and measurement of TT in terms of KNN query. Both (a) and (b) applying in D1.

2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

12000

14000

A
cc

es
s

tim
e

(m
s)

No. of data items

 DFD
 DSI
 BBS

(a)

2000 4000 6000 8000 10000

2000
4000
6000
8000
10000
12000
14000
16000
18000
20000
22000
24000
26000
28000
30000
32000
34000
36000

A
cc

es
s

tim
e

(m
s)

No. of data items

 DFD
 DSI
 BBS

(b)

Figure 29: A comparison and measurement of AT in terms of KNN query. Both (a) and (b) applying in D1.

object location and delivery time. In the case of DSI, even though a pointer that increases815

by index e (exponential) is used, the amount of information to be listened to becomes816

quite large, because the duplicate pointer increases as much as logeN in each index frame817

every time the number N of data increases. On the other hand, the listening data and818

computation time in DZI become relatively small compared to those in DSI, due to the819

reduction in the cost of duplicate indexing pointers.820

Figures 28(a) and 28(b) both show the results for TT as the number of objects increases821

from 2,000 to 10,000. As can be seen in the test results, DSI displays the worst TT than822

DFD in the majority of cases, due to the burden of having to read more pointers with823

the increase in the search range, as well as the problem of having to listen to unnecessary824

blocks due to the nature of the Hilbert-curve.825

Figures 29(a) and 29(b) show the results of a comparison and measurement of AT in826

D1 and D2 in terms of KNN query, when the number of data is increased from 2,000827

to 10,000. In this case, we can see that DSI shows the worst AT, because it receives a828

duplicate pointer and forms an inefficient search structure as the number of data increases.829

On the other hand, we find that DFD, which uses DZI, displays excellent AT, as a result830

of the lightweight index and fast search results.831

34

As can be seen in all the experimental results, AT and TT, which are the main elements832

of performance evaluation, are both affected greatly by the index structure and search833

method. We find that the search method that uses DZI with DFD shows the best AT and834

TT in KNN and a range query.835

8. Conclusion836

In this paper, we proposed a distribution-based Z-order air index and query processing837

algorithms, such as BFD (Breadth-First-Delivery), and DFD (Depth-First-Delivery) that838

reduce AT and TT in a wireless data broadcast environment. In DZI, we are able to reduce839

the pointer size and search cost, which account for the largest cost in the index structure,840

by assigning an identification number only to the space of those objects that are actually841

present. A lightweight index structure reduces the broadcast cycle and index search time,842

and a hierarchical index structure reduces energy consumption via the client’s selective843

tuning. BFD can improve the efficiency of TT through selective tuning by previewing and844

pruning the part not to be listened to from the upper node by delivering the DZI tree845

information from the upper levels to the lower levels. DFD delivers the DZI in depth-first846

order.847

We can improve the performance of AT by determining the final query result by listening848

to the partial data information, without having to listen to the end node of the tree via849

the consecutive delivery of index data and user data that belong to the same grid.850

Next, we proposed an algorithm that allows the client to self-process a spatial query851

of a mobile object using the object’s location, speed, and direction information without852

reliance on the server for a period of time. It has proved that DZI with BFD and DFD853

provides fast response time and minimal energy consumption. In the future, we plan to854

study the multi-channel broadcast for location-based services.855

856

References857

[1] Bugra G., Aameek S., and Ling L., “Energy efficient exact kNN search in wireless858

broadcast environments”, In Proc. of ACM GIS, pp. 137-146, 2004.859

[2] Kyriakos M., Spiridon B., and Dimitris P., “Continuous Monitoring of Spatial Queries860

in Wireless Broadcast Environments”, In IEEE Trans. Mob. Comput., 8(10), pp. 1297-861

1311, 2009.862

[3] J. Xu, B. Zheng, W.-C. Lee, and D. L. Lee, “Energy Efficient Index for Querying863

Location-Dependent Data in Mobile Broadcast Environments”, In Proc. of the 19th864

IEEE Int. Conf. on Data Engineering (ICDE ’03), pp. 239-250, 2003.865

[4] Datta, A., Celik, A., Kim, J.K., VanderMeer, D., and Kumar, V., “Adaptive broadcast866

protocols to support power conservation retrieval by mobile users”, In Proc. of IEEE867

International Conference Data Engineering (ICDE), pp. 124-133, 1997.868

35

[5] Datta, A., VanderMeer, D.E., Celik, A., and Kumar, V., “Broadcast protocols to869

support efficient retrieval from databases by mobile users”, ACM Trans. Database870

Syst., 24(1), pp. 1-79, 1999.871

[6] Imielinski, T., Viswanathan, S., and Badrinath, B.R., “Energy efficiency indexing872

on air”, In Proc. of the ACM SIGMOD International Conference on Management of873

Data, pp. 25-36, 1994.874

[7] Imielinski, T., Viswanathan, S., and Badrinath, B.R., “Data on air-organization and875

access”, IEEE Trans. Knowl. Data Eng., 9(3), pp. 353-372, 1997.876

[8] Shanmugasundaram, J., Nithrakashyap, A., Sivasankaran, R.M., and Ramamritham,877

K. “Efficient concurrency control for broadcast environments”, In Proc. of ACM SIG-878

MOD International Conference on Management of Data, pp. 85-96, 1999.879

[9] Zheng, B. and Lee, D.L., “Information dissemination via wireless broadcast”, Com-880

mun. ACM, 48(5), pp. 105-110, 2005.881

[10] Park, K. and Choo, H., “Energy-efficient data dissemination schemes for nearest neigh-882

bor query processing”, IEEE Trans. Comput., 56(6), pp. 754-768, 2007.883

[11] Park, K. and Valduriez, P., “Energy Efficient Data Access in Mobile P2P Networks”,884

IEEE Trans. Knowl. Data Eng., 23(11), pp. 1619-1634, 2011.885

[12] Kyriakos Mouratidis and Man Lung Yiu, “Shortest Path Computation with No Infor-886

mation Leakage”, PVLDB, 5(8), pp. 692-703, 2012.887

[13] Baihua Z., Wang L., Ken L., Dik L., and Min S., “A distributed spatial index for888

error-prone wireless data broadcast”, VLDB J., 18(4), pp. 959-986, 2009.889

[14] Swarup Acharya, Rafael Alonso, Michael J. Franklin, and Stanley B. Zdonik, “Broad-890

cast Disks: Data Management for Asymmetric Communications Environments”, In891

Proc. of SIGMOD Conference, pp. 199-210, 1995.892

[15] B. Zheng,W.-C. Lee, and D. L. Lee. “Spatial queries in wireless broadcast systems”,893

Wireless Networks, 10(6), pp. 723-736, 2004.894

[16] C. Gotsman and M. Lindenbaum, “On the metric properties of discrete space-filling895

curves”, IEEE Transactions on Image Processing, 5(5), pp. 794-797, 1996.896

[17] W.-C. Lee and B. Zheng, “DSI: A Fully Distributed Spatial Index for Location-Based897

Wireless Broadcast Services”, In Proc. of Int’l Conf. Distributed Computing Systems898

(ICDCS), pp. 349-358, 2005.899

[18] Guttman, A., “R-trees: a dynamic index structure for spatial searching”, In Proc. of900

Special Interest Group on Management of Data (SIGMOD), pp. 47-57, 1984.901

36

[19] Xuan, P., Sen, S., Gonzalez, O., Fernandez, J., and Ramamritham, K., “Broadcast on902

demand: efficient and timely dissemination of data in mobile environments”, In Proc.903

of IEEE Real Time Technology and Applications Symposium, pp. 38-48, 1997.904

[20] Chuan-Ming Liu and Kun-Feng Lin, “Disseminating dependent data in wireless broad-905

cast environments”, Distributed and Parallel Databases, 22(1), pp. 1-25, 2007.906

[21] P.Nicopolitidis, G.I.Papadimitriou and A.S.Pomportsis, “Exploiting Locality of De-907

mand to Improve the Performance of Wireless Data Broadcasting”, IEEE Transactions908

on Vehicular Technology, vol.55, no.4, pp.1347-1361, 2006.909

[22] Zaixin Lu, Yan Shi, Weili Wu, and Bin Fu, “Efficient data retrieval scheduling for910

multi-channel wireless data broadcast”, In Proc. of INFOCOM, pp. 891-899, 2012.911

[23] S.E. Hambrusch, C.-M. Liu, W.G. Aref, and S. Prabhakar, “Query Processing in912

Broadcasted Spatial Index Trees”, In Proc. of Int’l Symp. Advances in Spatial and913

Temporal Databases (SSTD), pp. 502-521, 2001.914

[24] Glenn S. Iwerks, Hanan Samet, and Kenneth P. Smith, “Continuous K-Nearest Neigh-915

bor Queries for Continuously Moving Points with Updates”, In Proc. of VLDB, pp.916

512-523, 2003.917

[25] G. Ghinita, P. Kalnis and S. Skiadopoulos, “PRIVE: Anonymous Location- Based918

Queries in Distributed Mobile Systems”, In Proc. of International World Wide Web919

Conference (WWW), pp. 371-380, 2007.920

[26] M. F. Mokbel, C.-Y. Chow, and W. G. Aref, “The New Casper: A Privacy-Aware921

Location-Based Database Server”, In Proc. of International Conference on Data En-922

gineering Conference (ICDE), pp. 1499-1500, 2007.923

[27] B. Gedik and L. Liu, “A Customizable k-Anonymity Model for Protecting Location924

Privacy”, In Proc. of International Conference on Distributed Computing Systems925

(ICDCS), pp. 620-629, 2005.926

[28] T. Camp, J. Boleng, and V. Davies, “A Survey of Mobility Models for Ad Hoc Network927

Research”, Wireless Comm. and Mobile Computing, vol. 2, no. 5, pp. 483-502, 2002.928

[29] Park K., Song M., and Hwang C., “Broadcasting and Prefetching Schemes for Loca-929

tion Dependent Information Services”, In Proc. of Int’l Workshop Web and Wireless930

Geographical Information Systems (W2GIS), pp. 26-37, 2004.931

[30] Kyriakos M., “Spatial queries in wireless broadcast environments”, In Proc. ACM In-932

ternational Workshop on Data Engineering for Wireless and Mobile Access (MobiDE),933

pp. 39-44, 2012.934

37

[31] Y. Xiong, Y. Deng, W. Wang, and J. Ma, “Phoenix: A Collaborative Location-Based935

Notification System for Mobile Networks”, Mathematical Problems in Engineering,936

Article ID 307498, pp. 12, 2014.937

[32] Y. Wang, C. Xu, Y. Gu, M. Chen, and G. Yu, “Spatial query processing in road938

networks for wireless data broadcast”, Wireless Networks (WINET), 19(4), pp. 477-939

494, 2013.940

[33] Y. Li, J. Li, L. Shu, Q. Li, G. Li, and F. Yang, “Searching continuous nearest neighbors941

in road networks on the air”, Information Systems (IS), 42, pp. 177-194, 2014.942

[34] W. Sun, C. Chen, B. Zheng, C. Chen, and P. Liu, “An Air Index for Spatial Query943

Processing in Road Networks”, IEEE Trans. Knowl. Data Eng (TKDE), 27(2), pp.944

382-395, 2015.945

[35] K. Park and P. Valduriez, “A Hierarchical Grid Index (HGI), spatial queries in wireless946

data broadcasting”, Distributed and Parallel Databases (DAPD), 31(3), pp. 413-446,947

2013.948

[36] P. Nagarkar, K. S. Candan, and A. Bhat, “Compressed Spatial Hierarchical Bitmap949

(cSHB) Indexes for Efficiently Processing Spatial Range Query Workloads”, In Pro-950

ceedings of the VLDB Endowment (PVLDB), 8(12), pp. 1382-1393, 2015.951

[37] Y. Li, L. Shu, R. Zhu, and L. Li, “A novel distributed air index for efficient spatial952

query processing in road sensor networks on the air”, Int. J. Communication Systems953

30(5), pp. 1-23, 2017.954

[38] J. Shen and M. Jian, “Spatial query processing for skewed access patterns in non-955

uniform wireless data broadcast environments”, International Journal of Ad Hoc and956

Ubiquitous Computing, 25(1/2), pp. 4-16, 2017.957

[39] D. Song and K. Park, “A partial index for distributed broadcasting in wireless mobile958

networks”, Inf. Sci. 348, pp. 142-152, 2016.959

[40] Y. Li, G. Li, J. Li, and K. Yao, “SKQAI: A novel air index for spatial keyword query960

processing in road networks. Inf. Sci, 430, pp. 17-38, 2018.961

[41] M. Veeresha and M. Sugumaran, “Continuous k-Nearest Neighbor Queries in Road962

Networks”, In Proc. of International Conference on Inventive Systems and Control,963

pp. 1-4, 2017.964

[42] S. Im, and J. Choi, “MLAIN: multi-leveled air indexing scheme in non-flat wireless965

data broadcast for efficient window query processing”, Computers and Mathematics966

with Applications, 64(5), pp. 1242-1251, 2012.967

38

