Importance of Interconnects: A Technology-System-Level Design Perspective
Jie Liang, Aida Todri-Sanial

To cite this version:

HAL Id: lirmm-02388007
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02388007
Submitted on 12 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract—Current technology-design optimization methodology focuses first on front-end devices and logic gates and then addresses back-end interconnects. But, such approach is no longer feasible for sub-nanometer technologies. Here, we present a circuit-level study where both devices and interconnects are co-optimized to improve energy efficiency. We investigate advanced CMOS technology with 7 nm FinFET devices, and Cu interconnects with various aspect ratios from 3, 5 to 10. Further, we explore the advantages of carbon nanotube (CNT) based circuits with CNT field-effect devices and interconnects. CNT technology can achieve better energy-delay-product with co-exploring front- and back-end co-optimization and paving the way for an intelligent circuit-/system-level design and technology co-optimization.

II. IMPORTANCE OF INTERCONNECTS

We perform circuit-level simulation on a simple benchmark of ring oscillator where a single stage is illustrated in Fig. 1a. We investigate both front-end devices and back-end interconnects with two technologies: 1) advanced CMOS technology of 7 nm FinFET devices and Cu interconnects, and 2) carbon nanotube (CNT) based technology field-effect transistor (CNTFETs), and multi-wall CNT (MWCNT) interconnects.

A. Benchmark with FinFET and Cu Interconnects

We use the ASAP7 library, which is a 7 nm FinFET predictive process design kit [5]. We apply the original FinFET model with TT (regular) mode and vary the number of fins. We use the Predictive Technology Model (PTM) [6] and obtain the resistance and capacitance analytical formula and a resistivity value fitting of 11.4 μΩ·cm for 7 nm Cu line width. We perform circuit-level simulations with 7 nm FinFET devices and vary the number of fins from 3, 5 to 10. For each fin number case study, we investigate interconnects by representing them as ideal interconnects (no parasitics), and Cu interconnects with different aspect ratios (AR) as 3, 5 and 10. We compute delay, power and energy-delay-product (EDP) and compare for each case study. Detailed values are summarized in Table I and Fig. 2. Overall, we observe interconnects play an important role in circuit delay, power and EDP. For example, for FinFET devices with three fins, Cu interconnects with AR=3 increase circuit power and delay up to 232% and 128%, respectively compared to ideal Cu lines. While both power and delay improve with increasing Cu interconnect aspect ratios, nevertheless it is challenging from integration perspective to process such high aspect ratios. Similarly, increasing the number of fins improves both power and delay, suggesting the need for physical design and technology to trade-off between Cu line AR and device fin number.

B. Benchmark with CNTFETs and CNT Interconnects

CNTFET inverter structure is based on [7] and MWCNT interconnect (Fig. 1b) are based on [8-9]. The layout design for CNT benchmark is in Fig. 3. We use the VS-CNTFET (Virtual-Source Model for Carbon Nanotube FETs) device model developed by [10]. Device model parameters are based on the user manual suggestions such as 11.7 nm and 12.9 nm for the gate and contact lengths respectively, and single wall CNT (SWCNT) diameter of 1.2 nm. Device parameters are optimized for CNTFET gate delay based on the 2023 node of the IRDS projections [11] (i.e., LGatepitch = 28.1 nm, LM1 = 25.2
nm and $L_{\text{pitch}} = 31.1 \text{ nm}$) for 5 nm technology node. We vary the gate width W and tube-to-tube spacing s to alter the number of SWCNTs in the FET channel. MWCTN interconnects are introduced at gate-level, and we employ the model of pristine and doped MWCTNs. MWCTN interconnect doping concentration is represented by CNT Fermi-level shift E_F which increases electron density of state (DOS), thus introducing additional conducting channels and further enhancing CNT interconnect conductivity [9]. We consider end-contacts between CNTFET device and MWCTN interconnect with various values to present different metal materials [12-16]. It is important to note that the layout design for CNT benchmark is optimized for CNT interconnects to allow long interconnects and fewer contacts (Fig.3).

In Fig. 4(a), EDP is plotted with ideal interconnects (no parasitics) where EDP increases with s and decreases with W. As s gets larger (or fewer SWCNTs in the FET channel), it improves power consumption by reducing the drive current which also worsens the delay. In Fig. 4(b), EDP results are shown for 7 nm diameter pristine MWCTN interconnects. Comparing with ideal interconnects (Fig. 4(a)), circuit-level EDP for $W = 1 \mu\text{m}$ has drastically increased. We introduce doping on MWCTNs for improving interconnect performance and power. EDPs with heavily doped MWCTNs are shown in Fig. 4(c) and it gets close to EDP of ideal interconnect (Fig. 4(a)). Interconnect performance improves with doping and devices become again dominant for circuit-level performance. In Fig. 4(d), we present EDP improvement with different doping concentrations. For example, EDP improves by 90% and 75% with light ($E_F = 0.1 \text{ eV}$) and heavy ($E_F = 0.3 \text{ eV}$) doping compared to pristine interconnects for CNTFET width, $W = 1 \mu\text{m}$ and small tube spacing.

C. Comparison

We compare benchmarks with CNT and advanced CMOS technologies. For a fair comparison, we set CNTFET gate width as $W = 213 \text{ nm}$, comparable to a tri-gate 3 fin FinFET where effective channel width $W_{\text{eff}} = 3 \times (2H_{\text{fin}} + T_{\text{fd}}) = 213 \text{ nm}$ [10]. In Fig. 5(a), we show benchmark comparisons in terms of delay and power consumption. We observe that the FinFET benchmark has better power consumption, whereas the CNT benchmark has a better performance when the CNT spacing $s < 9 \text{ nm}$ (or ~ 25 SWCNTs in the CNTFET). In Fig. 5(b), we show delay and power consumption with pristine interconnects. We consider doped MWCTNs with $E_F = 0.3 \text{ eV}$ and Cu interconnects of aspect ratio 5. We remark that CNT benchmark has better circuit performance than advanced CMOS benchmark when CNTFET spacing $s < 23 \text{ nm}$ (or ~ 9 SWCNTs inside CNTFET). Contrarily, power consumption improves when $s > 23 \text{ nm}$. In Fig. 5(c), we show the EDP of CNT benchmark and find a trade-off point for delay and power when CNTFET has spacing of $s \sim 9 \text{ nm}$ with doped MWCTN interconnects. We also find that for $s \leq 7 \text{ nm}$ and doped MWCTN interconnects, the CNT EDP is better than the EDP of the benchmark with FinFET and Cu interconnect with aspect ratio 10.

These simulations further motivate to investigate technology and system-level co-optimization for power, performance and energy efficiency as an alternative method to explore their physical design and premise of novel devices and interconnect materials. They also highlight the critical role of interconnects and the prospect of carbon nanotube interconnects for advanced sub-nanometer nodes.

III. Conclusions

Back-end timing closure for on-chip interconnects has now become a significant obstacle for designers who are migrating to smaller semiconductor geometries and FinFET transistors. It is essential to dedicate a higher priority to the interconnects earlier in the design stages, such that interconnects are optimized for functionality, placement, performance, latency, power, and area before the front-end design migrates to the physical back end of the process. Maybe there should also be a paradigm shift in how we approach technology and physical design optimization. First focusing on optimizing front-end devices and logic gates, and then addressing BEOL interconnects is no longer feasible for sub-nanometer nodes. However, a more system-level approach can be relevant where both interconnects, and circuits (logic gates to IP) are optimized simultaneously while considering interconnects. This work also provides compelling insights into the benefits and cost of carbon nanotube-based circuits and interconnects as a viable technology to improve circuit energy efficiency.

ACKNOWLEDGMENT

This work has received funding from the EU Horizon 2020 CONNECT project under grant agreement No 688612.

REFERENCES

Fig. 1. (a) Illustration of small section of ring oscillator benchmark to demonstrate the circuit-level schematic which is implemented with 1) CNTFET devices and MWCNT interconnects between inverter gates, and 2) 7 nm FinFET devices with Cu interconnects with various aspect ratios. (b) MWCNT interconnect electrical compact model [9].

Table 1. Advanced CMOS technology: 7nm FinFET devices with Cu interconnects.

<table>
<thead>
<tr>
<th>Cu Aspect Ratio (A/R)</th>
<th>3 Fins</th>
<th>5 Fins</th>
<th>10 Fins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delay (ps)</td>
<td>Power (uW)</td>
<td>EDP (J-ps)</td>
</tr>
<tr>
<td>Ideal Interconnect</td>
<td>12.08</td>
<td>0.50</td>
<td>0.08</td>
</tr>
<tr>
<td>A/R = 3</td>
<td>27.49</td>
<td>1.66</td>
<td>1.25</td>
</tr>
<tr>
<td>A/R = 5</td>
<td>22.35</td>
<td>1.16</td>
<td>0.58</td>
</tr>
<tr>
<td>A/R = 10</td>
<td>15.95</td>
<td>0.78</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Fig. 2. Impacts of Cu interconnects on circuit-level overall delay, power and EDP for different interconnect aspect ratios and FinFET devices with number of fins for 3, 5, and 10.

Fig. 3. Illustration of carbon nanotube-based benchmark. Carbon nanotube field-effect transistors (CNTFETs) connected with multi-wall CNT (MWCNT) interconnects to create a ring oscillator benchmark.
Fig. 4. (a)-(d) are results for CNT-based benchmark. (a) represents energy delay product (EDP) as varying CNTFET width (W) and tube-to-tube spacing (s) with ideal interconnects (no parasitics). (b) shows EDP variations when including pristine MWCNT interconnect between logic gates. (c) shows EDP variation with doped MWCNT interconnects (E_f shifts 0.3eV) under different W and s. (d) illustrates the overall EDP improvement by introducing different doping concentrations on MWCNT interconnects.

Fig. 5. Cross (a)-(c) are simulation analysis to compare CNT and advanced CMOS technologies. (a) and (b) represent circuit delay and power consumption for devices (CNTFET and FinFET) with ideal and realistic (doped MWCNT and Cu) interconnects, respectively. (c) shows the energy delay product (EDP) for CNT and advanced CMOS technologies with different interconnect configurations. Pristine and heavily doped MWCNT interconnects are included for CNTFET devices; whereas for FinFET devices, Cu interconnects with various aspect ratio (A/R) are considered.