
HAL Id: lirmm-02395493
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02395493v1

Submitted on 2 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Improvement of Mission Mode Failure
Diagnosis for System-on-Chip

Safa Mhamdi, Arnaud Virazel, Patrick Girard, Alberto Bosio, Etienne
Auvray, Aymen Ladhar, Eric Faehn

To cite this version:
Safa Mhamdi, Arnaud Virazel, Patrick Girard, Alberto Bosio, Etienne Auvray, et al.. Towards Im-
provement of Mission Mode Failure Diagnosis for System-on-Chip. IOLTS 2019 - 25th International
Symposium on On-Line Testing And Robust System Design, Jul 2019, Rhodes, Greece. pp.21-26,
�10.1109/IOLTS.2019.8854388�. �lirmm-02395493�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02395493v1
https://hal.archives-ouvertes.fr

Towards Improvement of Mission Mode Failure
Diagnosis for System-on-Chip

S. Mhamdi A. Virazel P. Girard
LIRMM, Univ. of Montpellier / CNRS

Montpellier, France
<lastname>@lirmm.fr

A. Bosio
INL, École Centrale de Lyon

France
alberto.bosio@ec-lyon.fr

E. Auvray E. Faehn A. Ladhar
STMicroelectronics

Crolles, France
<firstname.lastname>@st.com

Abstract—In critical (e.g. automotive) applications, Systems-on-
Chip (SoC) failures that occurred during mission mode (in the
field) are the most critical since they may lead to catastrophic
effects. In this context, diagnosis is crucial in order to establish
the root cause of observed failures with the best accuracy. With
the advent of very deep submicron technologies (i.e. 7 nm),
achieving such level of accuracy will become more and more
difficult with today’s intra-cell diagnosis tools based on effect-
cause or cause-effect paradigms. This will compromise the
success of subsequent Physical Failure Analysis (PFA) done on
defective SoCs. Machine Learning (ML) is now used in numerous
classification problems where the knowledge on some data can be
used to classify a new instance of such data. In particular, several
ML-based solutions exist to address volume diagnosis for yield
improvement. These learning-guided diagnosis approaches start
from an existing set of defect candidates and try to minimize this
set (eliminate bad candidates) owing to the use of ML tools and
numerous data collected during production test (e.g. thousands of
failed chips with candidates correctly labeled). Although efficient
in volume diagnosis, these approaches cannot be used to identify
the root cause of failures in customer returns, since only one
failed chip is investigated in this case, with no information about
the defective behavior of some other similar chips used in the
same conditions (environment, workload, etc.). In this paper, we
propose a new learning-guided approach for diagnosis of mission
mode failures in customer returns. The proposed approach
directly produces a minimum set of good candidates derived
from the application of the learning-guided intra-cell diagnosis
flow. Results obtained on a set of benchmark circuits, and
comparison with a commercial intra-cell diagnosis tool, show the
feasibility, effectiveness and accuracy of the proposed approach.
Keywords—Diagnosis, Machine Learning, SoC, Customer returns.

I. INTRODUCTION
Today’s electronic systems are composed of complex SoCs

that consist of heterogeneous blocks that comprise memories,
digital circuits, analog and mixed-signal circuits, etc. To fit a
critical application standard requirement, SoCs pass through a
set of test phases at the end of the manufacturing process. The
goal is to achieve near-zero defective parts per million (DPPM)
so as to ensure the quality level required by the standard.

Despite the quality level (in percentage of fault coverage)
of the test sequences generated by industrial or in-house tools
and used during manufacturing test, SoCs may fail in mission
mode due to i) occurrence of a defect not covered during the
manufacturing test phase, or ii) occurrence of early-life failures
or failures due to various wear-out mechanisms. Early-life
failures, also called infant mortality, are caused by defects that

are not exposed during manufacturing tests, but that are
degraded due to electrical and thermal stress during in-field
use, and lead to a failure in functionality. Wear-out, also called
aging, manifesting as progressive performance degradation, is
induced by various mechanisms such as, e.g., Negative-Bias
Temperature Instability (NBTI) or Hot-Carrier Injection (HCI).

Such failures that occur during the mission mode are the
most critical as they may result in catastrophic consequences.
Thus, in an attempt to identify the source of these failures and
avoid their re-occurrence in next generation products, the
defective SoC is always sent back to the manufacturer (referred
to as “customer returns”) who is in charge of analyzing the
device to determine the root cause of failures [1]. In this
scenario, failures are not easy to reproduce in the company lab
as the real mission conditions and executed workload are
generally unknown and cannot be exhaustively modeled.
Therefore, efficient diagnosis methods to locate and assess
failures at different system levels are of vital importance.

Diagnosis is usually followed by PFA, a time-consuming
and destructive process for exposing the defect physically in
order to characterize the failure mechanism. Due to the high
cost and destructive nature of PFA, diagnosis resolution is of
critical importance. In practice, it is very uncommon to
perform PFA on any defect with more than five candidates [2].
Ideally, resolution is one, that is, a single location is identified
when a defect is diagnosed. This ensures that the likelihood for
uncovering the root-cause of failure is maximized when
performing PFA. However, with the advent of very deep
submicron technologies, such a resolution is not always
reachable by today’s intra-cell logic diagnosis tools based on
conventional methods (effect-cause / cause-effect) [3]. In this
context, machine learning can be viewed as an efficient mean
to exploit data (logical or physical) other than that used by
conventional methods to improve diagnosis resolution [4].

In this paper, we present a new learning-guided approach
for diagnosis of mission mode failures and demonstrate its
effectiveness to identify the root cause of failures in customer
returns. State-of-the-art learning-guided diagnosis approaches
used for volume diagnosis start from an existing set of defect
candidates (obtained from a conventional diagnosis technique)
and try to minimize this set owing to the use of ML tools that
exploit the knowledge of defective behavior on other similar
failed chips. Conversely, the proposed learning-guided intra-
cell diagnosis flow aims at directly producing a minimum set
of candidates by exploiting only test data associated with the
targeted customer return. To the best of our knowledge, this is
the first time such type of diagnosis approach is proposed.

21

The rest of this paper is organized as follows. Section II
presents a state-of-the-art on diagnosis methods and gives the
motivations of this work. Section III presents the proposed
learning-guided intra-cell diagnosis approach. Section IV
presents results obtained on a set of benchmark circuits, as well
as a comparison with a commercial tool. Section V concludes
the paper and discusses future work that still need to be done.

II. STATE OF THE ART AND MOTIVATIONS
Diagnosis is the first analysis step for a defective SoC. This

is a software-based method that analyzes the applied tests, the
tester responses, and the netlist (possibly with layout
information) to produce a list of candidates that represent the
possible locations and types of defects (or faults) within the
defective SoC [5]. The key metrics that characterize diagnosis
performance are resolution, i.e., the number of candidates
reported by diagnosis for a given defective SoC, and accuracy,
i.e., the physical defect is indeed in the list of candidates.

In the case of a customer return, the first step is to re-use the
original test program to check if the SoC fails again or not. If
not, efforts have to be made to find new test patterns and test
conditions (i.e. voltage and temperature) that will sensitize the
defect and reveal the failure. Otherwise, if the SoC fails, a
diagnosis program made of several routines is used to identify,
step by step, the failing part and, finally, the suspected defects.
Each routine corresponds to the application of a diagnosis
algorithm at a given hierarchy level. SoC level diagnosis is the
first routine used to identify the cores or interconnections in the
system that can explain the failure. Core level diagnosis (inter-
cell diagnosis) is then used to identify the possible failing cells
within a core (or block). Intra-cell diagnosis is finally used to
pinpoint the possible defect candidates within a cell (or gate).

Except industrial in-house SoC diagnosis tools, the literature
proposes very few comprehensive diagnosis approach able to
deal with a full SoC and provide reliable information about
fault localization. To the best of our knowledge, the only work
targeting SoC-level diagnosis is reported in [6]. The key
concept is that diagnosis consists in a comparison between a set
of pre-computed SoC failures and the set of failures observed
during test. This type of approach was formerly proposed in [7]
and [8] but only for full-scan circuits. In [4], authors propose to
extend it to the case of SoC. The main advantages of this
approach w.r.t. the state-of-the-art are (i) the capability to
manage both full-scan and sequential logic cores, (ii) to deal
with several fault models at a time (both static and dynamic)
and (iii) to address both single and multiple fault occurrences.

Regarding core-level diagnosis, a considerable amount of
work can be found in the literature. Dedicated techniques have
been proposed to target specific cores: logic cores (logic
diagnosis) [7]–[9], memory cores (memory diagnosis) [10–11]
and analog cores (analog diagnosis) [12–13]. Considering logic
diagnosis, the result is either an interconnection between gates
or a suspected gate. Faults can hence occur either in the
interconnection between gates (inter-cell faults) or inside the
gate (intra-cell faults). When the observed failure is inside the
gate, another diagnosis approach is applied to locate the cause
of this failure at the transistor level [4]. An intra-cell diagnosis
method used for mission mode failures in customer returns has
been proposed in [14]. It uses a CPT algorithm applied at

transistor level and works as follows. First, the test determines
which are the failing and passing test patterns for a given
Circuit Under Test (CUT). Then, logic diagnosis exploits this
information to determine a list of suspected gates (candidates).
Any available logic diagnosis tool can be used. For each
suspected gate, we have to know the logical values applied to it
when failing and passing test patterns are applied to the CUT.
This step amounts to determine the actual set of failing/passing
test patterns at the cell level. Finally, intra-cell diagnosis is
executed for each suspected gate and its corresponding failing
/passing test patterns. The result is a list of suspected nets at
transistor level with a set of fault models able to explain the
observed failures. More details about this flow and results
obtained on industrial circuits from ST can be found in [14].

Unfortunately, for various reasons, diagnostic resolution is
typically far from ideal due to the SoC complexity. As a result,
a lot of efforts have been dedicated for improving diagnosis
resolution. Among several types of solutions, it has been
demonstrated recently that diagnosis resolution can be
improved with machine learning techniques, primarily through
the derivation of characteristics that enables correct candidates
(candidates that correctly represent defect locations) to be
distinguished from incorrect ones (candidates that do not) [15]–
[20]. In [15], authors describe an approach to identify bridge
defects from a population of diagnosed defects by using a
combination of effective rules and a decision-tree-based
classifier. In [16], authors improve on-chip diagnosis resolution
with a modified k-nearest neighbors classifier that is updated
with real-time failure data. In [17], volume diagnosis resolution
is improved with a Bayesian classifier that identifies the actual
candidates based on their layout properties. In [18], authors
present a novel yield optimization methodology based on
establishing a strong correlation between a group of fails and
an adjustable process parameter. The core of the methodology
comprises three advanced statistical correlation methods. In
[19], the authors use statistical learning methods to predict the
termination of tester-data collection to ensure good resolution.
In [20], a machine learning-based resolution improvement
approach called PADRE (Physically-Aware Diagnostic
Resolution Enhancement) is proposed. PADRE uses a
classification algorithm (Support Vector Machine) to analyze
easily available tester and simulation characteristics about the
candidates to identify those that correspond to the actual failure
locations. The capabilities of this solution have been further
extended with a novel Active Learning (AL) based PFA
selection approach [2]. AL-PADRE selects the most useful
defects for PFA in order to improve diagnostic resolution.

Despite their efficiency, a common feature of these
techniques is that they all address volume diagnosis for yield
improvement, which is a different problem than fault diagnosis
of customer returns. During volume diagnosis, numerous data
collected during manufacturing test and subsequent diagnosis
phases are available, such as, e.g. hundreds of similar failed
chips with candidates correctly labeled (good or bad) obtained
in a previous stage. It is therefore possible to use these data for
failure diagnosis of a new failed chip. Conversely, during fault
diagnosis of customer returns, only one failed chip is
investigated, with no information about the defective behavior
of some other similar chips used in the same conditions

22 25th International Symposium on On-Line Testing and Robust System Design (IOLTS 2019)

(application, environment, workload, etc.). For this reason,
learning-guided approaches used for volume diagnosis cannot
be used fault diagnosis of customer returns.

III. LEARNING-GUIDED INTRA-CELL DIAGNOSIS
Despite the good resolution achievable with conventional

intra-cell diagnosis technique, in some cases (e.g. complex
cells, complex failure mechanisms) the number of candidates is
too high to allow an efficient PFA. This problem will be
exacerbated with the advent of very deep (i.e. 7 nm) submicron
technologies. Improving intra-cell diagnosis efficiency is
therefore mandatory. A mean to achieve this goal is to use
learning algorithms based on classification to determine
suspected defects. In this section, we present a new approach
that uses ML techniques instead of traditional cause-effect
and/or effect-cause analysis. This technique identifies defect
candidates within a cell with a high resolution and accuracy.

A. Overall Diagnosis Flow
Figure 1 shows the proposed diagnosis flow. It takes as

input (i) the cell test patterns, i.e., all possible static and
dynamic combinations of values on the inputs of a cell, (ii) the
list of all possible types of cell in a given circuit, and (iii) the
cell netlists at transistor level. From these inputs, intra-cell
transistor-level defect simulations using Spice are performed
by iteratively injecting all possible defects into each cell type
and then simulate the behavior of the cell. This part of the flow
can be seen as a characterization phase as it is done only once
for each type of cell (NAND, NOR, etc.) within a considered
circuit. The output is a set of instances representing the training
data. A features vector describes each instance and has the
format shown in Figure 2 (for a two-input cell). This instance
represents, for each defect, the possibility to be detected (value
1) or undetected (value 0) by each cell test pattern Pi at the
output of the cell. Cell test patterns are static (one input vector)
or dynamic (two input vectors). For an n-input cell, there exists
2n static test patterns and 2n.(2n – 1) dynamic test patterns.

Besides training data, the Learning-Guided Intra-Cell
Diagnosis (LGICD) module receives new data. Each instance
of the new dataset represents a defect candidate that has to be
classified as good or bad candidates. These data are obtained
from a data instance generation module that uses as inputs (i)
the cell failing/passing test patterns, (ii) the list of suspected
cells provided by a logic diagnosis tool and ranked according
to their score to be the source of failure (to contain the real
defect), and (iii) the cell netlists. The cell failing/passing test
patterns are obtained by performing a simple logic simulation
of the CUT with the failing/passing test patterns identified by
the tester. The format of a new data instance is quite similar to
that of a training data instance, but has a different meaning. In
each instance, the value 1 (respectively 0) is associated to a
failing (respectively passing) cell test pattern Pi for a given
defect candidate, meaning that the candidate is indeed detected
(respectively undetected) by the cell test pattern Pi. In such
instance, the value 0.5 is associated to a cell test pattern for a
given defect candidate when this pattern does not exist in the
list of cell failing/passing test patterns (i.e., the cell test pattern
can not appear at the inputs of a suspected cell). The median
value 0.5 has been chosen to avoid missing information in new
data instances while not biasing the features of these data.

Finally, from the training and new data, the LGICD module
provides a set of good transistor-level defect candidates with
the corresponding probability to be the root cause of the failure.

Figure 1: Learning-guided intra-cell diagnosis flow

Figure 2: Format of a training data for a two-input cell

B. Details of the LGICD Module
Details of the LGICD module are illustrated in Figure 3.

The first step consists in data preparation. Since learning
algorithms learn from data, it is essential to use data that
perfectly match the problem to be solved. Data have to be in a
useful format and include meaningful features. In our case, the
process for getting data ready for machine learning algorithms
can be summarized in three phases [21]:

i) Data Selection. It consists in selecting the subset of all
available data that will be used to build a model and classify
new data. In our case, available data are the training data
obtained from the intra-cell transistor-level fault simulation
(characterization phase). Each instance of the training data is
associated to a defect, and corresponds to the behavior of the
cell (fault-free or faulty) in presence of such defect and for all
possible combinations (static and dynamic) of the cell inputs.
Some defects lead to the same cell behavior. These defects are
called equivalent defects. Some others are undetectable by any
cell test pattern. In our selection process, 90% of the available
data were randomly selected and this operation was repeated
several times to obtain training data with good randomness.

ii) Data Preprocessing. Once training data have been
selected, we need to consider how they will be used. Training
data are first stored in a CSV file. Then, they are sampled and
grouped by considering equivalent defects. All equivalent
defects are thus associated to a given Defect Class i (DCi).
Training data instances of undetectable defects are removed.

iii) Data Transformation. The final phase is to transform
the preprocessed data ready for learning in a format
manageable by the classifiers (or models). In this format, each
instance of a training data contains m+1 columns, where m =

25th International Symposium on On-Line Testing and Robust System Design (IOLTS 2019) 23

2n + 2n.(2n – 1) for an n-input cell (e.g. 16 for a 2-input cell).
Columns 1 to m correspond to the exhaustive cell test patterns.
Column m+1 corresponds to each defect class. The names of
each column are specified when transforming data. This will
help to explore these data in a later stage of the process.

Figure 3: Main steps of the LGICD module

In the second step of the LGICD module, we build models
based on different classification algorithms (called classifiers).
As we preliminary do not know which algorithm will be
efficient for our problem, evaluating selected algorithms is an
important step. These evaluations are most often based on
prediction accuracy (the percentage of correct prediction
divided by the total number of predictions). There are many
techniques used to calculate the accuracy of a classifier. The
technique used in this work is known as cross-validation. The
training data is divided into mutually exclusive and equal
subsets. For each subset, the classifier is trained on the union of
all the other subsets [22].

In the next two steps and once we have selected the models,
we make predictions on new data instances with all of the
available data. In our case, the expected results correspond to a
defect’s class probability of being the root-cause of failure.
Each model returns the best defect’s class candidate and the
probability for each class has a value between 0 and 1.

C. The Scikit-learn Library
In this work, suspected defects are classified using a

publicly available machine learning software package called
Scikit-learn [23]. Scikit-learn is an integrated development
environment with a suite of ML tools. Various tools of Scikit-
learn with supervised learning algorithms for classification
have been used in this work. The selected algorithms are the
following: Logistic Regression (LR), k-nearest-neighbors
(KNN), Naive Bayes (NB) Classifier, and Support Vector
Machines (SVM). These algorithms represent a mixture of
simple linear (LR) and nonlinear (KNN, NB, SVM) algoritms.

IV. EXPERIMENTAL RESULTS
The proposed learning-guided intra-cell diagnosis approach

has been implemented in a Python program. We conducted
experiments on ISCAS’85 benchmarks circuits synthesized in a
28nm FDSOI technology from STMicroelectronics. Circuits
were synthesized using a commercial tool. We used an ATPG
tool (commercial) to generate test patterns for each circuit. The
stuck-at fault model was considered and the single fault
assumption was done. Test patterns were provided to achieve
100% fault coverage. From each circuit and the corresponding
test set, we simulated the behavior of the tester by performing a
defect injection campaign (about 500 injections per circuit) into
a number of randomly selected gates and collecting test

information to build the tester data log. For the defect injection
campaign, we considered each transistor of the selected gates
and we targeted all possible defects affecting that transistor.
These defects are shown in Figure 4 and are as follows:
� ROi: Open defect at node i (i = [Gate, Drain, Source, Bulk])
� RSij: Short defect between nodes i and j (i/j = [Gate, Drain,
Source, Bulk])

Figure 4: Considered transistor defects

For example, the number of defects for a NAND2 gate is
equal to 36 defects (9 defects per transistor). However, several
defects have the same impact on the logic behavior of the gate.
So, these defects are logical-equivalent defects and hence are
grouped in defect classes. Table I shows the equivalent defects
with the corresponding defect classes for such a gate. In this
table, Dtk refers to a defect in transistor t (t ranges from 1 to 4),
and k indicates the type (RO or RS) and source node (Gate,
Drain, Source, Bulk) of the defect. Labels from 1 to 4 for k
refer to open defects. Labels from 5 to 9 refer to short defects.

TABLE I. NAND2 DEFECT CLASSES
Defect Class Equivalent Defects
DC1 D11, D12, D13, D16, D21, D22, D23, D26, D38, D39, D48, D49
DC2 D14, D24, D28, D34, D37, D44, D47
DC3 D15, D36
DC4 D17
DC5 D18, D27, D29
DC6 D19
DC7 D25
DC8 D31, D32, D33, D35
DC9 D41, D42, D43, D45
DC10 D46

From the list of failing/passing test patterns (#TP) with the
corresponding failing/passing CUT outputs, an inter-cell logic
diagnosis tool based on fault simulation was used to determine
a list of suspected gates ranked according to their score to be
the source of failure. We used a commercial diagnosis tool to
this purpose. For most of experiments, the list of suspected
gates contained the gate in which the defect were injected. In
few cases, about 5%, the commercial tool was unable to
identify the faulty gate as suspect. Learning-guided intra-cell
diagnosis was not done in such cases. The average number of
suspected gates (#aSG) for each circuit is listed in Table II.

According to the flow presented in Figure 1, the list of all
possible types of cell and the cell test patterns for each cell are
used as input to produce the training data. For a two-input gate,
16 cell test patterns are used: 4 static patterns (0-0,0-1,1-0,1-1)
and 12 dynamic patterns (00-01, 00-10, 00-11, 01-00, etc.). In
these experiments, dynamic patterns are used to sensitize
stuck-open faults. Later on, dynamic patterns will also be used
to sensitize delay faults. Note that this number (16) increases
exponentially with the number of inputs of a gate. Similarly,
the length of each training data (as shown in Figure 2) as well

24 25th International Symposium on On-Line Testing and Robust System Design (IOLTS 2019)

as the number of data increases accordingly. The third input
used to produce the training data is the cell netlists, where each
netlist is an electrical description of the cell with an injected
defect. From all these inputs, intra-cell transistor-level defect
simulations using Spice are performed for all possible defects,
hence producing the training data. This characterization phase
of the flow was done using a commercial tool and ST libraries.

TABLE II. RESULTS OF INTER-CELL LOGIC DIAGNOSIS
Circuit #PIs #POs #Gates #TP #aSG
C880 60 26 383 34 2

C1355 41 32 938 85 3
C2670 233 140 945 60 3
C3540 50 22 1504 131 2
C5315 178 123 2228 75 2
C7552 207 108 3417 83 4

For generating each new data, we used the list of suspected
gates and the cell netlists as input. All suspected gates are
considered successively according to their score ranking. In
addition, we need to use the cell (local) failing/passing test
patterns of the suspected gates. For a suspected gate, the
number of local test patterns can be lower than 16, especially
when it was not possible to obtain some patterns at the gate
inputs from the initial circuit-level test patterns. Finally, from
these inputs, a simple simulation-based generation algorithm is
used to produce the new data instance (defect) to be classified.

From the training and new dataset, the LGICD module
proceeds as explained in Section IV.B. Regarding the second
step of the LGICD module, we use a cross-validation algorithm
to calculate the prediction accuracy of the initially selected
learning algorithms. Table III shows the result obtained for
each learning algorithm. NB, KNN and SVM have the best
prediction accuracy scores, meaning that they are the best
algorithms for learning data and providing defect candidates.
LR has a good accuracy score but a bit lower than the others.

TABLE III. PREDICTION ACCURACY EVALUATION
Algorithm Accuracy score

LR 60%
KNN 81%
NB 84%

SVM 79%

Table IV illustrates the results obtained by the LGICD
module for a defect injection campaign in a two-input AND
gate of circuit c2670 (with 54 open and short defects). The first
column lists the various defect classes. The second column
indicates if the defects of the corresponding class could be
detected or not by the initial circuit-level test set. In the case
such defects cannot be detected, this means that they have no
impact on the gate output and hence cannot be the source of
failure. So, they will no longer be considered in our diagnosis
process. The third column shows the number of suspected gates
obtained after logic diagnosis. The next four columns list the
best defect’s class candidate for each learning algorithm with
the corresponding probability of being the root cause of failure.

From these results, the first comment is that KNN and NB
identify as best candidate the real (injected) defect. This is true
for all defect classes. For LR, the real defect is always
identified as a candidate, but sometimes (for DC2, DC3 and
DC4) in the second or third position. The second comment
refers to the probability given to each best candidate. For

example, for DC1, the probability given by LR to DC1 to be
the best candidate is 0.11. KNN gives a probability of 0.5 (with
n-neighbors=2), which is even better. NB gives a probability of
1 to DC1 to be the best candidate, hence do not providing any
other candidates with lower probabilities (unlike what is done
by LR and KNN). SVM is a non-probabilistic algorithm and
gives the right defect class in 7 (over 9) cases. It does not
provide any other candidate (inherent property). All these
results clearly demonstrate the feasibility, the effectiveness (in
terms of resolution) and accuracy of the proposed approach.

TABLE IV. LEARNING-GUIDED DIAGNOSIS RESULTS – C2670
Class Det #SG LR KNN NB SVM
DC1 Yes 2 DC1=0.11 DC1=0.5 DC1=1 DC1
DC2 Yes 3 DC6=0.11 / DC2=0.09 DC2=0.5 DC2=0.5 DC6
DC3 Yes 2 DC5=0.11 / DC3=0.10 DC3=0.5 DC3=1 DC3
DC4 Yes 7 DC9=0.14 / DC4=0.12 DC4=0.5 DC4=0.5 DC9
DC5 Yes 1 DC5=0.14 DC5=0.5 DC5=1 DC5
DC6 Yes 3 DC6=0.11 DC6=0.5 DC6=0.5 DC6
DC7 Yes 6 DC7=0.16 DC7=0.5 DC7=1 DC7
DC8 Yes 2 DC8=0.16 DC8=0.5 DC8=1 DC8
DC9 Yes 7 DC9=0.14 DC9=0.5 DC9=0.5 DC9

A fair comparison with a commercial intra-cell diagnosis

tool has been performed by using the same characterization
data. This tool is non-probabilistic and provides the list of all
suspects obtained after diagnosis with a ranking and a
matching score. Results achieved with the same defect
injection campaign in the same gate of circuit c2670 are
reported in Table V. The first three columns are identical to
those in Table IV. The fourth column gives the number of
identified defect candidates. The fifth column shows the
ranking of the injected defect (when it is in the list of
candidates – NA otherwise) and the matching score. The last
column reports the accuracy, i.e. the injected defect is or is not
in the list of candidates. From these results, the first comment
is that the commercial tool was often unable to provide a
ranking among the candidates, thus complicating the decision
before PFA. The second (more important) comment is that, in 2
out 9 cases, the injected defect is not in the list of candidates
provided by the tool (i.e. results are not accurate). Conversely,
our technique with LR, KNN and NB always provides the right
candidate. This proves the superiority of our approach.

TABLE V. DIAGNOSIS RESULTS WITH A COMMERCIAL TOOL – C2670
Class Det #SG #candidates Ranking / Matching Accuracy
DC1 Yes 2 4 No ranking / 100% Yes
DC2 Yes 3 3 No ranking / 100% Yes
DC3 Yes 2 4 No ranking / 100% Yes
DC4 Yes 7 0 NA / 100% No
DC5 Yes 1 3 No ranking / 100% Yes
DC6 Yes 3 3 No ranking / 100% Yes
DC7 Yes 6 1 1 / 100% Yes
DC8 Yes 2 1 1 / 100% Yes
DC9 Yes 7 0 NA / 100% No

Table VI summarizes the results obtained for a set of
ISCAS’85 benchmark circuits. For each learning algorithm, we
report the percentage of cases in which the injected defect was
identified as the best candidate (with the highest probability) by
the proposed diagnosis technique. Percentage lower than 100%
means that in some cases, the injected defect was not identified
as the best candidate. However, in all these cases, the
injected defect was always identified as a candidate, but in
second or third position (except for SVM). From this
standpoint, we can consider that the diagnosis accuracy of
our technique when using LR, KNN and NB algorithms is

25th International Symposium on On-Line Testing and Robust System Design (IOLTS 2019) 25

100%. This important result leads to the conclusion that,
during diagnosis of customer returns and before PFA, it will be
possible to use our technique with different learning algorithms
to assert the confidence level of the achieved intra-cell
diagnosis results. The last column in Table VI shows results
obtained for each circuit with the commercial intra-cell
diagnosis tool. The first value is the average number of
candidates (resolution). The second value is the percentage of
cases in which accuracy is good. This value must be
compared to 100% obtained by our technique with LR,
KNN and NB. As no ranking was most of the time provided
by the commercial tool, it was not possible to calculate the
percentage of cases in which the injected defect was identified
as the best candidate (as done in columns 2 to 5).

TABLE VI. OVERALL DIAGNOSIS RESULTS
Circuit LR KNN NB SVM Com. Tool
C880 84.6% 100% 100% 100% 2 /100%

C1355 44.2% 100% 100% 77% 3 / 96%
C2670 46% 100% 100% 77% 2 / 84%
C3540 72% 84% 84% 62% 3 / 100%
C5315 85.1% 96% 96% 88.8% 2 / 97%
C7552 44.4% 100% 100% 77% 3 / 90%

As can be seen in Table VI, and in accordance with the
results shown in Table II, we can assert that KNN and NB
work perfectly. LR is still efficient but less accurate and with a
higher variability in the results. SVM works efficiently
(especially for c880) but is a bit less informative due to its non-
probabilistic nature and inherent property. The commercial tool
provides results with a much lower resolution and accuracy.

The CPU time taken by the proposed diagnosis flow to
provide a list of good defect candidates is always very low
(few seconds) and does not depend on the circuit size (except
the CUT simulation but this phase is done only once and in just
few seconds). Only the number of suspected cells obtained
after logic diagnosis may have an impact on the CPU time, but
in a slight manner. In fact, the most time-consuming part of the
flow (few hours) is the characterization phase, but this phase is
also done only once and is not correlated with the circuit size.

V. CONCLUSION AND FUTURE WORK
In this paper, we have addressed the problem of diagnosing

failures that occur during mission mode of SoCs. We have
presented a novel intra-cell diagnosis approach that uses
supervised learning algorithms to produce a minimum set of
candidates at transistor level. Results carried out on benchmark
circuits have shown that this approach can lead to an accurate
localization of the root cause of observed failures.

Above efficient experimental results have been achieved
with a preliminary version of the learning-guided diagnosis
flow which is not yet ready to be used in an industrial
environment. Further developments have to be done to address
several missing aspects. First, layout information has to be
used to refine the list of defects that are considered during
training data preparation. By this way, only realistic defects
will be assumed during the whole process, thus increasing
diagnosis efficiency. Next, simple defects modeled by stuck-at
or stuck-open faults have been assumed in our experiments. In
the case of industrial circuits, more complex (e.g. resistive or
bridge) defects modeled by delay or bridging faults will need to
be considered. Similarly, in-field failure mechanisms related to

premature aging and that have to be considered in the context
of customer returns, such as NBTI or HCI, will need to be
appropriately taken into account by considering representative
defect models that already exist and are used in industry
(essentially resistive opens and shorts). Note that all the above
aspects will probably not impact the format of data instances.
Another point is that unique test conditions have been assumed
in our experiments. In the context of mission mode failure
diagnosis, multiple test conditions with various PVT corners
will also need to be considered. Importantly, we will also need
to compare our results with those obtained with industrial in-
house tools [3–14]. We will also investigate additional learning
algorithms and related learning parameters. Finally, we will
perform experiments on large-size benchmark and industrial
circuits from ST investigated as customer returns.

REFERENCES
[1] N. Sumikawa, D. Drmanac, Li-C. Wang, L. Winemberg, and M.S. Abadir,

“Understanding Customer Returns From A Test Perspective”, IEEE VLSI Test
Symposium, Pages 2-7, 2011.

[2] Y. Xue, X. Li, R. D. Blanton, C. Lim, and M. Enamul Amyeen, “Diagnosis
Resolution Improvement through Learning-Guided Physical Failure Analysis”,
Proc. IEEE International Test Conference, 2016.

[3] A. Ladhar and M. Masmoudi, “Efficient and Accurate Method for Intra-gate
Defect Diagnoses in Nanometer Technology and Volume Data”, IEEE/ACM
Design, Automation & Test in Europe, pp. 988-993, 2009.

[4] Li-C. Wang, “Data Learning Based Diagnosis”, ACM/IEEE Asia and South
Pacific Design Automation Conference (ASP DAC), pp. 247-254, 2010.

[5] A. Bosio, P. Girard, S. Pravossoudovitch, A. Virazel, “A Comprehensive
Framework for Logic Diagnosis of Arbitrary Defects”, IEEE Transactions on
Computers, Vol. 59, No 3, pp. 289-300, March 2010.

[6] Y. Benabboud, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, O.
Riewer, “A Comprehensive System-on-Chip Logic Diagnosis”, Proc. IEEE Asian
Test Symposium, pp. 237-242, 2010.

[7] L. M. Huisman, “Diagnosing Arbitrary Defects in Logic Designs Using the Single
Location At a Time (SLAT)”, IEEE Trans. on CAD, Vol. 23, No 1, pp. 91, 2004.

[8] S. Holst and H-J. Wunderlich, “Adaptative Debug and Diagnosis Without Fault
Dictionaries”, Proc. IEEE European Test Symposium, pp. 7-12, 2007.

[9] S. Venkataraman and S. B. Drummonds, “Poirot: Applications of a Logic Fault
Diagnosis Tool”, IEEE Design & Test of Computers, Vol. 18, No 1, pp. 19, 2001.

[10] D. Appello, V. Tancorre, P. Bernardi, M. Grosso, M. Rebaudengo and M. Sonza
Reorda, “Embedded Memory Diagnosis: An Industrial Workflow”, Proc. IEEE
International Test Conference, pp.1-9, 2006.

[11] A. Ney, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel and M.
Bastian, “A History-Based Diagnosis Technique for Static and Dynamic Faults in
SRAMs”, Proc. IEEE International Test Conference, paper 3.2, 2008.

[12] K. Huang, H. Stratigopoulos, and S. Mir, “Fault Diagnosis of Analog Circuits
Based on Machine Learning”, IEEE/ACM Design, Auto. & Test in Europe, 2010.

[13] C. Zhang, Y. He, L. Yuan, and S. Xiang, “Analog Circuit Incipient Fault Diagnosis
Method Using DBN Based Features Extraction”, IEEE Access, Vol. 6, April 2018.

[14] Z. Sun, A. Bosio, L. Dilillo, P. Girard, A. Todri, A. Virazel, and E. Auvray,
“Effect-Cause Intra-cell Diagnosis at Transistor Level”, Proc. IEEE International
Symposium on Quality Electronic Design, pp. 460-467, 2013.

[15] J. E. Nelson, W. C. Tam, and R. D. Blanton, “Automatic Classification of Bridge
Defects”, IEEE International Test Conference, pp. 1–10, 2010.

[16] X. Ren, M. Martin, and R. D. Blanton, “Improving Accuracy of On-Chip
Diagnosis via Incremental Learning”, Proc. IEEE VLSI Test Symp., pp. 1–6, 2015.

[17] Y. Huang, W. Yang, and W. Cheng, “Advancements in diagnosis driven yield
analysis (DDYA): A survey of state-of-the-art scan diagnosis and yield analysis
technologies”, Proc. IEEE European Test Symposium, pp. 1–10, 2015.

[18] R.J. Tikkanen, S. Siatkowski, Li-C. Wang and M.S. Abadir, “Yield Optimization
Using Advanced Statistical Correlation Methods”, IEEE Int’l Test Conf., 2014.

[19] H. Wang, O. Poku, X. Yu, S. Liu, I. Komara, and R. Blanton, “Test- Data Volume
Optimization for Diagnosis”, Proc. ACM/IEEE Design Auto. Conf., pp. 567, 2012.

[20] Y. Xue, O. Poku, X. Li, and R. D. Blanton, “PADRE: Physically- Aware
Diagnostic Resolution Enhancement”, Proc. IEEE Int’l Test Conference, 2013.

[21] https://machinelearningmastery.com/
[22] S. B. Kotsiantis, “Supervised Machine Learning: A Review of Classification

Techniques”, Informatica, Vol. 31, No 3, pp. 249-268 249, 2007.
[23] http://scikit-learn.org/stable/user_guide.html

26 25th International Symposium on On-Line Testing and Robust System Design (IOLTS 2019)

