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Abstract—In critical (e.g. automotive) applications, Systems-on-
Chip (SoC) failures that occurred during mission mode (in the 
field) are the most critical since they may lead to catastrophic 
effects. In this context, diagnosis is crucial in order to establish 
the root cause of observed failures with the best accuracy. With 
the advent of very deep submicron technologies (i.e. 7 nm), 
achieving such level of accuracy will become more and more 
difficult with today’s intra-cell diagnosis tools based on effect-
cause or cause-effect paradigms. This will compromise the 
success of subsequent Physical Failure Analysis (PFA) done on 
defective SoCs. Machine Learning (ML) is now used in numerous 
classification problems where the knowledge on some data can be 
used to classify a new instance of such data. In particular, several 
ML-based solutions exist to address volume diagnosis for yield 
improvement. These learning-guided diagnosis approaches start 
from an existing set of defect candidates and try to minimize this 
set (eliminate bad candidates) owing to the use of ML tools and 
numerous data collected during production test (e.g. thousands of 
failed chips with candidates correctly labeled). Although efficient 
in volume diagnosis, these approaches cannot be used to identify 
the root cause of failures in customer returns, since only one 
failed chip is investigated in this case, with no information about 
the defective behavior of some other similar chips used in the 
same conditions (environment, workload, etc.). In this paper, we 
propose a new learning-guided approach for diagnosis of mission 
mode failures in customer returns. The proposed approach 
directly produces a minimum set of good candidates derived 
from the application of the learning-guided intra-cell diagnosis 
flow. Results obtained on a set of benchmark circuits, and 
comparison with a commercial intra-cell diagnosis tool, show the 
feasibility, effectiveness and accuracy of the proposed approach. 
Keywords—Diagnosis, Machine Learning, SoC, Customer returns. 

I. INTRODUCTION 
Today’s electronic systems are composed of complex SoCs 

that consist of heterogeneous blocks that comprise memories, 
digital circuits, analog and mixed-signal circuits, etc. To fit a 
critical application standard requirement, SoCs pass through a 
set of test phases at the end of the manufacturing process. The 
goal is to achieve near-zero defective parts per million (DPPM) 
so as to ensure the quality level required by the standard. 

Despite the quality level (in percentage of fault coverage) 
of the test sequences generated by industrial or in-house tools 
and used during manufacturing test, SoCs may fail in mission 
mode due to i) occurrence of a defect not covered during the 
manufacturing test phase, or ii) occurrence of early-life failures 
or failures due to various wear-out mechanisms. Early-life 
failures, also called infant mortality, are caused by defects that 

are not exposed during manufacturing tests, but that are 
degraded due to electrical and thermal stress during in-field 
use, and lead to a failure in functionality. Wear-out, also called 
aging, manifesting as progressive performance degradation, is 
induced by various mechanisms such as, e.g., Negative-Bias 
Temperature Instability (NBTI) or Hot-Carrier Injection (HCI). 

Such failures that occur during the mission mode are the 
most critical as they may result in catastrophic consequences. 
Thus, in an attempt to identify the source of these failures and 
avoid their re-occurrence in next generation products, the 
defective SoC is always sent back to the manufacturer (referred 
to as “customer returns”) who is in charge of analyzing the 
device to determine the root cause of failures [1]. In this 
scenario, failures are not easy to reproduce in the company lab 
as the real mission conditions and executed workload are 
generally unknown and cannot be exhaustively modeled. 
Therefore, efficient diagnosis methods to locate and assess 
failures at different system levels are of vital importance.  

Diagnosis is usually followed by PFA, a time-consuming 
and destructive process for exposing the defect physically in 
order to characterize the failure mechanism. Due to the high 
cost and destructive nature of PFA, diagnosis resolution is of 
critical importance. In practice, it is very uncommon to 
perform PFA on any defect with more than five candidates [2]. 
Ideally, resolution is one, that is, a single location is identified 
when a defect is diagnosed. This ensures that the likelihood for 
uncovering the root-cause of failure is maximized when 
performing PFA. However, with the advent of very deep 
submicron technologies, such a resolution is not always 
reachable by today’s intra-cell logic diagnosis tools based on 
conventional methods (effect-cause / cause-effect) [3]. In this 
context, machine learning can be viewed as an efficient mean 
to exploit data (logical or physical) other than that used by 
conventional methods to improve diagnosis resolution [4]. 

In this paper, we present a new learning-guided approach 
for diagnosis of mission mode failures and demonstrate its 
effectiveness to identify the root cause of failures in customer 
returns. State-of-the-art learning-guided diagnosis approaches 
used for volume diagnosis start from an existing set of defect 
candidates (obtained from a conventional diagnosis technique) 
and try to minimize this set owing to the use of ML tools that 
exploit the knowledge of defective behavior on other similar 
failed chips. Conversely, the proposed learning-guided intra-
cell diagnosis flow aims at directly producing a minimum set 
of candidates by exploiting only test data associated with the 
targeted customer return. To the best of our knowledge, this is 
the first time such type of diagnosis approach is proposed. 
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The rest of this paper is organized as follows. Section II 
presents a state-of-the-art on diagnosis methods and gives the 
motivations of this work. Section III presents the proposed 
learning-guided intra-cell diagnosis approach. Section IV 
presents results obtained on a set of benchmark circuits, as well 
as a comparison with a commercial tool. Section V concludes 
the paper and discusses future work that still need to be done.  

II. STATE OF THE ART AND MOTIVATIONS 
Diagnosis is the first analysis step for a defective SoC. This 

is a software-based method that analyzes the applied tests, the 
tester responses, and the netlist (possibly with layout 
information) to produce a list of candidates that represent the 
possible locations and types of defects (or faults) within the 
defective SoC [5]. The key metrics that characterize diagnosis 
performance are resolution, i.e., the number of candidates 
reported by diagnosis for a given defective SoC, and accuracy, 
i.e., the physical defect is indeed in the list of candidates.  

In the case of a customer return, the first step is to re-use the 
original test program to check if the SoC fails again or not. If 
not, efforts have to be made to find new test patterns and test 
conditions (i.e. voltage and temperature) that will sensitize the 
defect and reveal the failure. Otherwise, if the SoC fails, a 
diagnosis program made of several routines is used to identify, 
step by step, the failing part and, finally, the suspected defects. 
Each routine corresponds to the application of a diagnosis 
algorithm at a given hierarchy level. SoC level diagnosis is the 
first routine used to identify the cores or interconnections in the 
system that can explain the failure. Core level diagnosis (inter-
cell diagnosis) is then used to identify the possible failing cells 
within a core (or block). Intra-cell diagnosis is finally used to 
pinpoint the possible defect candidates within a cell (or gate). 

Except industrial in-house SoC diagnosis tools, the literature 
proposes very few comprehensive diagnosis approach able to 
deal with a full SoC and provide reliable information about 
fault localization. To the best of our knowledge, the only work 
targeting SoC-level diagnosis is reported in [6]. The key 
concept is that diagnosis consists in a comparison between a set 
of pre-computed SoC failures and the set of failures observed 
during test. This type of approach was formerly proposed in [7] 
and [8] but only for full-scan circuits. In [4], authors propose to 
extend it to the case of SoC. The main advantages of this 
approach w.r.t. the state-of-the-art are (i) the capability to 
manage both full-scan and sequential logic cores, (ii) to deal 
with several fault models at a time (both static and dynamic) 
and (iii) to address both single and multiple fault occurrences.  

Regarding core-level diagnosis, a considerable amount of 
work can be found in the literature. Dedicated techniques have 
been proposed to target specific cores: logic cores (logic 
diagnosis) [7]–[9], memory cores (memory diagnosis) [10–11] 
and analog cores (analog diagnosis) [12–13]. Considering logic 
diagnosis, the result is either an interconnection between gates 
or a suspected gate. Faults can hence occur either in the 
interconnection between gates (inter-cell faults) or inside the 
gate (intra-cell faults). When the observed failure is inside the 
gate, another diagnosis approach is applied to locate the cause 
of this failure at the transistor level [4]. An intra-cell diagnosis 
method used for mission mode failures in customer returns has 
been proposed in [14]. It uses a CPT algorithm applied at 

transistor level and works as follows. First, the test determines 
which are the failing and passing test patterns for a given 
Circuit Under Test (CUT). Then, logic diagnosis exploits this 
information to determine a list of suspected gates (candidates). 
Any available logic diagnosis tool can be used. For each 
suspected gate, we have to know the logical values applied to it 
when failing and passing test patterns are applied to the CUT. 
This step amounts to determine the actual set of failing/passing 
test patterns at the cell level. Finally, intra-cell diagnosis is 
executed for each suspected gate and its corresponding failing 
/passing test patterns. The result is a list of suspected nets at 
transistor level with a set of fault models able to explain the 
observed failures. More details about this flow and results 
obtained on industrial circuits from ST can be found in [14]. 

Unfortunately, for various reasons, diagnostic resolution is 
typically far from ideal due to the SoC complexity. As a result, 
a lot of efforts have been dedicated for improving diagnosis 
resolution. Among several types of solutions, it has been 
demonstrated recently that diagnosis resolution can be 
improved with machine learning techniques, primarily through 
the derivation of characteristics that enables correct candidates 
(candidates that correctly represent defect locations) to be 
distinguished from incorrect ones (candidates that do not) [15]–
[20]. In [15], authors describe an approach to identify bridge 
defects from a population of diagnosed defects by using a 
combination of effective rules and a decision-tree-based 
classifier. In [16], authors improve on-chip diagnosis resolution 
with a modified k-nearest neighbors classifier that is updated 
with real-time failure data. In [17], volume diagnosis resolution 
is improved with a Bayesian classifier that identifies the actual 
candidates based on their layout properties. In [18], authors 
present a novel yield optimization methodology based on 
establishing a strong correlation between a group of fails and   
an adjustable process parameter. The core of the methodology 
comprises three advanced statistical correlation methods. In 
[19], the authors use statistical learning methods to predict the 
termination of tester-data collection to ensure good resolution. 
In [20], a machine learning-based resolution improvement 
approach called PADRE (Physically-Aware Diagnostic 
Resolution Enhancement) is proposed. PADRE uses a 
classification algorithm (Support Vector Machine) to analyze 
easily available tester and simulation characteristics about the 
candidates to identify those that correspond to the actual failure 
locations. The capabilities of this solution have been further 
extended with a novel Active Learning (AL) based PFA 
selection approach [2]. AL-PADRE selects the most useful 
defects for PFA in order to improve diagnostic resolution. 

Despite their efficiency, a common feature of these 
techniques is that they all address volume diagnosis for yield 
improvement, which is a different problem than fault diagnosis 
of customer returns. During volume diagnosis, numerous data 
collected during manufacturing test and subsequent diagnosis 
phases are available, such as, e.g. hundreds of similar failed 
chips with candidates correctly labeled (good or bad) obtained 
in a previous stage. It is therefore possible to use these data for 
failure diagnosis of a new failed chip. Conversely, during fault 
diagnosis of customer returns, only one failed chip is 
investigated, with no information about the defective behavior 
of some other similar chips used in the same conditions 
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(application, environment, workload, etc.). For this reason, 
learning-guided approaches used for volume diagnosis cannot 
be used fault diagnosis of customer returns. 

III. LEARNING-GUIDED INTRA-CELL DIAGNOSIS 
Despite the good resolution achievable with conventional 

intra-cell diagnosis technique, in some cases (e.g. complex 
cells, complex failure mechanisms) the number of candidates is 
too high to allow an efficient PFA. This problem will be 
exacerbated with the advent of very deep (i.e. 7 nm) submicron 
technologies. Improving intra-cell diagnosis efficiency is 
therefore mandatory. A mean to achieve this goal is to use 
learning algorithms based on classification to determine 
suspected defects. In this section, we present a new approach 
that uses ML techniques instead of traditional cause-effect 
and/or effect-cause analysis. This technique identifies defect 
candidates within a cell with a high resolution and accuracy. 

A. Overall Diagnosis Flow  
Figure 1 shows the proposed diagnosis flow. It takes as 

input (i) the cell test patterns, i.e., all possible static and 
dynamic combinations of values on the inputs of a cell, (ii) the 
list of all possible types of cell in a given circuit, and (iii) the 
cell netlists at transistor level. From these inputs, intra-cell 
transistor-level defect simulations using Spice are performed 
by iteratively injecting all possible defects into each cell type 
and then simulate the behavior of the cell. This part of the flow 
can be seen as a characterization phase as it is done only once 
for each type of cell (NAND, NOR, etc.) within a considered 
circuit. The output is a set of instances representing the training 
data. A features vector describes each instance and has the 
format shown in Figure 2 (for a two-input cell). This instance 
represents, for each defect, the possibility to be detected (value 
1) or undetected (value 0) by each cell test pattern Pi at the 
output of the cell. Cell test patterns are static (one input vector) 
or dynamic (two input vectors). For an n-input cell, there exists 
2n static test patterns and 2n.(2n – 1) dynamic test patterns.  

Besides training data, the Learning-Guided Intra-Cell 
Diagnosis (LGICD) module receives new data. Each instance 
of the new dataset represents a defect candidate that has to be 
classified as good or bad candidates. These data are obtained 
from a data instance generation module that uses as inputs (i) 
the cell failing/passing test patterns, (ii) the list of suspected 
cells provided by a logic diagnosis tool and ranked according 
to their score to be the source of failure (to contain the real 
defect), and (iii) the cell netlists. The cell failing/passing test 
patterns are obtained by performing a simple logic simulation 
of the CUT with the failing/passing test patterns identified by 
the tester. The format of a new data instance is quite similar to 
that of a training data instance, but has a different meaning. In 
each instance, the value 1 (respectively 0) is associated to a 
failing (respectively passing) cell test pattern Pi for a given 
defect candidate, meaning that the candidate is indeed detected 
(respectively undetected) by the cell test pattern Pi. In such 
instance, the value 0.5 is associated to a cell test pattern for a 
given defect candidate when this pattern does not exist in the 
list of cell failing/passing test patterns (i.e., the cell test pattern 
can not appear at the inputs of a suspected cell). The median 
value 0.5 has been chosen to avoid missing information in new 
data instances while not biasing the features of these data. 

Finally, from the training and new data, the LGICD module 
provides a set of good transistor-level defect candidates with 
the corresponding probability to be the root cause of the failure. 

 
Figure 1: Learning-guided intra-cell diagnosis flow 

 
Figure 2: Format of a training data for a two-input cell 

B. Details of the LGICD Module  
Details of the LGICD module are illustrated in Figure 3. 

The first step consists in data preparation. Since learning 
algorithms learn from data, it is essential to use data that 
perfectly match the problem to be solved. Data have to be in a 
useful format and include meaningful features. In our case, the 
process for getting data ready for machine learning algorithms 
can be summarized in three phases [21]: 

i) Data Selection. It consists in selecting the subset of all 
available data that will be used to build a model and classify 
new data. In our case, available data are the training data 
obtained from the intra-cell transistor-level fault simulation 
(characterization phase). Each instance of the training data is 
associated to a defect, and corresponds to the behavior of the 
cell (fault-free or faulty) in presence of such defect and for all 
possible combinations (static and dynamic) of the cell inputs. 
Some defects lead to the same cell behavior. These defects are 
called equivalent defects. Some others are undetectable by any 
cell test pattern. In our selection process, 90% of the available 
data were randomly selected and this operation was repeated 
several times to obtain training data with good randomness.  

ii) Data Preprocessing. Once training data have been 
selected, we need to consider how they will be used. Training 
data are first stored in a CSV file. Then, they are sampled and 
grouped by considering equivalent defects. All equivalent 
defects are thus associated to a given Defect Class i (DCi). 
Training data instances of undetectable defects are removed.  

iii) Data Transformation. The final phase is to transform 
the preprocessed data ready for learning in a format 
manageable by the classifiers (or models). In this format, each 
instance of a training data contains m+1 columns, where m = 
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2n + 2n.(2n – 1) for an n-input cell (e.g. 16 for a 2-input cell). 
Columns 1 to m correspond to the exhaustive cell test patterns. 
Column m+1 corresponds to each defect class. The names of 
each column are specified when transforming data. This will 
help to explore these data in a later stage of the process. 

 
Figure 3: Main steps of the LGICD module 

In the second step of the LGICD module, we build models 
based on different classification algorithms (called classifiers). 
As we preliminary do not know which algorithm will be 
efficient for our problem, evaluating selected algorithms is an 
important step. These evaluations are most often based on 
prediction accuracy (the percentage of correct prediction 
divided by the total number of predictions). There are many 
techniques used to calculate the accuracy of a classifier. The 
technique used in this work is known as cross-validation. The 
training data is divided into mutually exclusive and equal 
subsets. For each subset, the classifier is trained on the union of 
all the other subsets [22]. 

In the next two steps and once we have selected the models, 
we make predictions on new data instances with all of the 
available data. In our case, the expected results correspond to a 
defect’s class probability of being the root-cause of failure. 
Each model returns the best defect’s class candidate and the 
probability for each class has a value between 0 and 1. 

C. The Scikit-learn Library 
In this work, suspected defects are classified using a 

publicly available machine learning software package called 
Scikit-learn [23]. Scikit-learn is an integrated development 
environment with a suite of ML tools. Various tools of Scikit-
learn with supervised learning algorithms for classification 
have been used in this work. The selected algorithms are the 
following: Logistic Regression (LR), k-nearest-neighbors 
(KNN), Naive Bayes (NB) Classifier, and Support Vector 
Machines (SVM). These algorithms represent a mixture of 
simple linear (LR) and nonlinear (KNN, NB, SVM) algoritms. 

IV. EXPERIMENTAL RESULTS 
The proposed learning-guided intra-cell diagnosis approach 

has been implemented in a Python program. We conducted 
experiments on ISCAS’85 benchmarks circuits synthesized in a 
28nm FDSOI technology from STMicroelectronics. Circuits 
were synthesized using a commercial tool. We used an ATPG 
tool (commercial) to generate test patterns for each circuit. The 
stuck-at fault model was considered and the single fault 
assumption was done. Test patterns were provided to achieve 
100% fault coverage. From each circuit and the corresponding 
test set, we simulated the behavior of the tester by performing a 
defect injection campaign (about 500 injections per circuit) into 
a number of randomly selected gates and collecting test 

information to build the tester data log. For the defect injection 
campaign, we considered each transistor of the selected gates 
and we targeted all possible defects affecting that transistor. 
These defects are shown in Figure 4 and are as follows: 
� ROi: Open defect at node i (i = [Gate, Drain, Source, Bulk]) 
� RSij: Short defect between nodes i and j (i/j = [Gate, Drain, 
Source, Bulk]) 

 
Figure 4: Considered transistor defects 

For example, the number of defects for a NAND2 gate is 
equal to 36 defects (9 defects per transistor). However, several 
defects have the same impact on the logic behavior of the gate. 
So, these defects are logical-equivalent defects and hence are 
grouped in defect classes. Table I shows the equivalent defects 
with the corresponding defect classes for such a gate. In this 
table, Dtk refers to a defect in transistor t (t ranges from 1 to 4), 
and k indicates the type (RO or RS) and source node (Gate, 
Drain, Source, Bulk) of the defect. Labels from 1 to 4 for k 
refer to open defects. Labels from 5 to 9 refer to short defects. 

TABLE I.  NAND2 DEFECT CLASSES 
Defect Class Equivalent Defects 
DC1 D11, D12, D13, D16, D21, D22, D23, D26, D38, D39, D48, D49 
DC2 D14, D24, D28, D34, D37, D44, D47 
DC3 D15, D36 
DC4 D17 
DC5 D18, D27, D29 
DC6 D19 
DC7 D25 
DC8 D31, D32, D33, D35 
DC9 D41, D42, D43, D45 
DC10 D46 

 

From the list of failing/passing test patterns (#TP) with the 
corresponding failing/passing CUT outputs, an inter-cell logic 
diagnosis tool based on fault simulation was used to determine 
a list of suspected gates ranked according to their score to be 
the source of failure. We used a commercial diagnosis tool to 
this purpose. For most of experiments, the list of suspected 
gates contained the gate in which the defect were injected. In 
few cases, about 5%, the commercial tool was unable to 
identify the faulty gate as suspect. Learning-guided intra-cell 
diagnosis was not done in such cases. The average number of 
suspected gates (#aSG) for each circuit is listed in Table II. 

According to the flow presented in Figure 1, the list of all 
possible types of cell and the cell test patterns for each cell are 
used as input to produce the training data. For a two-input gate, 
16 cell test patterns are used: 4 static patterns (0-0,0-1,1-0,1-1) 
and 12 dynamic patterns (00-01, 00-10, 00-11, 01-00, etc.). In 
these experiments, dynamic patterns are used to sensitize 
stuck-open faults. Later on, dynamic patterns will also be used 
to sensitize delay faults. Note that this number (16) increases 
exponentially with the number of inputs of a gate. Similarly, 
the length of each training data (as shown in Figure 2) as well 
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as the number of data increases accordingly. The third input 
used to produce the training data is the cell netlists, where each 
netlist is an electrical description of the cell with an injected 
defect. From all these inputs, intra-cell transistor-level defect 
simulations using Spice are performed for all possible defects, 
hence producing the training data. This characterization phase 
of the flow was done using a commercial tool and ST libraries. 

TABLE II.  RESULTS OF INTER-CELL LOGIC DIAGNOSIS 
Circuit #PIs #POs #Gates #TP #aSG 
C880 60 26 383 34 2 

C1355 41 32 938 85 3 
C2670 233 140 945 60 3 
C3540 50 22 1504 131 2 
C5315 178 123 2228 75 2 
C7552 207 108 3417 83 4 

 

For generating each new data, we used the list of suspected 
gates and the cell netlists as input. All suspected gates are 
considered successively according to their score ranking. In 
addition, we need to use the cell (local) failing/passing test 
patterns of the suspected gates. For a suspected gate, the 
number of local test patterns can be lower than 16, especially 
when it was not possible to obtain some patterns at the gate 
inputs from the initial circuit-level test patterns. Finally, from 
these inputs, a simple simulation-based generation algorithm is 
used to produce the new data instance (defect) to be classified.  

From the training and new dataset, the LGICD module 
proceeds as explained in Section IV.B. Regarding the second 
step of the LGICD module, we use a cross-validation algorithm 
to calculate the prediction accuracy of the initially selected 
learning algorithms. Table III shows the result obtained for 
each learning algorithm. NB, KNN and SVM have the best 
prediction accuracy scores, meaning that they are the best 
algorithms for learning data and providing defect candidates. 
LR has a good accuracy score but a bit lower than the others. 

TABLE III.  PREDICTION ACCURACY EVALUATION 
Algorithm Accuracy score 

LR 60% 
KNN 81% 
NB 84% 

SVM 79% 
 

Table IV illustrates the results obtained by the LGICD 
module for a defect injection campaign in a two-input AND 
gate of circuit c2670 (with 54 open and short defects). The first 
column lists the various defect classes. The second column 
indicates if the defects of the corresponding class could be 
detected or not by the initial circuit-level test set. In the case 
such defects cannot be detected, this means that they have no 
impact on the gate output and hence cannot be the source of 
failure. So, they will no longer be considered in our diagnosis 
process. The third column shows the number of suspected gates 
obtained after logic diagnosis. The next four columns list the 
best defect’s class candidate for each learning algorithm with 
the corresponding probability of being the root cause of failure. 

From these results, the first comment is that KNN and NB 
identify as best candidate the real (injected) defect. This is true 
for all defect classes. For LR, the real defect is always 
identified as a candidate, but sometimes (for DC2, DC3 and 
DC4) in the second or third position. The second comment 
refers to the probability given to each best candidate. For 

example, for DC1, the probability given by LR to DC1 to be 
the best candidate is 0.11. KNN gives a probability of 0.5 (with 
n-neighbors=2), which is even better. NB gives a probability of 
1 to DC1 to be the best candidate, hence do not providing any 
other candidates with lower probabilities (unlike what is done 
by LR and KNN). SVM is a non-probabilistic algorithm and 
gives the right defect class in 7 (over 9) cases. It does not 
provide any other candidate (inherent property). All these 
results clearly demonstrate the feasibility, the effectiveness (in 
terms of resolution) and accuracy of the proposed approach.  

TABLE IV.  LEARNING-GUIDED DIAGNOSIS RESULTS – C2670 
Class Det #SG LR KNN NB SVM 
DC1 Yes 2 DC1=0.11 DC1=0.5 DC1=1 DC1 
DC2 Yes 3 DC6=0.11 / DC2=0.09 DC2=0.5 DC2=0.5 DC6 
DC3 Yes 2 DC5=0.11 / DC3=0.10 DC3=0.5 DC3=1 DC3 
DC4 Yes 7 DC9=0.14 / DC4=0.12 DC4=0.5 DC4=0.5 DC9 
DC5 Yes 1 DC5=0.14 DC5=0.5 DC5=1 DC5 
DC6 Yes 3 DC6=0.11 DC6=0.5 DC6=0.5 DC6 
DC7 Yes 6 DC7=0.16 DC7=0.5 DC7=1 DC7 
DC8 Yes 2 DC8=0.16 DC8=0.5 DC8=1 DC8 
DC9 Yes 7 DC9=0.14 DC9=0.5 DC9=0.5 DC9 

 
A fair comparison with a commercial intra-cell diagnosis 

tool has been performed by using the same characterization 
data. This tool is non-probabilistic and provides the list of all 
suspects obtained after diagnosis with a ranking and a 
matching score. Results achieved with the same defect 
injection campaign in the same gate of circuit c2670 are 
reported in Table V. The first three columns are identical to 
those in Table IV. The fourth column gives the number of 
identified defect candidates. The fifth column shows the 
ranking of the injected defect (when it is in the list of 
candidates – NA otherwise) and the matching score. The last 
column reports the accuracy, i.e. the injected defect is or is not 
in the list of candidates. From these results, the first comment 
is that the commercial tool was often unable to provide a 
ranking among the candidates, thus complicating the decision 
before PFA. The second (more important) comment is that, in 2 
out 9 cases, the injected defect is not in the list of candidates 
provided by the tool (i.e. results are not accurate). Conversely, 
our technique with LR, KNN and NB always provides the right 
candidate. This proves the superiority of our approach. 

TABLE V.  DIAGNOSIS RESULTS WITH A COMMERCIAL TOOL – C2670 
Class Det #SG #candidates Ranking / Matching  Accuracy 
DC1 Yes 2 4 No ranking / 100% Yes 
DC2 Yes 3 3 No ranking / 100% Yes 
DC3 Yes 2 4 No ranking / 100% Yes 
DC4 Yes 7 0 NA / 100% No 
DC5 Yes 1 3 No ranking / 100% Yes 
DC6 Yes 3 3 No ranking / 100% Yes 
DC7 Yes 6 1 1 / 100% Yes 
DC8 Yes 2 1 1 / 100% Yes 
DC9 Yes 7 0 NA / 100% No 

 

Table VI summarizes the results obtained for a set of 
ISCAS’85 benchmark circuits. For each learning algorithm, we 
report the percentage of cases in which the injected defect was 
identified as the best candidate (with the highest probability) by 
the proposed diagnosis technique. Percentage lower than 100% 
means that in some cases, the injected defect was not identified 
as the best candidate. However, in all these cases, the 
injected defect was always identified as a candidate, but in 
second or third position (except for SVM). From this 
standpoint, we can consider that the diagnosis accuracy of 
our technique when using LR, KNN and NB algorithms is 
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100%. This important result leads to the conclusion that, 
during diagnosis of customer returns and before PFA, it will be 
possible to use our technique with different learning algorithms 
to assert the confidence level of the achieved intra-cell 
diagnosis results. The last column in Table VI shows results 
obtained for each circuit with the commercial intra-cell 
diagnosis tool. The first value is the average number of 
candidates (resolution). The second value is the percentage of 
cases in which accuracy is good. This value must be 
compared to 100% obtained by our technique with LR, 
KNN and NB. As no ranking was most of the time provided 
by the commercial tool, it was not possible to calculate the 
percentage of cases in which the injected defect was identified 
as the best candidate (as done in columns 2 to 5). 

TABLE VI.  OVERALL DIAGNOSIS RESULTS 
Circuit LR KNN NB SVM Com. Tool 
C880 84.6% 100% 100% 100% 2 /100% 

C1355 44.2% 100% 100% 77% 3 / 96% 
C2670 46% 100% 100% 77% 2 / 84% 
C3540 72% 84% 84% 62% 3 / 100% 
C5315 85.1% 96% 96% 88.8% 2 / 97%  
C7552 44.4% 100% 100% 77% 3 / 90% 

 

As can be seen in Table VI, and in accordance with the 
results shown in Table II, we can assert that KNN and NB 
work perfectly. LR is still efficient but less accurate and with a 
higher variability in the results. SVM works efficiently 
(especially for c880) but is a bit less informative due to its non-
probabilistic nature and inherent property. The commercial tool 
provides results with a much lower resolution and accuracy.  

The CPU time taken by the proposed diagnosis flow to 
provide a list of good defect candidates is always very low 
(few seconds) and does not depend on the circuit size (except 
the CUT simulation but this phase is done only once and in just 
few seconds). Only the number of suspected cells obtained 
after logic diagnosis may have an impact on the CPU time, but 
in a slight manner. In fact, the most time-consuming part of the 
flow (few hours) is the characterization phase, but this phase is 
also done only once and is not correlated with the circuit size. 

V. CONCLUSION AND FUTURE WORK 
In this paper, we have addressed the problem of diagnosing 

failures that occur during mission mode of SoCs. We have 
presented a novel intra-cell diagnosis approach that uses 
supervised learning algorithms to produce a minimum set of 
candidates at transistor level. Results carried out on benchmark 
circuits have shown that this approach can lead to an accurate 
localization of the root cause of observed failures. 

Above efficient experimental results have been achieved 
with a preliminary version of the learning-guided diagnosis 
flow which is not yet ready to be used in an industrial 
environment. Further developments have to be done to address 
several missing aspects. First, layout information has to be 
used to refine the list of defects that are considered during 
training data preparation. By this way, only realistic defects 
will be assumed during the whole process, thus increasing 
diagnosis efficiency. Next, simple defects modeled by stuck-at 
or stuck-open faults have been assumed in our experiments. In 
the case of industrial circuits, more complex (e.g. resistive or 
bridge) defects modeled by delay or bridging faults will need to 
be considered. Similarly, in-field failure mechanisms related to 

premature aging and that have to be considered in the context 
of customer returns, such as NBTI or HCI, will need to be 
appropriately taken into account by considering representative 
defect models that already exist and are used in industry 
(essentially resistive opens and shorts). Note that all the above 
aspects will probably not impact the format of data instances. 
Another point is that unique test conditions have been assumed 
in our experiments. In the context of mission mode failure 
diagnosis, multiple test conditions with various PVT corners 
will also need to be considered. Importantly, we will also need 
to compare our results with those obtained with industrial in-
house tools [3–14]. We will also investigate additional learning 
algorithms and related learning parameters. Finally, we will 
perform experiments on large-size benchmark and industrial 
circuits from ST investigated as customer returns.  
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