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ABSTRACT This paper presents two novel quadruple cross-coupled memory cell designs, namely
QCCM10T and QCCM12T, with protection against single event upsets (SEUs) and double-node upsets
(DNUs). First, the QCCM10T cell consisting of four cross-coupled input-split inverters is proposed. The
cell achieves full SEU tolerance and partial DNU tolerance through a novel feedback mechanism among
its internal nodes. It also has a low cost in terms of area and power dissipation mainly due to the use of
only a few transistors. Next, based on the QCCM10T cell, the QCCM12T cell is proposed that uses two
extra access transistors. The QCCM12T cell has a reduced read-and-write access time with the same soft
error tolerance when compared to the QCCM10T cell. Simulation results demonstrate the robustness of the
proposed memory cells. Moreover, compared with the state-of-the-art hardened memory cells, the proposed
QCCM12T cell saves 28.59% write access time, 55.83% read access time, and 4.46% power dissipation at
the cost of 4.04% silicon area on average.

INDEX TERMS Double-node upset, memory cell, radiation hardening, single event upset, soft error.

I. INTRODUCTION
As one of the most extensively used memory devices, static
random access memories (SRAMs) play an increasingly
important role in modern circuits and systems. Meanwhile,
SRAM-circuit integration and performance in nano-scale
CMOS technologies have significantly improved. However,
the aggressive shrinking of transistor feature sizes makes
modern advanced SRAMs more and more sensitive to soft
errors caused by the strike of particles, such as protons, neu-
trons, heavy ions, electrons, muons, and alpha particles [1].
Soft errors can lead to data corruptions, execution errors,
or even system crashes in the worst case [2]. The recent
adoption of FinFET technologies can reduce the soft error
rate at transistor or cell level [3]. However, this feature of
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FinFET-based circuits does not exempt designers to provide
valuable and scalable solutions for soft error tolerance, espe-
cially for safety-critical applications in harsh environments.
Therefore, SRAM-circuit reliability caused by soft errors is
still an increasing concern.

In a combinational logic circuit, when a particle strikes a
sensitive node in a logic gate, the collected charges may cause
a transient pulse, i.e., a single event transient (SET), at the
output of the struck logic gate. Subsequently, the SET pulse
may propagate through the downstream logic gates arriving
at a storage element, and the pulse may be captured, thus
leading to invalid value-retention. For a storage module such
as a memory cell or a flip-flop, particle strike may result in
the state change of a single node, thus leading to a soft error.
This is called a single event upset (SEU). However, in mod-
ern advanced nano-scale CMOS technologies, the aggres-
sive shrinking of transistor feature sizes can make circuit
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integration higher and circuit node-spacing smaller. As a
result, due to charge-sharing, the strike of one particle may
simultaneously change the states of two nodes in a storage
element, which is called a double-node upset (DNU). SEUs
and DNUs may cause storage elements to retain incorrect
values, resulting in potential errors and failures in circuits
and systems. Therefore, to improve robustness of circuits
and systems, there is a strong need for IC designers and
manufacturers to perform radiation hardening against SEUs
and DNUs.

To tolerate SEUs and/or even DNUs, researchers have
proposed a series of latches, flip-flops, and memory
cells. The designs in [4]–[7] consider hardening for flip-
flops, the designs in [8]–[16] consider hardening for latches,
while the other designs in [17]–[26] and the designs pro-
posed in this paper consider hardening for memory cells.
The traditional memory cell is called 6T, which consists of
six transistors, i.e., two PMOS and two NMOS transistors
for retaining values, and two extra NMOS transistors for
access operations. Since the 6T cell cannot tolerate SEUs,
many radiation hardenedmemory cells have been proposed to
improve robustness. Typical SEU and/or even DNU hardened
cells include NASA13T [17], Lin12T [18], RHD12T [19],
RH12T [20], QUCCE10T [21], and QUCCE12T [21]. How-
ever, these memory cells still have the following problems.

(1) Most of the existing memory cells suffer from a large
silicon area and power dissipation, such as NASA13T [17],
Lin12T [18], and RH12T [20]. Moreover, some cells suf-
fer from a large read and write access time, such as
NASA13T [17] and QUCCE10T [21].

(2) Most of the existing memory cells have not been effec-
tively hardened, since one or more nodes cannot tolerate
SEUs, such as NASA13T [17].Moreover, somememory cells
cannot tolerate DNUs, such as Lin12T [18], RHD12T [19],
RH12T [20], QUCCE10T [21], and QUCCE12T [21].

Based on a radiation hardening by design (RHBD)
approach, this paper first presents a novel and highly reliable
Quadruple Cross-Coupled Memory cell, namely QCCM10T.
The storage module of the memory cell consists of four
interlocked input-split inverters. Since the QCCM10T cell
uses a few transistors, it has lower cost in terms of area
and power consumption. Due to a special feedback mech-
anism among the internal nodes of the QCCM10T cell,
it effectively tolerates SEUs. To reduce read and write access
time, the QCCM12T cell is further proposed. This cell has
the same soft error tolerance ability when compared to the
QCCM10T cell. Moreover, using two extra access transistors,
the QCCM12T cell has smaller overhead in terms of read-
and-write access time. Simulation results demonstrate the
reliability and low overhead of the proposed memory cells.

The rest of this paper is organized as follows. Section II
describes the typical SEU and/or DNU hardened cells.
Section III describes the schematics andworking principles of
the proposedmemory cell designs. Section IV presents exper-
imental results and comparison results. Section V concludes
the paper.

FIGURE 1. Schematic of the traditional 6T cell.

II. PREVIOUS HARDENED MEMORY CELLS
The schematic of the traditional 6T cell is shown in
FIGURE 1. The storage module of the 6T cell consists of
a couple of cross-coupled inverters. The 6T cell is widely
used because of its simple construction and small area. How-
ever, the 6T cell cannot tolerate an SEU. Therefore, many
radiation hardened cells have been proposed for reliabil-
ity improvement. FIGURE 2 shows the schematics of typ-
ical hardened memory cells, including the NASA13T [17],
Lin12T [18], RHD12T [19], RH12T [20], QUCCE10T [21],
and QUCCE12T [21].

The schematic of the NASA13T cell [17] is shown in
FIGURE 2-(a). It can be seen that the NASA13T cell con-
sists of three parts. The upper left part acts as a value stor-
age module with write access transistors N1 and N2. The
lower left part is redundant for value protection. The right
part is a special read module for reading values. Compared
with 6T, NASA13T provides an improved level of protection
against SEUs. However, the NASA13T cell is not effectively
SEU-hardened since it cannot tolerate SEUs caused by large
energy particles.

The schematic of the Lin12T cell [18] is shown in
FIGURE 2-(b). The source and drain terminals of access tran-
sistors N5 andN6 connect bit lines (BL and BLN) and storage
nodes (Q and QN). Moreover, gate terminals (S0 and S1) of
cross-coupled transistors P1 and P4 are also storage nodes,
which increase the redundancy of nodes for SEU tolerance.
The Lin12T cell is completely SEU-hardened, but only one
pair of nodes (i.e., <S0, S1>) is DNU-hardened.
The schematic of the RHD12T cell [19] is shown in

FIGURE 2-(c). It can be seen that the RHD12T cell is com-
posed of 12 transistors. NMOS transistors N1 and N2 are
access transistors that are controlled by word line WL, and
output nodes Q and QN are connected to bit lines BL and
BLN through transistors N1 and N2, respectively. The stor-
age module of the cell consists of 10 transistors in which
P1 to P6 are PMOS transistors and N3 to N6 are NMOS
transistors. Due to the special construction of feedback loops,
the RHD12T cell is completely SEU-hardened, but only one
pair of nodes (i.e., <S0, S1>) is DNU-hardened.

The schematic of the RH12T cell [20] is shown in
FIGURE 2-(d). S0, S1, Q, and QN are storage nodes used for
keeping values. Consider the status shown in FIGURE 2-(d)
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FIGURE 2. Schematics of typical hardened memory cells. (a) NASA13T [17]. (b) Lin12T [18]. (c) RHD12T [19]. (d) RH12T [20]. (e) QUCCE10T [21].
(f) QUCCE12T [21].

as an example (i.e., Q= S1= 1 and QN= S0= 0), nodes S0,
S1, Q, and QN constitute a feedback loop allowing the cell to
keep the stored value effectively. Transistors N1 and N2 split
output nodes of two traditional cross-coupled inverters into
two nodes (i.e., <Q, QN>), respectively. Moreover, nodes
S0 and S1 are connected to gate terminals of transistors
N1 and N2 to intercept errors. Similarly to Lin12T and
RHD12T, the RH12T cell is completely SEU-hardened, but
only one pair of nodes (i.e., <S0, S1>) is DNU-hardened.

The schematic of the QUCCE10T cell [21] is shown
in FIGURE 2-(e). The QUCCE10T cell has four storage
nodes A, Q, QN, and B. The cell mainly consists of four
cross-coupled input-split inverters, constructing a large error-
interceptive feedback loop to robustly retain the stored values.
As shown in the FIGURE 2-(e), when Q = 1, nodes A, Q,
QN and B constitute a robust feedback loop (A→ Q→ QN
→ B→ A). The QUCCE10T cell is SEU-hardened.
The schematic of the QUCCE12T cell [21] is shown in

FIGURE 2-(f). It can be seen that the QUCCE12T cell uses
two extra access transistors with respect to the QUCCE10T
cell to improve performance. The QUCCE12T cell has a
reduced read-and-write access time with the same soft-error
tolerance ability when compared with the QUCCE10T cell.

III. PROPOSED MEMORY CELL DESIGNS
A. SCHEMATIC AND NORMAL OPERATIONS
FIGURE 3 shows the schematic of the proposed Quadruple
Cross-Coupled Memory (QCCM10T) cell. From FIGURE 3,

FIGURE 3. Schematic of the proposed QCCM10T cell.

it can be seen that the QCCM10T cell is composed of 10
transistors in which P1 to P4 are PMOS transistors and N1 to
N6 are NMOS transistors. Transistors N5 and N6 are used
for access operations and their gate terminals are connected
to word-line WL. BL and BLN are bit-lines. I1, I2, I3, and
I4 are storage nodes for keeping values. FIGURE 4 shows
the layout of the proposed QCCM10T cell. WhenWL is high
(WL = 1), the access transistors are ON, allowing read/write
operations to be executed.WhenWL is low (WL= 0), the cell
keeps the stored values.

The normal operations of the proposed QCCM10T cell
are described as follows. Let us first consider the case of
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FIGURE 4. Layout of the proposed QCCM10T cell.

FIGURE 5. Simulation results for normal operations of the proposed
QCCM10T cell.

writing 1. Before the normal write operation, owing to the
writing circuitry, BL = 1 and BLN = 0. When WL = 1,
the operation of writing 1 is executed. Transistors P1, N2,
P3, and N4 are ON. Meanwhile, transistors N1, P2, N3, and
P4 are OFF, so that the stored value is rightly changed to 1,
and the operation of writing 1 is completed. Next, let us con-
sider the case of reading 1. Before the normal read operation,
owing to a pre-charge circuitry, the voltages of bit-lines BL
and BLN will be set to 1. During the read operation, WL= 1,
and access transistors N5 and N6 become ON immediately.
Nodes I1, I2, I3, and I4 are keeping the stored values, and
the voltage of BL does not change. However, the voltage
of BLN decreases due to the discharge operation through
N4. BL and BLN are directly connected to a differential
sense amplifier, and once the voltage difference between BL
and BLN becomes a constant value, the read operation is
completed and 1 is read out. Note that, similar scenarios can
be observedwhenwriting/reading 0. The simulation results of
normal operations of the proposed QCCM10T cell are shown
in FIGURE 5. It can be seen that ‘‘write 0, read 0, write 1,
and read 1’’ operations are correctly executed.

Next, the fault tolerance principle of the proposed
QCCM10T cell is described. For the purpose of illustration,

we consider the case of a 1 being stored in the cell (i.e., I1 =
I3 = 1 and I2 = I4 = 0). In the next section, we discuss the
SEU-tolerance principle and the DNU-tolerance principle,
respectively.

B. SEU-TOLERANCE PRINCIPLE
The cell state shown in FIGURE 3 is considered for SEU-
tolerance analysis. Let us first consider the case where I1 is
affected by an SEU. In this case, I1 is temporarily changed to
0 from 1, and hence N2 and N4 are temporarily changed from
ON toOFF. Since I3 is not affected (i.e., I3= 1), P2 and P4 are
still OFF. Thus, I2 and I4 still have the same original correct
value 0. Thus, N1 is still OFF and P1 is still ON, so that
I1 can self-recover from the SEU. Note that the similar SEU
self-recovery principle can be obtained when I2 is affected by
an SEU.

Let us now describe the case where I3 is affected by an
SEU. In this case, I3 is temporarily changed to 0 from 1, and
hence P2 and P4 are temporarily changed from OFF to ON.
I2 has the value 1 (weak 1) since P2 is temporarily changed
from OFF to ON. Since I1 is not affected (i.e., I1 = 1), N2 is
still ON and I2 has the value 0 (strong 0). However, the strong
0 of I2 can neutralize the weak 1 and hence I2 is still correct
(I2 = 0). Similarly, I4 has the value 1 (weak 1) since P4 is
temporarily changed fromOFF toON. Since I1 is not affected
(i.e., I1= 1), N4 is still ON and I4 has the value 0 (strong 0).
However, the strong 0 of I4 can neutralize the weak 1 and
hence I4 is still correct (I4 = 0). Thus, P3 is still ON and
N3 is still OFF, and I3 can self-recover from the SEU.

Let us now describe the case where I4 is affected by an
SEU. In this case, I4 is temporarily changed to 1 from 0, and
hence N1 and N3 are temporarily changed from OFF to ON.
I1 has the value 0 (weak 0) since N1 is temporarily changed
fromOFF toON. Since I2 is not directly affected (i.e., I2= 0),
P1 is still ON and I1 has the value 1 (strong 1). However,
the strong 1 of I1 can neutralize the weak 0 and hence I1 is
still correct (I1 = 1). Thus, N4 is still ON. Similarly, I3 has
the value 0 (weak 0) since N3 is temporarily changed from
OFF to ON. Since I2 is not directly affected (i.e., I2 = 0),
P3 is still ON and I3 has the value 1 (strong 1). However,
the strong 1 of I3 can neutralize the weak 0 and hence I3 is
still correct (I3= 1). Since P4 is still OFF, I4 can self-recover
from the SEU (N4 is still ON as mentioned above). However,
when the striking-particle energy is sufficiently large, I4 will
be upset since I1 and I3 can be changed to 0 and P2 and
P4 can be ON, so that the stored value of the cell can be
flipped. To summarize, the proposed QCCM10T cell exhibits
effective SEU self-recovery ability, especially for I1, I2, and
I3 when 1 is stored in the cell. Note that the OCCM10T cell
exhibits effective SEU self-recovery ability, especially for I2,
I3, and I4 when 0 is stored in the cell.

C. DNU-TOLERANCE PRINCIPLE
The cell state shown in FIGURE 3 is considered for DNU-
tolerance analysis. Obviously, the proposed QCCM10T cell
has six node pairs, i.e., <I1, I2>, <I1, I3>, <I1, I4>,
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FIGURE 6. Simulation results for SEU and DNU self-recovery of the
proposed QCCM10T cell.

<I2, I3>, <I2, I4>, and <I3, I4>. Let us first describe the
case where <I1, I2> is affected by a DNU. In this case, I1 is
changed to 0 from 1 and I2 is changed to 1 from 0, and hence
P1, P3, N2, and N4 are changed from ON to OFF. I3 and
I4 cannot be determined since P3 and N4 are OFF. As time
passes, all nodes and transistors cannot self-recover to their
original states. In other words, <I1, I2> of the proposed
QCCM10T cell cannot self-recover from the DNU. Note
that, the similar scenario can be obtained when <I3, I4>
is affected by a DNU. Let us now consider the case where
<I1, I3> is affected by a DNU. The nodes in the pair are
not adjacent considering the layout shown in FIGURE 2,
and hence the proposed cell can avoid the occurrence of
this DNU. Note that, <I1, I4> and <I2, I4> have the same
behavior as <I1, I3>.

Let us now describe the case where <I2, I3> is affected
by a DNU. In this case, I2 is temporarily changed to 1 from
0 and I3 is temporarily changed to 0 from 1. Hence, P1 and
P3 are temporarily changed from ON to OFF, and P2 and
P4 are temporarily changed from OFF to ON. Clearly, N1,
N2, N3, and N4 are not directly affected, having their original
ON/OFF states. Since I1= 1, N4 is ON and I4 has the value 0
(strong 0). Meanwhile, since P4 is temporarily changed from
OFF to ON, I4 has the value 1 (weak 1). However, the strong
0 of I4 can neutralize the weak 1 and hence I4 is still correct
(I4 = 0). Since I1 = 1, N2 is ON and I2 has the value 0
(strong 0). Since P2 is temporarily changed from OFF to ON,
I2 has the value 1 (weak 1). However, the strong 0 of I2 can
neutralize the weak 1 and hence I2 is still correct (I2 = 0).
Obviously, P3 is ON and N3 is OFF, and hence I3 can self-
recover from the DNU. In other words, node pair <I2, I3>
of the cell can self-recover from the DNU. To summarize,
the proposed QCCM10T cell exhibits effective DNU toler-
ance ability, especially for <I1, I3>, <I1, I4>, <I2, I4>,
and <I2, I3>.
FIGURE 6 shows the simulation results for SEU and DNU

self-recovery of the proposed QCCM10T cell. As shown in
FIGURE 6, when I1= 1, SEUs were respectively injected on
nodes I1, I2, and I3 at 20 ns, 40 ns, and 60 ns. When I1 = 0,

FIGURE 7. Schematic of the proposed QCCM12T cell.

SEUs were respectively injected on nodes I2, I3, and I4 at
150 ns, 190 ns, and 250 ns. It can be seen that the pro-
posed QCCM10T cell can self-recover from these injected
SEUs. Moreover, a DNU was injected on <I2, I3> at 380 ns
as shown in FIGURE 4. It can be seen that the proposed
QCCM10T cell can self-recover from the DNU on <I2, I3>.
The injection of DNUs on <I1, I3>, <I1, I4>, and <I2, I4>
are omitted since DNUs are hardly to happen on these pairs
considering the layout of the cell.

In the above simulations, a flexible double-exponential
current source model was used to perform all fault injections.
The time constant of the rise and fall of the current pulse was
set to 0.1 and 3 ps, respectively [26]. The proposed cells are
implemented using an advanced 22 nm CMOS library from
GlobalFoundries under the room temperature and 0.8V sup-
ply voltage. All simulations were performed using Synopsys
HSPICE tool.

In order to reduce the read and write access time,
the QCCM12T cell is proposed and the schematic of the
cell is shown in FIGURE 7. It can be seen that the storage
module of QCCM12T is the same as that of QCCM10T.
Therefore, the QCCM12T cell has the same soft-error toler-
ance ability when compared to the QCCM10T cell, i.e., they
have the same SEU and DNU tolerance principles. However,
the QCCM12T cell uses two extra access transistors com-
pared to the QCCM10T cell to effectively improve the access-
operation performance. FIGURE 8 shows the layout of the
proposed QCCM12T cell.

IV. COMPARISON AND EVALUATION RESULTS
In the following, the comparison and evaluation results for
the proposed QCCM10T and QCCM12T cells and the state-
of-the-art cells described in Section I (i.e., NASA13T [17],
Lin12T [18], RHD12T [19], RH12T [20], QUCCE10T [21],
and QUCCE12T [21]) are described. The same implemen-
tation conditions that described in the above section were
used to implement all cells. Table 1 shows the reliability
and overhead comparison results of the unhardened and
hardened memory cells, in terms of SEU tolerance, num-
ber of DNU-hardened node-pairs (#DHNP), silicon area,
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TABLE 1. Reliability and overhead comparison results of the unhardened and hardened memory cells.

FIGURE 8. Layout of the proposed QCCM12T cell.

power dissipation, read access time (RAT), and write access
time (WAT).

Let us first describe the reliability comparison results.
It can be seen from Table 1 that all cells except the 6T and
the NASA13T are SEU hardened, providing high reliabil-
ity. Regarding #DHNP, only the proposed QCCM10T and
QCCM12T cells can tolerate DNUs for 4 node-pairs, while
the other cells can only tolerate DNUs for 0 or 1 node-pair.
To summarize, the proposed QCCM10T andQCCM12T cells
can provide much better reliability.

Let us now discuss the overhead comparison results. For
power and area, we consider that a cell using only a few
transistors has a small area and small power consumption, and
a cell having a larger area will consume extra power. It can
be seen from Table 1 that the 6T cell has the smallest power
consumption and area overhead since it uses only 6 transis-
tors. Since NASA13T uses extra transistors and there is more
current competition in its feedback loops, it has the largest
area and power. Lin12T, RHD12T, RH12T, QUCCE12T, and

the proposed QCCM12T use the same amount of transistors
and they have similar cell constructions, and hence they have
similar area and power consumption. It can be seen from
Table 1 that the proposed QCCM10T cell has the smallest
power consumption, except when compared with the 6T cell,
mainly due to the smaller area and the less current competi-
tion in its feedback loops.

For WATs and RATs, we consider that the intrinsic
charge/discharge of cell nodes through access transistors can
affect WATs and RATs. It can be seen from Table 1 that the
6T cell has the smallest WAT, mainly because the cell has less
current competitionwhen thewrite operation is executed. The
proposedQCCM12T also has the smallestWAT due to the use
of extra access transistors. However, the NASA13T has the
largest WAT, mainly due to more current competition when
the write operation is executed. The proposed QCCM10T
has the largest RAT mainly due to the slow current flow
from the cell when the read operation is executed. However,
the proposed QCCM12T has the smallest RAT owing to the
use of extra access transistors.

1Area=
Areacompared (i)−Areaproposed(i)

Areacompared(i)
×100% (1)

PRCAverage
Area =

∑n

i=1

Areacompared(i)−Areaproposed(i)
Areacompared(i)

×100%

(2)

The percentages of reduced costs (PRCs) of the proposed
QCCM10T cell compared with the other memory cells are
calculated and analyzed. The PRC of the area can be calcu-
lated with Eq. (1). Similarly, the PRCs of the power dissi-
pation, RAT, and WAT can be calculated. The average PRC
of the area can be calculated with Eq. (2). Similarly, the
average PRCs of the power dissipation, RAT, and WAT can
also be calculated. Table 2 shows the PRCs for the proposed
QCCM10T cell compared with the other memory cells. For
the sake of brevity, only the average PRCs are discussed.
It can be seen from Table 2 that compared with the six
hardened cells, the average PRCs of the silicon area, power
dissipation, WAT, and RAT for the proposed QCCM10T cell
are 6.95%, 22.14%, 38.12%, and −353.97%, respectively.

VOLUME 7, 2019 176193



A. Yan et al.: Novel Quadruple Cross-Coupled Memory Cell Designs With Protection Against SEUs and DNUs

TABLE 2. Percentages of reduced costs for the proposed QCCM10T cell
compared with the other memory cells.

TABLE 3. Percentages of reduced costs for the proposed QCCM12T cell
compared with the other memory cells.

It means that the proposed QCCM10T cell saves 6.95%
silicon area, 22.14% power dissipation, and 38.12%WAT on
average. However, the proposed QCCM10T cell has an extra
353.97% WAT on average, which motivates us to use extra
access transistors to reduce the WAT.

The PRCs of the QCCM12T cell compared with the other
memory cells are calculated and analyzed. Table 3 shows
the PRCs for the proposed QCCM12T cell compared with
the other memory cells. For the sake of brevity, only the
average PRCs are discussed. It can be seen from Table 3 that
compared with the six hardened cells, the average PRCs of
the silicon area, power dissipation,WAT, and RAT for the pro-
posed QCCM12T are−4.04%, 4.46%, 55.83%, and 28.59%,
respectively. It means that the proposed QCCM12T cell saves
4.46% power dissipation, 55.83%WAT, and 28.59% RAT on
average. On the other side, the proposed QCCM12T cell only
increases silicon area by 4.04% on average.

To summarize, the proposed QCCM10T and QCCM12T
cells have been effectively hardened. Compared with
the existing state-of-the-art hardened cells, the proposed
QCCM10T cell has lower overhead especially in terms

of silicon area and power dissipation, and the proposed
QCCM12T cell has lower overhead especially in terms of
RAT and WAT.

V. CONCLUSION
CMOS technology scalingmakes modernmemory cells more
andmore sensitive to soft errors that include SEUs andDNUs.
In this paper, first, a novel and highly reliable QCCM10T cell
has been proposed. The cell is effectively hardened against
SEUs andDNUs and has a low cost especially in terms of area
and power consumption. Next, to reduce the read and write
access time, the QCCM12T cell has further been proposed.
The cell has the same soft error tolerance ability compared to
the QCCM10T cell and can achieve low overhead in terms
of the read and write access time. The proposed cells can
be effectively applied for safety-critical applications, such as
aerospace, nuclear plants, and banking, where high reliability
is required.
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