
HAL Id: lirmm-02395609
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02395609

Submitted on 7 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Survey of Testing Techniques for Approximate
Integrated Circuits

Marcello Traiola, Arnaud Virazel, Patrick Girard, Mario Barbareschi, Alberto
Bosio

To cite this version:
Marcello Traiola, Arnaud Virazel, Patrick Girard, Mario Barbareschi, Alberto Bosio. A Survey of
Testing Techniques for Approximate Integrated Circuits. Proceedings of the IEEE, 2020, 108 (12),
pp.2178-2194. �10.1109/JPROC.2020.2999613�. �lirmm-02395609�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02395609
https://hal.archives-ouvertes.fr


PROCEEDINGS OF THE IEEE 1

A Survey of Testing Techniques
for Approximate Integrated Circuits

Marcello Traiola, Member, IEEE, Arnaud Virazel, Member, IEEE, Patrick Girard, Fellow, IEEE,
Mario Barbareschi, and Alberto Bosio, Member, IEEE,

Abstract—Approximate Computing (AxC) is increasingly
emerging as a new design paradigm to produce more efficient
computation systems by judiciously reducing the computation
quality. In particular, AxC has been successfully applied to
Integrated Circuits (ICs), in the last years. Hence, concerning
the test of such new class of ICs, namely Approximate Integrated
Circuits (AxICs), new challenges – as well as new opportunities
– have emerged. In this survey, we provide a thorough analysis
of issues related to test procedures for AxICs and review the
state-of-the-art techniques to deal with them. We resort to an
illustrative example having the twofold aim of: (i) guiding the
reader through the AxIC testing challenges and (ii) illustrating
the existing solutions to correctly overcome them, while suitably
taking advantage of opportunities coming from approximation.
We analyze experimentally the most recent testing techniques for
AxICs and highlight their mature aspects, as well as their short-
comings. Experimental outcomes show that the testing process
for AxIC is not completely mature. Indeed, only under specific
conditions existing testing procedures achieve good results.

Index Terms—Testing, Approximate integrated circuits, Ap-
proximate computing, Hardware test, Robustness, Circuit faults,
Automatic test pattern generation, ATPG, Approximation-
aware test methodology, Test pattern, Production errors,
Approximation-aware testing,

I. INTRODUCTION

DESPITE significant energy efficiency improvements in
the semiconductor industry, computer systems consume

more and more energy [1]. In addition to that, a new kind
of applications – usually referred to as Recognition, Mining
and Synthesis (RMS) applications – is increasingly deployed
in mobile devices and on Internet of Things (IoT) structures.
Therefore, it is necessary to improve the next-generation
silicon devices and architectures on which these applications

© 2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
DOI: 10.1109/JPROC.2020.2999613

M. Traiola, A. Virazel and P. Girard are with the Laboratory of
Computer Science, Robotics and Microelectronics of Montpellier (LIRMM),
University of Montpellier/CNRS, Montpellier 34000 France, E-mail:
{firstname.lastname}@lirmm.fr

M. Barbareschi is with the Department of Electrical Engineering
and Information Technology (DIETI), University of Naples, Naples 80100
Italy, E-mail: mario.barbareschi@unina.it

A. Bosio is with the Lyon Institute of Nanotechnology (INL), Ecole
Centrale de Lyon, Lyon 69000 France, E-mail: alberto.bosio@ec-lyon.fr

Manuscript received Jan 15, 2020; revised Mar 16, 2020; accepted May 28,
2020.

will run. The inherent resiliency property of RMS applications
has been thoroughly investigated over the last few years [1]–
[4]. This interesting property leads RMS applications to be
tolerant to errors – as long as their results remain close enough
to the expected ones. Approximate Computing (AxC) [1], [2]
is an emerging computing paradigm which takes advantage of
the inherent application resiliency. AxC has gained increasing
interest in the scientific community in the last years. It is
based on the intuitive observation that selectively relaxing
non-critical specifications may lead to improvements in power
consumption, run time, and/or chip area. Therefore, several
methodologies have been proposed to automatically identify
and characterize the resilient parts of computer systems [4]–
[12]. AxC has been applied to the whole digital system
stack. Specifically, three main categories of Approximate Ker-
nels (AxKs) have been identified, i.e., software-level AxKs,
architectural-level AxKs, and circuit-level AxKs [1].

Software-level AxKs have been developed to provide pro-
grammers with the possibility to realize complex yet energy-
efficient programs. This task is possible thanks to the abstrac-
tion of the approximation concept by means of approximation-
aware (ax-aware) programming languages [11]–[13], ax-
aware correctness analysis engines [14]–[19], and ax-aware
compilers [20], [21].

At architectural-level, obtaining high-performance process-
ing units at a low-energy cost, and memories and storage units
with a good trade-off between performance and density, are
ideal goals for designers. Architectural-level AxKs introduced
the computation quality as a new parameter to push further
next generation hardware components. Indeed, by sacrificing
some quality, designers can further improve performance of
computation units [22]–[25], density and energy efficiency of
memories [26]–[32] and storage units [33].

Finally, circuit-level AxKs have been applied basically in
two ways: (i) over-scaling and (ii) functional approximation.
Over-scaling consists in lowering the Integrated Circuit (IC)
supply voltage to reduce its energy consumption. If the circuit
is systematically designed to benefit from over-scaling [34],
[35], the timing errors are negligible compared to the energy
gain. Nevertheless, the energy gain of over-scaling techniques
turns out to be small [1]. Therefore, a considerable amount of
work has been presented on circuit functional approximation:
the circuit functionality is systematically changed – thus, some
controlled errors are introduced – to achieve energy-efficient
circuits. Circuit error can be measured according to different
error metrics [36]. Three main approaches have been used to
design Approximate Integrated Circuits (AxICs):



PROCEEDINGS OF THE IEEE 2

1) Ad-hoc approximate circuits, such as adders [37]–
[51], multipliers [49]–[71], dividers [72]–[85], square
root [85], and Multiply-and-ACcumulate (MAC) [86],
[87]. A recent review of these studies can be found in
the work by Jiang et al. [88].

2) Automatic approximate circuit synthesis methodolo-
gies [89]–[110].

3) Hardware neural accelerators to implement approximate
functions [24], [111], [112]

This work focuses on digital AxICs, regardless of the ap-
proach employed to obtain them. Since approximation changes
the IC behavior, it is important to revisit test and verification
techniques to adapt them to AxICs. AxIC verification has been
thoroughly investigated in previous studies. Specifically, for-
mal verification methods have been applied to combinational
AxICs [101], [113], [114] and sequential AxICs [114], [115].

We focus more specifically on testing aspects of AxICs.
Previous research works [116]–[118] have shown that circuit
approximation raises challenges for testing procedures, but
also opportunities. On the one hand, the occurrence of a defect
in the circuit can lead it to produce unexpected catastrophic
errors. On the other hand, some defects can be tolerated, when
they do not induce errors over a certain level. If properly
investigated and managed, this phenomenon could lead to
increase the number of circuits passing the test phase. This is
usually referred to as production yield increase. Indeed, selling
acceptably-functioning circuits – that still respect the user
requirements, despite the defects – would increase the profit of
semiconductor companies. This is especially critical due to the
effect of process variability on CMOS technologies. Indeed,
CMOS technologies at nano-scale have increasingly negative
performance in terms of circuit yield and reliability [119].
To take advantage of the opportunity offered by AxICs,
conventional test flow should be revisited.

Therefore, Approximation-Aware testing (AxA testing)
comes into play. We identify three main AxA testing phases:

1) AxA fault classification,
2) AxA test pattern generation,
3) AxA test set application.

Briefly, fault classification has to divide faults into catas-
trophic (to test) and acceptable (not to test), according to a
metric; test pattern generation has to produce tests able to
cover all the catastrophic faults and, at the same time, to leave
acceptable faults undetected; finally, the test set application
role is to analyze the test outcomes and classify AxICs
accordingly, into catastrophically faulty, acceptably faulty, and
fault-free. Only AxICs falling into the first group will be
rejected. Ultimately, this leads to a yield increase compared
to the conventional test flow.

In this work, we thoroughly discuss the three AxA testing
phases. Moreover, we review and evaluate the existing AxA
testing techniques. We propose new metrics to accomplish
the evaluation, and we perform extensive experiments to mea-
sure the effectiveness of state-of-the-art techniques. Obtained
results show good maturity of fault classification and test
pattern generation approaches, while some problems emerge
concerning test set application techniques. In fact, only under

specific conditions, existing test set application techniques
achieve satisfactory results. The remainder of this paper is
organized as follows.

Paper organization
§II Background

§II-A Conventional IC test process
§II-B Error metrics for AxICs

§III Approximation-aware (AxA) testing
§III-A AxA testing principles
§III-B Illustrative example

§IV AxA fault classification
§IV-A Problem statement
§IV-B Single-condition-test-metric-aware fault
classification
§IV-C Mean-error-metric-aware fault classification

§V AxA test pattern generation
§V-A Problem statement
§V-B State-of-the-art AxA test pattern generation
techniques

§VI AxA test set application
§VI-A Problem statement
§VI-B A state-of-the-art solution

§VII Discussion and future perspectives
§VIII Conclusion

II. BACKGROUND

In this section, we report some basic concepts, useful to
fully understand the context and the motivation of this work.
Firstly, we briefly describe the test process of conventional ICs.
Secondly, we show how inherent properties of AxICs have led
the scientific community to reconsider the procedures to test
them.

A. Conventional IC test process

In IC manufacturing process or in the IC lifetime, physical
defects may impact the circuit functionality. Therefore, tests
are applied to ICs after their manufacture and during their
lifetime, to detect corrupted ones. Being a fault defined as
the logical manifestation of a defect, several fault models
have been proposed in the literature to abstract the defect
concept [120]. The most popular fault model used in practice is
the Stuck-At Fault (SaF) model. In this abstraction, a circuit
net is considered to be permanently set at a constant logic
value, either ‘0’ or ‘1’. Furthermore, the Transition fault (TF)
model is used for representing delay defects, which prevent
the correct data from reaching outputs at the right time. In
many parts of this work, we refer to such fault models.

In the context of conventional IC test, any difference
between the IC nominal behavior and the manufactured IC
behavior leads to reject the circuit. The conventional testing
flow is briefly reported below. Once a fault model has been
chosen, an Automatic Test Pattern Generator (ATPG) takes
into account all the possible faults of the Unit Under Test
(UUT). Then, the ATPG begins a deterministic procedure
aiming at generating input sequences – called test patterns –
to sensitize the highest number of fault locations and produce
detectable differences at outputs. The Fault Coverage (FC)



PROCEEDINGS OF THE IEEE 3

metric is used to measure the test quality. FC is defined as
the ratio of the number of faults detected by a set of test
patterns to the total number of faults in the fault list. Faults
can be classified by the ATPG as detectable, redundant, and
undetectable. At least one test pattern exists to test faults
labeled as detectable. Redundant (or untestable) faults – which
do not alter the circuit function – have no possible test patterns
able to detect them. Finally, faults are called undetectable
when the ATPG is not able to classify them, due to algorithmic
limitation or due to constraints imposed by the ATPG itself or
by the test engineer. Once the test set is ready, it is actually
applied to manufactured ICs and the outcomes are analyzed: if
there is any difference between IC test responses and expected
ones, the IC is rejected; otherwise, the test passes and the IC
is considered as good.

B. Error metrics for AxICs

As far as it concerns AxICs, the concept of faulty circuit
changes and needs thorough investigation. As described in
Section I, functional approximation aims to achieve gains
in efficiency (time/area/energy) by relaxing some accuracy
requirements. In order to still obtain satisfying results for the
application, designers carefully modify the circuit structure to
introduce an acceptable error. In order to measure the error,
designers resort to error metrics. Hence, they define error
thresholds to specify the maximum allowed (i.e., acceptable)
error. In the testing context, the impact of detectable faults can
be measured and expressed as error by using such metrics. If
the obtained measure turns out to be higher than the acceptable
threshold, then the circuit must be rejected. However, it may
happen that the measured error stays below the acceptable
threshold, then the AxIC must not be rejected. Moreover,
depending on the metric, the error entailed by a fault changes.
Indeed, by stimulating a faulty AxIC with an input vector
i, we can measure the error esi – caused by the fault fs –
by using a metric M . By considering the same input vector
i but another metric M̂ , the error due to the same fault
fs is measured as êsi . Usually, esi and êsi have different
values. Therefore, the fault fs can be considered as acceptable
or as catastrophic depending on the metric(s) considered
for the final application. As a result of this consideration,
test procedures have to be carefully redesigned in order to
address the challenges introduced by the approximation and
to profitably take advantage of the opportunities.

Below we report the metrics to which we refer in this paper.
Among commonly used metrics for AxICs, we can mention
Error Magnitude (EM), Bit-Flip Error (BFE), Worst Case
Error (WCE), Mean Absolute Error (MAE), Mean Squared
Error (MSE), Error Probability (EP), and Worst Case Bit-Flip
Error (WCBFE) [36], [50], defined as follows:

EMi =
∣∣∣Oapprox

i −Oprecise
i

∣∣∣ , i ∈ I (1)

BFEi =

n−1∑
j=0

(Oapprox
i,j )⊕ (Oprecise

i,j ), i ∈ I (2)

WCE = max
∀i∈I

∣∣∣Oapprox
i −Oprecise

i

∣∣∣ (3)

MAE =

∑
∀i∈I

∣∣∣Oapprox
i −Oprecise

i

∣∣∣
2n

(4)

MSE =

∑
∀i∈I

∣∣∣Oapprox
i −Oprecise

i

∣∣∣2
2n

(5)

EP =
∑

∀i∈I: Oapprox
i 6=Oprecise

i

1

2n
. (6)

WCBFE = max
∀i∈I

n−1∑
j=0

(Oapprox
i,j )⊕ (Oprecise

i,j ) (7)

where:
i ∈ I an input value within the set of all possible inputs I
Oprecise

i precise output integer representation, for input i
Oapprox

i approximate output integer representation, for input i
n number of input signals to the circuit
Oi,j j-th bit of the Oi output (precise or approx)

The goal of the next sections is to thoroughly describe AxA
testing phases and to discuss in detail all the issues.

III. APPROXIMATION-AWARE TESTING

In the context of approximate circuits (AxICs), the role of
testing has to be reconsidered. Indeed, in presence of a fault,
the actual error value at circuit’s output becomes significant.

A. AxA testing principles

According to Chandrasekharan et al. [121], we classify
AxIC faults into two groups, i.e., non-redundant faults
and approximation-redundant (ax-redundant) faults. Non-
redundant faults lead to error values higher than the accept-
able threshold (i.e., catastrophic faults). Those faults must be
detected in the testing phase. Conversely, ax-redundant faults
cause error values lower than the threshold (i.e., acceptable
faults). Those faults must not lead to AxIC rejection. There-
fore, in this context, the test objective is twofold:

1) avoid that AxICs affected by non-redundant faults are
shipped to customers;

2) ensure that AxICs affected by ax-redundant faults are
not rejected.

The general and fundamental underlying assumption is the
single fault condition, widely used in test techniques [120].
The AxA testing key advantage is the yield increase. Indeed,
avoiding the detection of ax-redundant faults leads to reject
fewer circuits, while guaranteeing that the AxICs shipped to
the customer still respect error constraints.

Some studies in the literature proposed a similar idea.
The threshold testing [122] was proposed in order to in-
crease the production yield of conventional circuits (i.e., non-
approximate circuits). A similar approach was adopted by
Sindia et al. [123] to functionally classify conventional ICs



PROCEEDINGS OF THE IEEE 4

(a) Precise circuit

(b) Approximate circuit

Input (I) Precise
output (Oprecise

i )
Approximate
output (Oapprox

i )
i Ci X Y Co S Int Co S Int
0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 1 1
2 0 1 0 0 1 1 0 1 1
3 0 1 1 1 0 2 0 0 0
4 1 0 0 0 1 1 0 1 1
5 1 0 1 1 0 2 0 0 0
6 1 1 0 1 0 2 0 0 0
7 1 1 1 1 1 3 0 1 1

(c) Truth tables

Error
Metric Value

WCE 2
MAE 1
MSE 2
EP 0.5

WCBFE 1

(d) Error metric table

Fig. 1: Schematics of the full adder (a) and of its approximation (b) obtained by re-synthesizing the circuit with Co = 0; (c):
truth tables of both precise (i.e., non-approximate) and approximate versions. Output’s integer representation for both circuits
are also reported ("Int" column); (d): approximate circuit’s error metric values.

and increase the yield. Although these approaches were not
applied in the AxIC context, they are examples of non-
conventional testing. In these techniques, the criterion to
identify acceptable faults is defining a threshold based on the
numerical error magnitude (see Equation 1) observed at circuit
outputs. By imposing test generation constraints, authors were
able to produce test patterns targeting non-acceptable faults.
Specifically, a given input sequence could generate either an
error higher than the threshold or lower, in presence of a
detectable fault. In the first case, authors classified such fault
as non-acceptable. Thus, they included the input sequence in
the test-set. Conversely, if no input sequence could sensitize
above-threshold errors for the given fault, they classified it as
acceptable. In this way, they were capable to classify faults
and generate test patterns only for non-acceptable faults at
the same time. Nevertheless, a test sequence detecting a non-
acceptable fault could still detect an acceptable one. Therefore,
the authors of threshold testing proposed an enhanced test set
application phase to verify whether test response errors were
under the threshold or not. These techniques were applied
only to non-approximate ICs and by considering only error
magnitude metric. Thus, they can be considered as a special
case of AxA testing [116].

In the next subsection, we introduce an illustrative example
to suitably present the AxA test phases along the manuscript.

B. Illustrative example

Let us introduce a simple example, shown in Figure 1. We
will refer to it all along the manuscript to discuss the different
aspects of the AxA testing. In the figure, we report a 1-bit full
adder (1a) and an approximate version of it (1b). We obtained
the approximate version by simply setting the output Co = 0
in the full adder and re-synthesizing the circuit. This functional
approximation led to a more efficient circuit, i.e. with reduced
area (2 logic gates instead of 5) and lower delay (2 logic levels
instead of 3), but with some errors at outputs. Figure 1c reports
the truth tables of both circuits. For the reader convenience, we
also report the integer representation of both the circuit outputs
("Int" column). As reported in Figure 1d, by considering all
the possible circuit inputs i ∈ I, we can calculate the error
values according to metrics described by Equations 3, 4, 5, 6,

and 7. Values reported in Figure 1d are a direct consequence
of the approximation. They constitute the error threshold
values of the AxIC, fixed by specification and known at
design time. Depending on the application context within
which the AxIC will be utilized, considering a specific error
threshold can be more appropriate than another. Erroneous
values produced by the AxIC are supposed to be never higher
than the error threshold considered for the final application.
However, in the manufacturing phase or during AxIC lifetime,
some defects can occur. As a result, the output’s error value
can unexpectedly be higher than the threshold. Therefore,
the fault classification has to divide ax-redundant from non-
redundant faults, according to the desired error metric and
threshold. Then, the test pattern generation aims at producing
test sets to detect only the non-redundant ones. Finally, in the
test set application test responses are analyzed to reject only
catastrophically faulty circuits, ultimately increasing the final
yield.

IV. AXA FAULT CLASSIFICATION

In AxA testing, the fault classification needs to be extended
to take into account error metrics. In this perspective, the
class of detectable faults is extended by including the two
aforementioned ax-redundant and non-redundant sub-classes
of faults. To measure the part of detectable faults classified as
ax-redundant, we introduce the expected Yield Increase (eYI),
expressed as follows:

eYI =
ax-redundant faults

total faults
(8)

The purpose of such a metric is to establish an upper bound
to the achievable yield increase.

In the next subsection, we discuss how different classes of
error metrics impact the fault classification complexity.

A. Problem statement

In Table I, we report the error threshold value alterations
caused by all possible Stuck-at faults in the approximate full
adder (Figure 1). We highlight in red solid-bordered boxes
the non-acceptable error values, i.e. higher than the respective
thresholds t (Table 1d). Hereinafter, we use the notation



PROCEEDINGS OF THE IEEE 5

Fig. 2: (a) Error profile of the fault-free approximate circuit; (b) approximate circuit error profile in presence of the Sa0@a
fault; (c) approximate circuit error profile in presence of the Sa1@a fault; (d) approximate circuit error profile in presence of
the Sa1@e fault.

TABLE I: Approximate full adder error metric values for all
possible Stuck-at faults, under single-fault assumption.

Fault WCE MAE MSE EP WCBFE
t=2 t=1 t=2 t=0.5 t=1

Sa0@a 3 1 2 0.625 2
Sa1@a 2 1.25 2 0.875 2
Sa0@b 3 1 2 0.625 2
Sa1@b 2 1.25 2 0.875 2
Sa0@c 2 1 1.5 0.75 2
Sa1@c 3 1.25 2.5 0.75 2
Sa0@d 3 1 2 0.625 2
Sa1@d 2 1.25 2 0.875 2
Sa0@e 3 1.5 3 0.875 2
Sa1@e 2 0.75 1 0.625 2

SaX@N to indicate a "stuck-at-X affecting the net N", where
X can be either the value 1 or 0 and N is the label of the
net. The reader can refer to Figure 1b for the net labels. By
observing Table I, we can firstly remark that not all the metrics
are impacted by the same faults. While all the faults impact
EP and WCBFE, some faults affect the WCE and not MAE
and MSE; some others have an effect on the MAE and not on
WCE and MSE. Furthermore, in some particular cases, faults
even reduce the observed error (green dash-bordered boxes in
Table I).

Moreover, we report in Figure 2a the error magnitude
(EM) profile of the fault-free approximate circuit (i.e. the
circuit produces errors due to the approximation and not due
to defects); also, three EM profiles in presence of a fault
are reported. Specifically, we show the EM profile for the
following faults: Sa0@a (Figure 2b), Sa1@a (Figure 2c), and
Sa1@e (Figure 2d). The figures show how the EM profile
changes differently, depending on the fault. As a result, the
errors measured by the different metrics change, too. The fault
impact on MAE and MSE depends on the variation of each
bar in the graph. In other words, it depends on the EM of the
faulty AxIC for each possible input. Similarly, the impact of
the fault on the EP depends on the variation of the total number
of input vectors generating an error. Conversely, WCE and
WCBFE values change only if the maximum possible error
changes, as a result of the fault.

To classify the fault as non-redundant according to the WCE

metric, it is sufficient to prove the existence of an input vector
leading the error to exceed the WCE threshold. This is the
case for Sa0@a (Figure 2b). The input vector ’111’ leads to
EM = 3. Conversely, if we can prove that such input vector
does not exist (as for some other faults, in the example), we
can classify the fault as ax-redundant w.r.t. the WCE metric.
As we will show in the next subsection, existing techniques
deal with this task fairly easily.

On the other hand, when performing the classification
according to metrics such as MAE, MSE and EP, the task
becomes more complex. Since each input vector contributes
to the final error measure, finding a single input vector i
for which the fault effect increases the EM is not enough
to classify the fault as non-redundant w.r.t. MAE, MSE and
EP. In fact, we could find another vector j "balancing" the
effect of i. In our example, in the case in Figure 2b, we can
see how the vectors ’010’, ’011’, ’110’, and ’111’ "balance"
each other effects: some vectors increase the error value, some
others decrease it, ultimately leading to a null effect on MAE
and MSE metrics. Therefore, we need to measure the fault
impact on the final error for all possible circuit input vectors.
When the complexity of the measure becomes unmanageable,
a workload-dependent subset of input vectors can be used.

In conclusion, it turns out to be less complex to evaluate
the impact of a fault when using metrics for which only a
single condition has to be verified, as for the WCE. Hence-
forth, we refer to those metrics as single-condition-test (SCT)
metrics. Conversely, classifying faults according to metrics
which involve the calculation of a mean is a O(2n) complexity
problem, where n is the number of input bits. We refer to such
metrics as Mean-Error metrics.

In the literature, some works have been performed regarding
fault classification. Each one focuses on particular metrics. The
two next subsections describe the state of the art of AxA fault
classification techniques.

B. SCT-metric-aware fault classification

Concerning fault classification according to SCT metrics,
all the proposed works are based on a common idea. To
present it, let us refer to the aforementioned full adder example
(Figure 1), using the WCE as SCT metric. The maximal
amount of allowed error (treshold t) according to the WCE is



PROCEEDINGS OF THE IEEE 6

Fig. 3: SCT-metric-aware classification scheme

2. The AxIC is considered faulty if it produces any deviation
δ from the precise value which is greater than 2. Any fault f
modifying the AxIC output can either lead to reject the circuit
(δ > 2, non-redundant fault) or not (δ ≤ 2, ax-redundant
fault). Therefore, to classify a fault as non-redundant, the
existence of an input vector i leading the faulty AxIC to
exhibit δ > 2 has to be demonstrated. If such vector does
not exist, then the fault is classified as ax-redundant. To do
so, a delta module calculating the deviation caused by f can
easily be embedded in the scheme represented in Figure 3. A
digital circuit can easily implement the mentioned scheme. By
using an Automatic Test Pattern Generation (ATPG), one can
find the aforementioned input vector i, if it exists. Likewise,
one can also resort to a Boolean satisfiability problem (SAT)
formulation to represent the scheme. By solving the SAT
problem, one can prove whether the input vector i exists or
not. Both the mentioned techniques formally prove whether
the vector i exists or not [116]. Concerning the full adder
example, the vector i exists for five out of ten faults, classified
as non-redundant according to WCE metric.

Chandrasekharan et al. [121] proposed a SAT-based solution
for classifying faults in the AxIC context. For each fault in the
fault list, they created a SAT problem instance and resolved
it to classify the fault. They used WCE and WCBFE as SCT
metrics. Once the non-redundant fault list is obtained, they
used conventional ATPG to generate the final test set. Another
SAT-based solutions was proposed by Gebregiorgis et al. [124]
to classify faults according to the WCE metric and obtain test
patterns to detect non-redundant faults (see Section V). Finally,
we proposed [125] an ATPG-based fault classification for
AxICs. We utilized the efficient ATPG structural algorithms
for classifying faults according to the WCE metric and, at
the same time, obtaining test patterns detecting non-redundant
faults (see Section V). All the three techniques in [121], [124],
[125] achieved good results in terms of fault classification.

Chandrasekharan et al. [121] performed experiments on a
large set of AxICs. Specifically, they used 16-bit adders [37],
[40], [43], [46], some arithmetic designs proposed by Aoki
Laboratory [126], along with EPFL [127] and ISCAS-85 [128]
benchmarks. They targeted the Stuck-at-Fault model. Table II
reports experimental results from their work [121]. Results
show significant expected Yield Increase (eYI) (Equation 8)
values, especially when using the WCE metric. Indeed, on
average, the eYI is between 33% and 58% with a maximum of
81%. For the WCBFE metric, results show an average between
29% and 45% with again a maximum of 81%.

TABLE II: SAT-based fault classification results [121], in
terms of expected Yield Increase (eYI)

WCE WCBFE
eYI* Avg. eYI* Avg.

Avg. Max. Min. Time(s) Avg. Max. Min. Time(s)
Ax 16-bit adders1 58% 71% 42% 16 29% 68% 10% 5

Arith designs2 47% 77% 18% 3355 35% 81% 3% 89
EPFL bench3 33% 62% 7% 5833 44% 62% 11% 10291

ISCAS-85 bench4 40% 81% 9% 302 45% 78% 3% 1517
*eYI: expected Yield Increase
1from [37], [40], [43], [46] 2from [126] 3from [127] 4from [128]

TABLE III: SAT-based fault classification results [124], in
terms of expected Yield Increase (eYI)

Floating-point circuits
Error margin 5% 10% 15% 20% 25% 30%

eYI*
Avg. 13% 32% 52% 64% 73% 78%
Max. 19% 39% 58% 71% 80% 84%
Min. 7% 29% 47% 58% 65% 68%

Fixed-point multiplier
Error margin 5% 10% 15% 20% 25% 30%

eYI*
Avg. 20% 43% 55% 65% 71% 76%
Max. 30% 55% 66% 73% 77% 80%
Min. 7% 20% 35% 44% 53% 62%

Fixed-point divider
Error margin 5% 10% 15% 20% 25% 30%

eYI*
Avg. 15% 37% 52% 63% 69% 73%
Max. 23% 50% 64% 72% 76% 80%
Min. 3% 14% 29% 39% 47% 55%

*eYI: expected Yield Increase

SAT-flow runtime average (s): 4376

Gebregiorgis et al. [124] performed experiments on some
circuits of the AxBench suite [49]. Specifically, they used
some floating-point circuits (Adder, Comparator, Multiplier,
Divider, and Sqrt) and two fixed-point circuits (Multiplier and
Divider) with variable fraction parts (5, 8 and 11 bits). They
targeted the Stuck-at-Fault model and investigated different
accepted error margins ranging from 5% to 30%. Gebregiorgis
et al. [124] expressed their results in terms of Fault Reduction
(FR). For example, for a non-redundant faults reduction from
100 to 80 (thus leaving 20 ax-redundant faults), they expressed
the result as FR = 100

80 = 1.25. To be consistent with other
results reported, we converted their results in terms of eYI by
applying the subsequent formula:

eYI = 1− 1

FR
. (9)

In the above example, eYI = 1 − 1
1.25 = 0.2. By resorting

to Equation 8, we find the correct number of ax-redundant
faults, i.e. 20. In Table III, we report the eYI results. Also in
this case, results show a significant eYI. On average, results
range between 13% and 78%.

We applied the ATPG-based classification technique [125]
on a large set of approximate state-of-the-art approximate
arithmetic circuits [37], [40], [43], [46], [50]. Specifically, we
carried out experiments on more than 1100 different AxICs,
namely 8-bit and 16-bit adders (Add8, Add16), 8-bit, 16-bit



PROCEEDINGS OF THE IEEE 7

(a) Fault Filtering Architecture (FFA)

Simulation
FFA

Inputs
AxIC
fault
list

δ report

Metric

Precise
IC netlist

AxIC
netlist

Report
analysis

Injection

(b) Overall flow

Fig. 4: Mean-Error-metric-aware fault classification approach that we proposed [129]

TABLE IV: ATPG-based fault classification results [125], in
terms of expected Yield Increase (eYI)

SaF TF
eYI* Avg. eYI* Avg.

Avg. Max. Min. Time(s) Avg. Max. Min. Time(s)
Add8 19% 99% 0% 0.64 25% 99% 0% 0.64
Add16 80% 94% 60% 0.71 81% 96% 61% 0.77
Mul8 55% 85% 1% 0.91 55% 84% 1% 1.01
Mul16 62% 94% 28% 0.96 64% 97% 23% 1.04
Mul32 85% 99% 41% 2.60 87% 99% 42% 2.78
*eYI: expected Yield Increase

and 32-bit multipliers (Mul8, Mul16, Mul32). We resorted to
Stuck-at-Fault (SaF) and Transition Fault (TF) models and a
commercial ATPG [130], instrumented using the conventional
options (static and dynamic compaction). Table IV reports the
experimental results that we obtained [125]. Significant eYI
values were achieved also with this technique. Indeed, for the
majority of the circuits, eYI was above 50%, on average. Only
for 8-bit adders it was on average around 19%, when using
the SaF model, and 25%, when using the TF model.

In conclusion, when considering SCT-metrics, the state of
the art concerning the AxIC fault classification is quite mature.
Indeed, existing works extensively contribute to determine the
expected Yield Increse (eYI), which is the desired target for
the final yield increase.

C. Mean-Error-metric-aware fault classification

As highlighted in Subsection IV-A, classifying faults ac-
cording to Mean-Error metrics is more complex compared to
SCT metrics. We addressed the fault classification problem
by considering Mean-Error metrics [129]. We proposed the
Fault Filtering Architecture (FFA) shown in Figure 4a. Given
a fault, an input vector i, and a Mean-Error metric, the FFA is
able to determine whether such fault changes or not the metric
value for the given vector (i.e., a single bar in Figure 2a) and
also to compute the magnitude of the error variation (δi in
the figure). Moreover, since we measured the error variation
δi, we did not need to know the actual error threshold value.
Finally, by using the exhaustive set of input vectors I (or an
application-workload-related subset J ⊂ I), we performed the
classification. Simulating vectors belonging to I (or J ), while
injecting – one by one – all the faults, allowed us to know all

the δi values. If the sum of all the δi is greater than 0, the
fault is considered non-redundant, otherwise it is considered
ax-redundant. Figure 4b sketches the overall flow. We applied
the FFA-based technique [129] on small circuits (i.e., 8-bit
adders and multipliers from EvoApprox8b library [50]) by
using the exhaustive set of input vectors I. The simulation
produced a detailed δ report about the fault impact on the EM
profile. In Table V, we report the results. We performed fault

TABLE V: Mean-Error-metric-aware fault classification re-
sults of [129], in terms of expected Yield Increase (eYI)

MAE and MSE EP
eYI* Avg. eYI* Avg.

Avg. Max. Min. Time(s) Avg. Max. Min. Time(s)
Add8 2% 12% 0% 448 1% 9% 0% 107
Mul8 7% 21% 0% 72165 3% 10% 0% 924
*eYI: expected Yield Increase

classification by using MAE, MSE and EP metrics and the
Stuck-at-fault model. It was possible to perform the analysis
of both MAE and MSE metrics with the same experiments.
Therefore, the eYI obtained was the same. In the case of
multipliers, up to 21% eYI was obtained when using the MAE
and MSE metrics and up to 10% when evaluating EP metric.
For 8-bit adders, we achieved up to 12% eYI when considering
MAE and MSE metrics and up to 9% in the case of EP.
When looking at the average results, for 8-bit multipliers, 7%
eYI was achieved for MAE and MSE and 3% for the EP.
For 8-bit adders, only 2% eYI for MAE and MSE and 1%
for EP were attained. Concerning the average execution time,
results showed that it is quite long. This is due to the intrinsic
complexity of the problem.

To complete the evaluation of the technique, we extend the
experimental results by adding those obtained with the rest
of the AxICs, specifically the 16-bit approximate adders and
multipliers and the 32-bit approximate multipliers. The whole
set of possible inputs for 16-bit AxICs is composed of 232

vectors (i.e., all the combinations of two 16-bit operands). For
32-bit multipliers, we reach 264 vectors. Therefore, exhaustive
analysis is quite time and energy consuming. A workload-
dependent analysis helps to cope with such a high complexity.
Thus, we performed experiments by using an input vector
subset J ⊂ I generated randomly. In Table VI, we report
results obtained with a random input vector set composed of



PROCEEDINGS OF THE IEEE 8

212 vectors. The table reports only results for MAE and MSE,

TABLE VI: Mean-Error-metric-aware fault classification re-
sults for random workload experiments, in terms of expected
Yield Increase (eYI).

MAE and MSE
eYI* Avg.

Avg. Max. Min. Time(s)
Add16 2% 10% 0% 10
Mul16 12% 61% 1% 181
Mul32 21% 82% 1% 1765
*eYI: expected Yield Increase

since EP values were already 100% by design (i.e., due to the
approximation), for the examined AxICs. Consequently, all the
faults are ax-redundant by design. As reported in Table VI, an
average of 2% eYI was achieved for 16-bit adders, 12% for
16-bit multipliers and 21% for 32-bit multipliers. Examined
circuits have intrinsic quite high Mean-Error-metrics thresh-
olds, due to aggressive approximation (see details in the related
work [50]). This contributes to the higher eYI values. As
expected, execution time of workload-related experiments is
reduced, compared to exhaustive ones.

In conclusion, also when considering Mean-Error-metrics
the state of the art on AxIC fault classification is quite
mature. The task itself is complex if addressed exhaustively.
If workload-dependent analysis are carried out, complexity
becomes manageable.

V. AXA TEST PATTERN GENERATION

To turn the expected Yield Increase (eYI) into actual gain,
we have to go through the other two phases of the AxA test. In
this section, we discuss the AxA test pattern generation issue
and show the state-of-the-art solutions.

In conventional testing, we generate input sequences to test
all the faults classified as detectable. In AxA testing, test
patterns should target all non-redundant faults, in order to
prevent catastrophic errors at circuit outputs. However, test
patterns testing non-redundant faults could also detect an ax-
redundant ones. This, in turn, would lead to consider the AxIC
as faulty, although it is still acceptable. This phenomenon is
also known as over-testing, i.e., a good product is considered
as faulty by the test process. Ultimately, this leads the final
yield increment to deviate from the expected one (eYI).
Therefore, the obtained test sets should detect as few ax-
redundant faults as possible. Therefore, we revisit the concept
of test quality by dividing the fault coverage (FC) into ax-
redundant FC (axR FC) and non-redundant FC (nR FC), as
defined below:

axR FC =
detected ax-redundant faults

ax-redundant faults
(10)

nR FC = detected non-redundant faults
non-redundant faults (11)

To achieve a high quality test set, the ax-redundant FC has to
be kept as low as possible, the non-redundant FC has to be
maximized. We introduce another metric to evaluate the effect

of the AxA testing procedures on yield, the Yield Increase
Loss (YIL), defined below:

YIL =
detected ax-redundant faults

total faults
(12)

It represents the lost yield increase, due to the detection of
ax-redundant faults. The YIL is in the range [0, eYI]. We can
observe that the YIL can be expressed also as follows:

YIL = axR FC · eYI (13)

This means that the ax-redundant (axR) FC metric represents
the part of eYI that is not actually achieved, after the whole
test procedure application.

Two fundamental problems can jeopardize the test pattern
generation quality, as far as it concerns AxICs:

1) In order to achieve 100% non-redundant FC, it is not
always possible to avoid testing some ax-redundant
faults (i.e., ax-redundant FC > 0%).

2) conventional approximation-unaware test generation
procedures might not be able to achieve a qualitatively
good test set.

The first problem is intrinsic to the structure of AxICs,
the second one is relative to conventional test generation
algorithms. In this section, we describe and discuss existing
solutions related to the second problem. Section VI addresses
the first one.

A. Problem statement

Let us refer to the full adder example in Figure 1 to illustrate
the issue. In Table VII, we report again the error metric
value alterations caused by all possible Stuck-at faults in the
approximate full adder. Furthermore, we report all the input
vectors detecting each fault.

TABLE VII: Approximate full adder test vectors for all
possible Stuck-at faults, under single-fault assumption.

Fault WCE MAE MSE EP WCBFE Test vectors∗

t=2 t=1 t=2 t=0.5 t=1 0 1 2 3 4 5 6 7
Sa0@a 3 1 2 0.625 2 x x x x
Sa1@a 2 1.25 2 0.875 2 x x x x
Sa0@b 3 1 2 0.625 2 x x x x
Sa1@b 2 1.25 2 0.875 2 x x x x
Sa0@c 2 1 1.5 0.75 2 x x x x
Sa1@c 3 1.25 2.5 0.75 2 x x x x
Sa0@d 3 1 2 0.625 2 x x x x
Sa1@d 2 1.25 2 0.875 2 x x x x
Sa0@e 3 1.5 3 0.875 2 x x x x
Sa1@e 2 0.75 1 0.625 2 x x x x
∗0="000", 1="001",..., 7="111"

Firstly, let us assume that the fault classification is per-
formed by using the MSE metric (threshold t = 2). Table VII
shows that two faults entail a catastrophic error, Sa1@c
(MSE = 2.5) and Sa0@e (MSE = 3). Vector 4 detects
the two faults, as well as vector 7. However, both vectors
detect also three ax-redundant faults (37.5% ax-redundant FC).



PROCEEDINGS OF THE IEEE 9

Moreover, there is no vector detecting all the non-redundant
faults and achieving 0% ax-redundant FC. This highlights the
first aforementioned problem: to achieve 100% non-redundant
FC, it is not always possible to have also 0% ax-redundant
FC.

The same phenomenon occurs when considering the MAE
metric (threshold t = 1). In this case, five non-redundant faults
are detected (Sa1@a, Sa1@b, Sa1@c, Sa1@d, Sa0@e). The
best test vector subset turns out to be {0, 4}, having 100%
non-redundant FC and still 40% ax-redundant FC. We can find
other combinations, such as {0, 1}, {0, 2}, and {1, 4}, which
achieve 100% non-redundant FC but also 60% ax-redundant
FC. Thus, they have a lower quality.

Hence, we begin to notice the second mentioned problem,
well illustrated by resorting to the WCE metric (threshold
t = 2). Five non-redundant faults emerge from the classifica-
tion (Sa0@a, Sa0@b, Sa1@c, Sa0@d, Sa0@e). Among all the
vector combinations testing the five faults, some have a higher
quality than others. For example, the combination {1, 3, 6}
attains 100% non-redundant FC but also 100% ax-redundant
FC. The combination {3, 4} achieves 100% non-redundant FC
and 80% ax-redundant FC. The best solution is to use only
the vector {7}, which indeed covers 100% of non-redundant
faults, while having 0% ax-redundant FC. An ideal AxA test
pattern generation technique should produce the qualitatively
best test set for the relative metric.

Conventional ATPG algorithms do not give any guarantee
of high-quality test pattern generation, when it comes to
AxICs. To illustrate the phenomenon, we used a commercial
ATPG [130] to create test sets for the approximate full adder
of our example (Figure 1). We instrumented the ATPG using
the conventional options (static and dynamic compaction) and
used the Stuck-at-Fault model. For each metric, we used
the corresponding non-redundant fault list and we executed
the ATPG to generate test patterns. This is the test flow
adopted in studies from the literature [121], [129]. In the left
part of Table VIII, we report, for each metric, the obtained
conventional ATPG solutions in term of test sets, ax-redundant
FC and YIL. In the right part of the table, we report the
corresponding best possible solutions (i.e., solutions that an ax-
aware generation should find). Firstly, as expected, 100% non-

TABLE VIII: Test vector generation results when using an
ideal ax-aware test vector generation and a conventional ATPG
tool [130] for the AxIC in Figure 1.

Conventional ATPG solution1 Ideal solution1

Metric Test sets axR FC2 YIL2 Test sets axR FC2 YIL2

MSE {4} 37.50% 30% {4} or {7} 37.50% 30%
WCE {1, 6, 0} 100.00% 50% {7} 0.00% 0%
MAE {1, 7, 0} 100.00% 50% {0, 4} 40.00% 20%

1100% non-redundant FC always achieved 2Lower is better

axR FC = Ax-redundant FC
YIL = Yield Increase Loss

redundant FC coverage was achieved for all experiments. For
the MAE metric, the conventional ATPG test set was {1,7,0}
and led to an ax-redundant FC of 100% (50% YIL). As already
mentioned, the best test set {0,4} achieves 40% ax-redundant
FC (20% YIL). Concerning the WCE metric, results were

even worse: conventional ATPG generated {1,6,0}, leading to
100% ax-redundant FC (50% YIL), while the single vector {7}
achieves 0% ax-redundant FC (0% YIL). Only for MSE metric
results were optimal with both approaches. When considering
EP or WCBFE, all the faults are non-redundant and need to be
tested. In this case, no approximation-aware test technique is
needed. Therefore, we did not include EP and WCBFE metrics
in the experiment.

In conclusion, conventional ATPG techniques do not guar-
antee qualitatively the best solutions. This is due to the fact
that state-of-the-art ATPG algorithms have not been designed
to avoid testing some faults while generating test patterns.
An ideal AxA test pattern generation technique generates
qualitatively the best possible test set. Nevertheless, the AxIC
structure may still lead to obtain ax-redundant FC > 0%, as
shown in the example. The latter problem is addressed in
Section VI. The next section reviews state-of-the-art AxA test
pattern generation techniques.

B. State-of-the-art AxA test pattern generation techniques

In the literature, some studies [121], [129] proposed to use
the conventional ATPG to generate test sets: the non-redundant
fault list is generated in the fault classification phase and then
it is used as target for the ATPG. We refer to this technique
as conventional generation technique.

Other researches [124], [125] proposed techniques to si-
multaneously identify non-redundant faults and generate test
patterns covering them. These techniques are based on the
common idea to use the scheme shown in Figure 3 to ob-
tain input vectors producing output errors greater than the
threshold t, in presence of a fault f . This simultaneously
marks f as non-redundant fault and produces a test pattern
detecting it. Hereafter, we refer to these techniques as ax-
aware generation techniques. Finally, we proposed a new AxA
pattern generation technique to produce test patterns minimiz-
ing the ax-redundant FC, compared to conventional ATPG,
while not impacting non-redundant FC [131]. Specifically,
the proposed technique generates an input vector set S and
searches within it for the optimal subset V which attains the
required coverage. Generally, the set S is itself a sub-set of
the exhaustive input vector set. Figure 5 depicts the proposed

Fig. 5: AxA pattern generation technique [131]

AxA pattern generation flow [131]. The technique is composed
of three main phases: (i) input vector subset (S) generation,
(ii) fault simulation and (iii) optimization problem formulation
and resolution. The first phase takes as input the AxIC and



PROCEEDINGS OF THE IEEE 10

generates a user-configurable number of input vectors (S).
In this phase, various algorithms for input vector generation
can be used. The fault simulation phase takes as input the
generated S, the AxIC and the two fault lists (ax-redundant
and non-redundant). The fault lists are previously obtained by
using any of the AxA fault classification techniques described
in Section IV with any error metrics. The output of the fault
simulation phase is a fault coverage report which records, for
each fault, all the input vectors in S covering it. Finally, the
goal of the third phase is to select the smallest test pattern
subset V ⊂ S which minimizes the ax-redundant FC and
achieves total non-redundant FC. To accomplish this task,
an Integer Linear Problem (ILP) is formulated, by using the
fault coverage report, the vector set S and the fault lists.
The problem solution constitutes the final ax-aware test set
V . In the remainder of the paper, we refer to this technique as
pattern-selection-based generation.

To evaluate the test set quality for the mentioned ap-
proaches, we performed experiments on a large set of approx-
imate state-of-the-art approximate arithmetic circuits [37],
[40], [43], [46], [50], introduced in Subsection IV-B. We
considered the WCE as error metric, since the previously
discussed techniques [124], [125] are only applicable in this
case. After fault classification, we obtained test patterns by
using conventional, ax-aware, and pattern-selection-based gen-
erations. For the latter, to obtain the input vector set S,
we performed multiple test generations with the ax-aware
technique to have a wider research space for the ILP problem.

Then, we performed fault-simulation by using the generated
patterns and the two fault lists (i.e., non-redundant and ax-
redundant faults) in order to measure non-redundant and ax-
redundant FCs.

The achieved non-redundant FC was always 100%, which
confirms that all the techniques achieve the first objective of
AxA testing, i.e. detecting all the non-redundant faults (see
Section III). Then, in Table IX, we report results in terms of
ax-redundant FC, as well as in terms of Yield Increase Loss
(YIL).

As shown, conventional generation technique exhibits an
average ax-redundant FC between 65% and 92%, with peaks
at 100%, corresponding to a YIL between 14% and 50%.
Significant lower (thus better) ax-redundant FC and YIL values
were achieved by using ax-aware and pattern-selection-based
techniques. Ax-aware generation technique showed average
ax-redundant FC between 43% and 83%, corresponding to a
YIL between 9% and 39% (lower is better). Pattern-selection-
based generation further improved results, by obtaining ax-
redundant FC between 33% and 76%, corresponding to a YIL
between 7% and 36%. On the other hand, concerning exe-
cution time, the pattern-selection-based generation technique
entails a much higher overhead. This is due to the intrinsic
complexity of the ILP problem. Thus, the technique may suffer
from scalability issues.

Even though obtained results are quite good, they are still
far from ideal. Indeed, while these techniques improve the
test quality, it turns out that some ax-redundant faults are
still detected. Ultimately, this leads to a yield increase lower
than expected (i.e., YIL > 0%). This is due to the intrinsic

TABLE IX: Ax-redundant FC (axR FC) and Yield Increase
Loss (YIL) results. YIL and axR FC indicate the absolute and
the relative loss of yield increase, respectively (see Section V).

Conventional generation1

Add8 Add16
axR FC2 YIL2 axR FC2 YIL2

Min. 0.00% 0.00% 65.52% 52.68%
Max. 100.00% 77.45% 89.90% 71.15%
Avg. 65.81% 14.04% 75.05% 59.83%

Time3 0.61 0.75

Mul8 Mul16 Mul32
axR FC2 YIL2 axR FC2 YIL2 axR FC2 YIL2

Min. 73.55% 5.20% 64.00% 16.53% 72.06% 33.00%
Max. 99.37% 73.92% 100.00% 50.00% 97.73% 75.79%
Avg. 91.43% 43.20% 92.08% 31.63% 90.94% 50.55%

Time3 0.87 0.91 2.3

Ax-aware generation1

Add8 Add16
axR FC2 YIL2 axR FC2 YIL2

Min. 0.00% 0.00% 58.91% 38.99%
Max. 100.00% 71.57% 90.84% 69.66%
Avg. 43.17% 9.66% 72.64% 58.16%

Time3 0.64 0.8

Mul8 Mul16 Mul32
axR FC2 YIL2 axR FC2 YIL2 axR FC2 YIL2

Min. 17.81% 1.02% 51.90% 16.62% 11.03% 6.47%
Max. 95.43% 74.18% 96.88% 40.00% 85.86% 39.87%
Avg. 83.03% 39.62% 77.11% 26.02% 47.61% 24.98%

Time3 0.91 0.96 2.6

Pattern-selection-based generation1

Add8 Add16
axR FC2 YIL2 axR FC2 YIL2

Min. 0.00% 0.00% 48.79% 38.08%
Max. 84.85% 54.95% 67.64% 57.01%
Avg. 33.49% 7.61% 56.87% 45.43%

Time3 5 15339

Mul8 Mul16 Mul32
axR FC2 YIL2 axR FC2 YIL2 axR FC2 YIL2

Min. 17.81% 1.02% 48.00% 14.33% 11.03% 6.47%
Max. 91.16% 69.51% 91.98% 36.36% 85.65% 39.87%
Avg. 76.48% 36.39% 72.97% 24.78% 47.46% 24.90%

Time3 2275 21230 2343
1100% non-redundant FC always achieved 2Lower is better
3Average time in seconds

axR FC = ax-Redundant Fault Coverage YIL = Yield Increase Loss

structure of the AxICs, as discussed at the beginning of the
section. Therefore, it is necessary to rely on the test set
application phase to correctly divide AxICs affected by ax-
redundant faults from AxICs affected by non-redundant ones.
Thus, it turns out that enhancing the test set application phase
is crucial to obtain a high-quality approximation-aware test.
The next section addresses such aspects.

VI. AXA TEST SET APPLICATION

As shown in the previous section, test pattern generation
techniques can generate qualitatively different test sets. To



PROCEEDINGS OF THE IEEE 11

TABLE X: Output (in integer format) of the example circuit (see Figure 1) for different cases: precise (Fig 1a), fault-free
approximate (see Fig 1b), and faulty approximate with different Stuck-at faults.

Input I Fault-free Faulty †Oapprox

i Ci X Y
*Oprecise

†Oapprox Sa0@a Sa1@a Sa0@b Sa1@b Sa0@c Sa1@c Sa0@d Sa1@d Sa0@e Sa1@e
0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1
1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1
2 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1
3 0 1 1 2 0 1 0 1 0 0 1 0 1 0 1
4 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1
5 1 0 1 2 0 0 1 1 0 1 0 1 0 0 1
6 1 1 0 2 0 1 0 0 1 1 0 1 0 0 1
7 1 1 1 3 1 0 1 0 1 1 0 0 1 0 1
Fault classification (MAE‡): ax-red. non-red. ax-red. non-red. ax-red. non-red. ax-red. non-red. non-red. ax-red.
*Precise output;
†Approximate output;
‡Mean Average Error (MAE) = 1

V alue : vector i detects the fault → V alue is different from fault-free Oapprox
i

V alue : approximate circuit output. → V alue is different from Oprecise
i .

improve the final test quality, test set application plays an
important role. In this phase, we need techniques able to
distinguish between the detection of an ax-redundant fault and
a non-redundant one, when the actual test is performed on
the manufactured AxIC. The goal is to classify AxICs into
catastrophically faulty (i.e., affected by a non-redundant fault),
acceptably faulty (i.e., affected by an ax-redundant fault), and
fault-free. Only catastrophically faulty AxICs are rejected.
The classification should be performed according to circuit
responses.

In Subsection VI-A, we show and discuss the issue in
details. So far, no techniques have been presented to deal
with such aspect, in the context of AxA testing. Therefore, we
applied to AxICs the technique described in Subsection III-A,
the threshold testing, originally presented for conventional
ICs [122]. In Subsection VI-B, we discuss its suitability.

A. Problem statement

As mentioned in the previous section, the proper structure
of an AxIC usually makes impossible for a test set to avoid
the detection of some ax-redundant faults.

To show the issue in detail, we resort to the full adder
example introduced in Section III-B. In the left part of Table X,
we report the outputs of the precise IC (Oprecise) and of the
fault-free AxIC (Oapprox), for each input vector i ∈ [0, 7].
Output values are reported as integer (e.g., 00 = “0", 01 =
“1", etc.). To measure the error, we used the MAE metric
(Equation 4). In the example, the MAE threshold is 1. A fault
f , affecting the AxIC, is considered non-redundant only if
it makes the MAE value become greater than 1. As already
shown in Section IV, based on the difference between the
obtained faulty outputs (faulty Oapprox

i ) and the precise output
(Oprecise

i ), faults are classified. We report the class of each
fault in the last row of the table.

In order to illustrate the problem, we report in the right
part of Table X the impact of each stuck-at fault on the
AxIC output. We report in red solid-bordered boxes the faulty
Oapprox

i values that differ from the fault-free Oapprox
i ones.

Thanks to this output difference, in the test application phase

we can detect whether a fault affected the AxIC or not.
While in conventional test each difference between actual and
expected outputs leads to reject the circuit, when it comes to
AxICs we have to reconsider this mechanism. Indeed, even if
we dispose of the best possible test patterns – i.e., achieving
maximum non-redundant FC and low ax-redundant FC –,
a test vector intended to detect a non-redundant fault can
still detect an ax-redundant one, ultimately rejecting a still-
acceptable circuit. In the example, the best possible test set
is the couple {0, 4} (see Table VIII). In Table X, we can
remark that the vector 4 detects four non-redundant faults
(Sa1@a, Sa1@b, Sa1@c, Sa0@e), but also one ax-redundant
fault (Sa0@d). Similarly, vector 0 detects four non-redundant
faults (Sa1@a, Sa1@b, Sa1@c, Sa1@d), but also one ax-
redundant fault (Sa1@e). Therefore, the two vectors detect
all the non-redundant faults (i.e., five faults) but also 40%
of the ax-redundant faults (two out of five). Therefore, while
the expected Yield Increase (eYI) is 50% (five ax-redundant
faults avoided, out of ten total faults), by using the classic test
application we drop to 30% actual increase (three ax-redundant
faults avoided, out of ten total faults). To avoid this over-testing
phenomenon, we need to perform a further analysis in the test
application phase (i.e., after the application of the test patterns
to the manufactured AxIC). In the next subsection we show
how a state-of-the-art technique partially deals with this issue.

B. A state-of-the-art solution

As discussed in Subsection III-A, threshold testing [122]
can be considered as a special case of AxA testing. In
their work [122], the authors slightly modified the test set
application phase, by adding a further verification: once a test
vector is applied to the IC, test responses are compared with
the expected precise ones (i.e., those produced by the non-
approximate fault-free circuit). If the difference (i.e., the EM)
is lower than a given threshold, the circuit is considered still
acceptable. Otherwise, the circuit is rejected.

To preliminary study the suitability of threshold testing
technique for AxICs we applied it to our full adder example.
We used the WCE and the MAE as error metrics and the corre-



PROCEEDINGS OF THE IEEE 12

TABLE XI: Test set application technique (introduced in threshold testing [122]) applied on the full adder example (Figure 1).

Non-redundant faults
(result must be > threshold)

Ax-redundant faults
(result must be ≤ threshold)

Metric threshold WCE = 2 Sa0@a Sa0@b Sa1@c Sa0@d Sa0@e Sa1@a Sa1@b Sa0@c Sa1@d Sa1@e
Ax-aware

vectors vector 7 EM: 3 3 3 3 3 3 3 3 3 3 2 3 2 3 2 3 2 3 2 3

Conventional
ATPG
vectors

vector 1 EM: 0 7 1 7 0 7 0 7 1 7 1 3 0 3 1 3 1 3 0 3
vector 6 EM: 1 7 2 7 2 7 1 7 2 7 2 3 1 3 1 3 2 3 1 3
vector 0 EM: 0 7 0 7 1 7 0 7 0 7 1 3 1 3 0 3 1 3 1 3

3EM > 2 7EM ≤ 2 3EM ≤ 2 7EM > 2

Metric threshold MAE = 1 Sa1@a Sa1@b Sa1@c Sa1@d Sa0@e Sa0@a Sa0@b Sa0@c Sa0@d Sa1@e
Ax-aware

vectors
vector 0 EM: 1 7 1 7 1 7 1 7 0 7 0 3 0 3 0 3 0 3 1 3
vector 4 EM: 2 3 2 3 1 7 1 7 2 3 1 3 1 3 2 7 2 7 1 3

Conventional
ATPG
vectors

vector 1 EM: 1 7 0 7 0 7 1 7 1 7 0 3 1 3 1 3 0 3 0 3
vector 7 EM: 2 3 2 3 3 3 2 3 3 3 3 7 3 7 2 7 3 7 2 7
vector 0 EM: 1 7 1 7 1 7 1 7 0 7 0 3 0 3 0 3 0 3 1 3

3EM > 1 7EM ≤ 1 3EM ≤ 1 7EM > 1
3= right decision 7 = wrong decision

sponding approximation-aware and conventional test sets (see
Table VIII). We simulated each test vector after injecting, one
by one, all ax-redundant and non-redundant faults. Hence, we
measured the corresponding Error Magnitude (EM). For each
metric, if the measured EM was greater than the corresponding
threshold t, the circuit was considered faulty and rejected,
otherwise the test passed. We report results in Table XI.
Results highlight that the technique provided correct results
only under both the following conditions:

1) The WCE metric was used
2) Approximation-aware test vectors were used.

Indeed, as shown at the top of the table, faults classified
according to WCE metric (threshold t = 2) and tested by ax-
aware test vectors were correctly identified: all non-redundant
faults caused an EM value higher than the threshold (i.e.,
EM > 2); all the ax-redundant faults produced an EM value
under or equal to the threshold (i.e., EM ≤ 2). Conversely,
conventional ATPG vectors were not able to attain the same
result when WCE was considered. Furthermore, as shown at
the bottom of the table, for MAE metric (t = 1) the technique
did not deliver correct outcomes. In fact, some non-redundant
faults were masked (i.e., EM ≤ 1) and some ax-redundant
ones were detected (i.e., EM > 1) when using both ax-aware
and conventional vectors.

In conclusion, to properly apply the technique, three con-
straints need to be satisfied:

1) precise circuit test responses must be known;
2) the considered metric must be an SCT metric (e.g.,

WCE, WCBFE);
3) test patterns must be produced with an ax-aware gener-

ation technique.
To corroborate the statement, we applied the technique to

experiments shown in Section V-B. The considered metric was
the WCE. In Tables XII and XIII, we report experimental
results. By comparing results with those in Table IX, we
can clearly notice that the technique gives optimal results
(i.e., 100% non-redundant FC and 0% ax-redundant FC)
when the above listed conditions are respected. Conversely,
outcomes achieved when using conventional test patterns were

TABLE XII: Non-redundant FC (nR FC) results when using
the test set application technique introduced in threshold
testing [122].

Conventional generation
Add8 Add16 Mul8 Mul16 Mul32

nR FC1
Min. 27.78% 34.94% 62.98% 68.63% 77.18%
Max. 100.00% 100.00% 100.00% 100.00% 100.00%
Avg. 97.23% 56.46% 91.60% 93.60% 94.60%

1non-redundand FC should be always 100%

N.B. For ax-aware and pattern-selection-based generations,
the non-redundant FC was always 100%.

TABLE XIII: Ax-redundant FC (axR FC) and Yield Increase
Loss (YIL) results when using the test set application tech-
nique introduced in threshold testing [122].

Conventional generation
Add8 Add16

axR FC1 YIL1 axR FC1 YIL1

Min. 0.00% 0.00% 0.23% 0.22%
Max. 100.00% 10.71% 4.17% 2.52%
Avg. 26.85% 3.28% 1.45% 1.09%

Mul8 Mul16 Mul32
axR FC1 YIL1 axR FC1 YIL1 axR FC1 YIL1

Min. 0.84% 0.50% 2.38% 0.57% 2.92% 1.49%
Max. 70.00% 15.29% 45.24% 17.92% 41.41% 18.28%
Avg. 14.69% 5.47% 15.31% 5.40% 17.85% 8.18%
1Lower is better

N.B. For ax-aware and pattern-selection-based generations, the
ax-redundant FC and the YIL were always 0%.

not acceptable (i.e., the third condition was violated). Indeed,
although a better ax-redundant FC (Table XIII) was achieved
w.r.t. Table IX, the non-redundant FC (Table XII) not always
reached 100%. This leads to undermine the first key aspect of
AxA testing, i.e. detecting all the non-redundant faults, which
cause catastrophic errors. Concerning the overhead in terms of
execution time, the test set application technique introduced
in threshold testing [122] entails only an extra comparison
between the test outcomes and the error threshold value.



PROCEEDINGS OF THE IEEE 13

In conclusion, existing AxA test set application techniques
guarantee a high-quality test process for AxICs only under the
aforementioned conditions.

VII. DISCUSSION AND FUTURE PERSPECTIVES

All AxA testing phases bring important contributions to
the final test quality. AxA fault classification separates catas-
trophic faults from the acceptable ones. Results of this phase
determine the expected Yield Increase (eYI). The actual yield
increase is the result of the synergy between AxA test pattern
generation and AxA test set application. Indeed, when accept-
able faults are detected despite a high-quality test set, a further
analysis has to be performed after the test application to state
whether the faulty behavior of the AxIC is tolerable or not.

As discussed in previous sections, state-of-the-art fault
classification techniques are quite mature. Concerning AxA
test pattern generation techniques, in Section V we showed
that they provide test sets either non-optimum in a short time
or optimum with a significant time overhead. Therefore, those
techniques should be optimized to provide high quality test
sets without incurring a big overhead. Furthermore, we showed
that AxA test application techniques allow achieving optimal
results only under some conditions. As a result, it is necessary
to develop new AxA test set application techniques to improve
final AxA test quality under any conditions.

Let us now express some further considerations. From our
research, it results that the approximation of integrated circuits
induces the need of an extra effort to achieve a high quality
test. As an analogy, in the past, the VLSI advent led the
complexity of microelectronic systems to grew considerably.
As a consequence, performing IC testing became more and
more difficult. Then, the well-known Design-for-Testability
(DfT) concept was introduced. DfT was introduced basically
to keep test development and test time reasonably low while
assuring the detection of all faults within an IC [120]. With
DfT, the testability finally became part of the common design
requirements. In the same way, in our opinion, taking into
account the final circuit testability in the approximation pro-
cess is of great interest. In particular, since the main goal
of approximate computing is to reduce the cost, we think
that simply applying conventional DfT techniques to AxICs
is not suitable. On the contrary, dedicated Approximation-for-
Testability (AfT) techniques need to be developed to ensure a
high testability for the AxICs. In fact, there is no technique
in the literature dealing with such aspect. We aim at studying
this aspect in future and developing methodologies to address
it.

VIII. CONCLUSIONS

In this paper, we presented a survey of the state-of-the-art
testing techniques for approximate integrated circuits (AxICs).
In this context, the core problem is to ensure that defects
occurring to AxICs do not introduce catastrophic errors, i.e.
greater than the acceptable error threshold. At the same time,
test procedures must not reject AxICs affected by acceptable
defects, i.e., introducing only errors smaller than the error
thresholds.

We identified and illustrated in detail three main phases:
approximation-aware fault classification, approximation-aware
test pattern generation, and approximation-aware test set ap-
plication. We proposed new metrics to evaluate state-of-the-
art techniques, we measured their contributions to all the test
phases, and we highlighted their mature and weak aspects. In
particular, experiments showed that fault classification and test
pattern generation techniques are quite mature, although the
latter need to be optimized. On the contrary, test set application
techniques need major improvements, even though – under
some conditions – good test quality can be achieved. Fur-
thermore, we deem interesting and valuable for the scientific
community to move towards the study of new Approximation-
for-Testability principles.

REFERENCES

[1] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design Test, vol. 33, no. 1, pp. 8–22, Feb 2016.

[2] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, Mar. 2016.

[3] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in 2013 18th IEEE European
Test Symposium (ETS), May 2013, pp. 1–6.

[4] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for approximate
computing,” in 2013 50th ACM/EDAC/IEEE Design Automation Con-
ference (DAC), May 2013, pp. 1–9.

[5] V. K. Chippa, S. Venkataramani, S. T. Chakradhar, K. Roy, and
A. Raghunathan, “Approximate computing: An integrated hardware
approach,” in 2013 Asilomar Conference on Signals, Systems and
Computers, Nov 2013, pp. 111–117.

[6] Qian Zhang, F. Yuan, R. Ye, and Q. Xu, “Approxit: An approx-
imate computing framework for iterative methods,” in 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), June 2014,
pp. 1–6.

[7] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “Sage:
Self-tuning approximation for graphics engines,” in 2013 46th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
Dec 2013, pp. 13–24.

[8] W. Baek and T. Chilimbi, “Green: A framework for
supporting energy-conscious programming using controlled
approximation.” ACM SIGPLAN, June 2010. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/green-
framework-supporting-energy-conscious-programming-using-
controlled-approximation/

[9] M. Ringenburg, A. Sampson, I. Ackerman, L. Ceze, and D. Grossman,
“Monitoring and debugging the quality of results in approximate
programs,” SIGARCH Comput. Archit. News, vol. 43, no. 1, pp. 399–
411, Mar. 2015.

[10] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke, “Rumba: An
online quality management system for approximate computing,” in
2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), June 2015, pp. 554–566.

[11] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data types for safe and general
low-power computation,” in Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’11. New York, NY, USA: ACM, 2011, pp. 164–174.

[12] J. Bornholt, T. Mytkowicz, and K. S. McKinley, “Uncertain< t >:
A first-order type for uncertain data,” Tech. Rep. MSR-TR-2013-
46, April 2013. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/uncertaint-a-first-order-type-for-uncertain-data/

[13] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantitative
reliability for programs that execute on unreliable hardware,” SIGPLAN
Not., vol. 48, no. 10, pp. 33–52, Oct. 2013.

[14] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N.
Jansen, “The ins and outs of the probabilistic model checker mrmc,”
Performance Evaluation, vol. 68, no. 2, pp. 90 – 104, 2011, advances
in Quantitative Evaluation of Systems.



PROCEEDINGS OF THE IEEE 14

[15] M. Kwiatkowska, G. Norman, and D. Parker, “Prism: Probabilistic
symbolic model checker,” in Computer Performance Evaluation: Mod-
elling Techniques and Tools, T. Field, P. G. Harrison, J. Bradley, and
U. Harder, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002,
pp. 200–204.

[16] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour, “Proving
programs robust,” in Proceedings of the 19th ACM SIGSOFT Sympo-
sium and the 13th European Conference on Foundations of Software
Engineering, ser. ESEC/FSE ’11. New York, NY, USA: ACM, 2011,
pp. 102–112.

[17] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard,
“Chisel: Reliability- and accuracy-aware optimization of approximate
computational kernels,” SIGPLAN Not., vol. 49, no. 10, pp. 309–328,
Oct. 2014.

[18] M. Rinard, “Probabilistic accuracy bounds for fault-tolerant computa-
tions that discard tasks,” in Proceedings of the 20th Annual Interna-
tional Conference on Supercomputing, ser. ICS ’06. New York, NY,
USA: ACM, 2006, pp. 324–334.

[19] A. Sampson, P. Panchekha, T. Mytkowicz, K. S. McKinley, D. Gross-
man, and L. Ceze, “Expressing and verifying probabilistic assertions,”
SIGPLAN Not., vol. 49, no. 6, pp. 112–122, Jun. 2014.

[20] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard, “Quality of
service profiling,” in Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ser. ICSE ’10. New
York, NY, USA: ACM, 2010, pp. 25–34.

[21] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic optimization
of floating-point programs with tunable precision,” SIGPLAN Not.,
vol. 49, no. 6, pp. 53–64, Jun. 2014.

[22] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” SIGARCH Comput.
Archit. News, vol. 40, no. 1, pp. 301–312, Mar. 2012.

[23] U. R. Karpuzcu, I. Akturk, and N. S. Kim, “Accordion: Toward soft
near-threshold voltage computing,” in 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA), Feb
2014, pp. 72–83.

[24] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural
acceleration for general-purpose approximate programs,” in 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture, Dec
2012, pp. 449–460.

[25] A. Chandrasekharan, D. Große, and R. Drechsler, “Proact: A
processor for high performance on-demand approximate computing,”
in Proceedings of the on Great Lakes Symposium on VLSI 2017, ser.
GLSVLSI ’17. New York, NY, USA: ACM, 2017, pp. 463–466.
[Online]. Available: http://doi.acm.org/10.1145/3060403.3060415

[26] S. Z. Gilani, N. S. Kim, and M. Schulte, “Scratchpad memory opti-
mizations for digital signal processing applications,” in 2011 Design,
Automation Test in Europe, March 2011, pp. 1–6.

[27] D. J. Palframan, N. S. Kim, and M. H. Lipasti, “Precision-aware soft
error protection for gpus,” in 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA), Feb 2014, pp.
49–59.

[28] M. Shoushtari, A. BanaiyanMofrad, and N. Dutt, “Exploiting partially-
forgetful memories for approximate computing,” IEEE Embedded
Systems Letters, vol. 7, no. 1, pp. 19–22, March 2015.

[29] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Sav-
ing dram refresh-power through critical data partitioning,” SIGARCH
Comput. Archit. News, vol. 39, no. 1, pp. 213–224, Mar. 2011.

[30] A. Raha, S. Sutar, H. Jayakumar, and V. Raghunathan, “Quality
configurable approximate dram,” IEEE Transactions on Computers,
vol. 66, no. 7, pp. 1172–1187, July 2017.

[31] M. Jung, D. M. Mathew, C. Weis, and N. Wehn, “Invited: Approximate
computing with partially unreliable dynamic random access memory
— approximate dram,” in 2016 53nd ACM/EDAC/IEEE Design Au-
tomation Conference (DAC), June 2016, pp. 1–4.

[32] Y. Chen, X. Yang, F. Qiao, J. Han, Q. Wei, and H. Yang, “A multi-
accuracy-level approximate memory architecture based on data signif-
icance analysis,” in 2016 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), July 2016, pp. 385–390.

[33] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage
in solid-state memories,” in 2013 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Dec 2013, pp. 25–36.

[34] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy, “Design of
voltage-scalable meta-functions for approximate computing,” in 2011
Design, Automation Test in Europe, March 2011, pp. 1–6.

[35] R. Ragavan, B. Barrois, C. Killian, and O. Sentieys, “Pushing the limits
of voltage over-scaling for error-resilient applications,” in Design,

Automation Test in Europe Conference Exhibition (DATE), 2017, March
2017, pp. 476–481.

[36] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of
approximate and probabilistic adders,” IEEE Transactions on Comput-
ers, vol. 62, no. 9, pp. 1760–1771, Sept 2013.

[37] N. Zhu, W. L. Goh, and K. S. Yeo, “An enhanced low-power high-
speed adder for error-tolerant application,” in Proceedings of the 2009
12th International Symposium on Integrated Circuits, Dec 2009, pp.
69–72.

[38] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo, and Z. H. Kong, “Design
of low-power high-speed truncation-error-tolerant adder and its appli-
cation in digital signal processing,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 18, no. 8, pp. 1225–1229, Aug
2010.

[39] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,
“Impact: Imprecise adders for low-power approximate computing,” in
IEEE/ACM International Symposium on Low Power Electronics and
Design, Aug 2011, pp. 409–414.

[40] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approxi-
mate arithmetic designs,” in DAC Design Automation Conference 2012,
June 2012, pp. 820–825.

[41] J. Miao, K. He, A. Gerstlauer, and M. Orshansky, “Modeling and
synthesis of quality-energy optimal approximate adders,” in 2012
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), Nov 2012, pp. 728–735.

[42] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi, “Approximate
xor/xnor-based adders for inexact computing,” in 2013 13th IEEE
International Conference on Nanotechnology (IEEE-NANO 2013), Aug
2013, pp. 690–693.

[43] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On reconfiguration-
oriented approximate adder design and its application,” in 2013
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), Nov 2013, pp. 48–54.

[44] W. Liu, L. Chen, C. Wang, M. O’Neill, and F. Lombardi, “Inexact
floating-point adder for dynamic image processing,” in 14th IEEE
International Conference on Nanotechnology, Aug 2014, pp. 239–243.

[45] H. Jiang, J. Han, and F. Lombardi, “A comparative review and
evaluation of approximate adders,” in Proceedings of the 25th Edition
on Great Lakes Symposium on VLSI, ser. GLSVLSI ’15. New York,
NY, USA: ACM, 2015, pp. 343–348.

[46] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A low latency
generic accuracy configurable adder,” in 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), June 2015, pp. 1–6.

[47] T. Ban, B. Wang, and L. Naviner, “Design, synthesis and application of
a novel approximate adder,” in 2018 IEEE 61st International Midwest
Symposium on Circuits and Systems (MWSCAS), Aug 2018, pp. 488–
491.

[48] T. Zhang, W. Liu, E. McLarnon, M. O’Neill, and F. Lombardi, “Design
of majority logic (ml) based approximate full adders,” in 2018 IEEE
International Symposium on Circuits and Systems (ISCAS), May 2018,
pp. 1–5.

[49] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran,
“Axbench: A multiplatform benchmark suite for approximate comput-
ing,” IEEE Design Test, vol. 34, no. 2, pp. 60–68, April 2017.

[50] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapprox8b:
Library of approx adders and multipliers for circuit design and bench-
marking of approximation methods,” in Design, Automation Test in
Europe Conference Exhibition (DATE), March 2017, pp. 258–261.

[51] B. Barrois, O. Sentieys, and D. Menard, “The hidden cost of functional
approximation against careful data sizing — a case study,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2017, March
2017, pp. 181–186.

[52] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for
power with an underdesigned multiplier architecture,” in 2011 24th
Internatioal Conference on VLSI Design, Jan 2011, pp. 346–351.

[53] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance ap-
proximate multiplier with configurable partial error recovery,” in 2014
Design, Automation Test in Europe Conference Exhibition (DATE),
March 2014, pp. 1–4.

[54] S. Hashemi, R. I. Bahar, and S. Reda, “Drum: A dynamic range
unbiased multiplier for approximate applications,” in 2015 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Nov
2015, pp. 418–425.

[55] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and analy-
sis of approximate compressors for multiplication,” IEEE Transactions
on Computers, vol. 64, no. 4, pp. 984–994, April 2015.



PROCEEDINGS OF THE IEEE 15

[56] L. Qian, C. Wang, W. Liu, F. Lombardi, and J. Han, “Design and
evaluation of an approximate wallace-booth multiplier,” in 2016 IEEE
International Symposium on Circuits and Systems (ISCAS), May 2016,
pp. 1974–1977.

[57] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, and J. Henkel,
“Architectural-space exploration of approximate multipliers,” in Pro-
ceedings of the 35th International Conference on Computer-Aided
Design, ser. ICCAD ’16. New York, NY, USA: ACM, 2016, pp.
80:1–80:8.

[58] H. Jiang, J. Han, F. Qiao, and F. Lombardi, “Approximate radix-
8 booth multipliers for low-power and high-performance operation,”
IEEE Transactions on Computers, vol. 65, no. 8, pp. 2638–2644, Aug
2016.

[59] M. Češka, J. Matyaš, V. Mrazek, L. Sekanina, Z. Vasicek, and
T. Vojnar, “Approximating complex arithmetic circuits with formal
error guarantees: 32-bit multipliers accomplished,” in 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Nov
2017, pp. 416–423.

[60] W. Liu, L. Qian, C. Wang, H. Jiang, J. Han, and F. Lombardi, “Design
of approximate radix-4 booth multipliers for error-tolerant computing,”
IEEE Transactions on Computers, vol. 66, no. 8, pp. 1435–1441, Aug
2017.

[61] M. Imani, D. Peroni, and T. Rosing, “Cfpu: Configurable float-
ing point multiplier for energy-efficient computing,” in 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), June 2017,
pp. 1–6.

[62] V. Mrazek, Z. Vasicek, L. Sekanina, H. Jiang, and J. Han, “Scalable
construction of approximate multipliers with formally guaranteed worst
case error,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 26, no. 11, pp. 2572–2576, Nov 2018.

[63] V. Mrazek, Z. Vasicek, and L. Sekanina, “Design of quality-
configurable approximate multipliers suitable for dynamic environ-
ment,” in 2018 NASA/ESA Conference on Adaptive Hardware and
Systems (AHS), Aug 2018, pp. 264–271.

[64] W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi, and F. Lombardi,
“Design and evaluation of approximate logarithmic multipliers for low
power error-tolerant applications,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 65, no. 9, pp. 2856–2868, Sep. 2018.

[65] W. Liu, T. Cao, P. Yin, Y. Zhu, C. Wang, E. E. Swartzlander, and
F. Lombardi, “Design and analysis of approximate redundant binary
multipliers,” IEEE Transactions on Computers, vol. 68, no. 6, pp. 804–
819, June 2019.

[66] H. Jiang, C. Liu, F. Lombardi, and J. Han, “Low-power approximate
unsigned multipliers with configurable error recovery,” IEEE Transac-
tions on Circuits and Systems I: Regular Papers, vol. 66, no. 1, pp.
189–202, Jan 2019.

[67] S. Rehman, B. S. Prabakaran, W. El-Harouni, M. Shafique, and
J. Henkel, Heterogeneous Approximate Multipliers: Architectures and
Design Methodologies. Springer International Publishing, 2019, pp.
45–66.

[68] S. Venkatachalam, E. Adams, H. J. Lee, and S. Ko, “Design and
analysis of area and power efficient approximate booth multipliers,”
IEEE Transactions on Computers, pp. 1–1, 2019.

[69] C. Tung and S. Huang, “Low-power high-accuracy approximate mul-
tiplier using approximate high-order compressors,” in 2019 2nd Inter-
national Conference on Communication Engineering and Technology
(ICCET), April 2019, pp. 163–167.

[70] F. Sabetzadeh, M. H. Moaiyeri, and M. Ahmadinejad, “A majority-
based imprecise multiplier for ultra-efficient approximate image mul-
tiplication,” IEEE Transactions on Circuits and Systems I: Regular
Papers, pp. 1–9, 2019.

[71] R. R. Osorio and G. Rodríguez, “Truncated simd multiplier architecture
for approximate computing in low-power programmable processors,”
IEEE Access, vol. 7, pp. 56 353–56 366, 2019.

[72] L. Chen, J. Han, W. Liu, and F. Lombardi, “Design of approximate
unsigned integer non-restoring divider for inexact computing,” in
Proceedings of the 25th Edition on Great Lakes Symposium on VLSI,
ser. GLSVLSI ’15. New York, NY, USA: ACM, 2015, pp. 51–56.
[Online]. Available: http://doi.acm.org/10.1145/2742060.2742063

[73] L. Chen, J. Han, W. Liu, and F. Lombardi, “On the design of
approximate restoring dividers for error-tolerant applications,” IEEE
Transactions on Computers, vol. 65, no. 8, pp. 2522–2533, Aug 2016.

[74] R. Zendegani, M. Kamal, A. Fayyazi, A. Afzali-Kusha, S. Safari,
and M. Pedram, “Seerad: A high speed yet energy-efficient rounding-
based approximate divider,” in 2016 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2016, pp. 1481–1484.

[75] S. Hashemi, R. I. Bahar, and S. Reda, “A low-power dynamic divider
for approximate applications,” in 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC), June 2016, pp. 1–6.

[76] S. Vahdat, M. Kamal, A. Afzali-Kusha, M. Pedram, and Z. Navabi,
“Truncapp: A truncation-based approximate divider for energy efficient
dsp applications,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2017, March 2017, pp. 1635–1638.

[77] L. Chen, F. Lombardi, P. Montuschi, J. Han, and W. Liu, “Design
of approximate high-radix dividers by inexact binary signed-digit
addition,” in Proceedings of the on Great Lakes Symposium on VLSI
2017, ser. GLSVLSI ’17. New York, NY, USA: ACM, 2017, pp. 293–
298. [Online]. Available: http://doi.acm.org/10.1145/3060403.3060404

[78] L. Chen, J. Han, W. Liu, P. Montuschi, and F. Lombardi, “Design,
evaluation and application of approximate high-radix dividers,” IEEE
Transactions on Multi-Scale Computing Systems, vol. 4, no. 3, pp. 299–
312, July 2018.

[79] W. Liu, J. Li, T. Xu, C. Wang, P. Montuschi, and F. Lombardi, “Com-
bining restoring array and logarithmic dividers into an approximate
hybrid design,” in 2018 IEEE 25th Symposium on Computer Arithmetic
(ARITH), June 2018, pp. 92–98.

[80] H. Jiang, L. Liu, F. Lombardi, and J. Han, “Adaptive approximation
in arithmetic circuits: A low-power unsigned divider design,” in 2018
Design, Automation Test in Europe Conference Exhibition (DATE),
March 2018, pp. 1411–1416.

[81] K. Manikantta Reddy, M. H. Vasantha, Y. B. Nithin Kumar, and
D. Dwivedi, “Design of approximate dividers for error tolerant ap-
plications,” in 2018 IEEE 61st International Midwest Symposium on
Circuits and Systems (MWSCAS), Aug 2018, pp. 496–499.

[82] S. Behroozi, J. Li, J. Melchert, and Y. Kim, “Saadi: A
scalable accuracy approximate divider for dynamic energy-
quality scaling,” in Proceedings of the 24th Asia and South Pacific
Design Automation Conference, ser. ASPDAC ’19. New York,
NY, USA: ACM, 2019, pp. 481–486. [Online]. Available:
http://doi.acm.org/10.1145/3287624.3287668

[83] S. Venkatachalam, E. Adams, and S. Ko, “Design of approximate
restoring dividers,” in 2019 IEEE International Symposium on Circuits
and Systems (ISCAS), May 2019, pp. 1–5.

[84] M. Imani, R. Garcia, A. Huang, and T. Rosing, “Cade: Configurable
approximate divider for energy efficiency,” in 2019 Design, Automation
Test in Europe Conference Exhibition (DATE), March 2019, pp. 586–
589.

[85] H. Jiang, L. Liu, F. Lombardi, and J. Han, “Low-power unsigned
divider and square root circuit designs using adaptive approximation,”
IEEE Transactions on Computers, pp. 1–1, 2019.

[86] K. Chen, L. Chen, P. Reviriego, and F. Lombardi, “Efficient implemen-
tations of reduced precision redundancy (rpr) multiply and accumulate
(mac),” IEEE Transactions on Computers, vol. 68, no. 5, pp. 784–790,
May 2019.

[87] G. A. Gillani, M. A. Hanif, B. Verstoep, S. H. Gerez, M. Shafique, and
A. B. J. Kokkeler, “Macish: Designing approximate mac accelerators
with internal-self-healing,” IEEE Access, vol. 7, pp. 77 142–77 160,
2019.

[88] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han, “A
review, classification, and comparative evaluation of approximate
arithmetic circuits,” J. Emerg. Technol. Comput. Syst., vol. 13,
no. 4, pp. 60:1–60:34, Aug. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3094124

[89] D. Shin and S. K. Gupta, “Approximate logic synthesis for error
tolerant applications,” in Design, Automation Test in Europe Conference
Exhibition (DATE), March 2010, pp. 957–960.

[90] ——, “A new circuit simplification method for error tolerant applica-
tions,” in Design, Automation Test in Europe (DATE), March 2011, pp.
1–6.

[91] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “Salsa: Systematic logic synthesis of approximate circuits,” in
DAC Design Automation Conference 2012, June 2012, pp. 796–801.

[92] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: A unified design paradigm for approximate and quality con-
figurable circuits,” in Design, Automation Test in Europe Conference
Exhibition (DATE), March 2013, pp. 1367–1372.

[93] J. Miao, A. Gerstlauer, and M. Orshansky, “Approximate logic syn-
thesis under general error magnitude and frequency constraints,” in
2013 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), Nov 2013, pp. 779–786.

[94] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “Abacus: A technique for
automated behavioral synthesis of approximate computing circuits,”



PROCEEDINGS OF THE IEEE 16

in 2014 Design, Automation Test in Europe Conference Exhibition
(DATE), March 2014, pp. 1–6.

[95] K. Nepal, S. Hashemi, H. Tann, R. I. Bahar, and S. Reda, “Automated
high-level generation of low-power approximate computing circuits,”
IEEE Transactions on Emerging Topics in Computing, vol. 7, no. 1,
pp. 18–30, Jan 2019.

[96] J. Miao, A. Gerstlauer, and M. Orshansky, “Multi-level approximate
logic synthesis under general error constraints,” in 2014 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Nov
2014, pp. 504–510.

[97] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan,
“Aslan: Synthesis of approximate sequential circuits,” in Design, Au-
tomation Test in Europe Conference Exhibition (DATE), March 2014.

[98] A. Yazdanbakhsh, D. Mahajan, B. Thwaites, J. Park, A. Nagendraku-
mar, S. Sethuraman, K. Ramkrishnan, N. Ravindran, R. Jariwala,
A. Rahimi, H. Esmaeilzadeh, and K. Bazargan, “Axilog: Language
support for approximate hardware design,” in 2015 Design, Automation
Test in Europe Conference Exhibition (DATE), March 2015, pp. 812–
817.

[99] Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate
digital circuits design,” IEEE Transactions on Evolutionary Computa-
tion, vol. 19, no. 3, pp. 432–444, June 2015.

[100] Chaofan Li, Wei Luo, S. S. Sapatnekar, and Jiang Hu, “Joint precision
optimization and high level synthesis for approximate computing,” in
2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
June 2015, pp. 1–6.

[101] M. Soeken, D. Große, A. Chandrasekharan, and R. Drechsler, “Bdd
minimization for approximate computing,” in 2016 21st Asia and South
Pacific Design Automation Conference (ASP-DAC), Jan 2016, pp. 474–
479.

[102] A. Chandrasekharan, M. Soeken, D. Große, and R. Drechsler,
“Approximation-aware rewriting of aigs for error tolerant
applications,” in Proceedings of the 35th International Conference
on Computer-Aided Design, ser. ICCAD ’16. New York,
NY, USA: ACM, 2016, pp. 83:1–83:8. [Online]. Available:
http://doi.acm.org/10.1145/2966986.2967003

[103] Y. Wu and W. Qian, “An efficient method for multi-level approx-
imate logic synthesis under error rate constraint,” in 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), June 2016,
pp. 1–6.

[104] L. Holík, O. Lengál, A. Rogalewicz, L. Sekanina, Z. Vašíček, and
T. Vojnar, “Towards formal relaxed equivalence checking in approxi-
mate computing methodology,” pp. 1–6, 2016.

[105] M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio,
“Towards digital circuit approximation by exploiting fault simulation,”
in 2017 IEEE East-West Design Test Symposium (EWDTS), Sep. 2017,
pp. 1–7.

[106] Z. Vasicek, V. Mrazek, and L. Sekanina, “Evolutionary functional
approximation of circuits implemented into fpgas,” in 2016 IEEE
Symposium Series on Computational Intelligence (SSCI), Dec 2016,
pp. 1–8.

[107] ——, “Automated circuit approximation method driven by data dis-
tribution,” in 2019 Design, Automation Test in Europe Conference
Exhibition (DATE), March 2019, pp. 96–101.

[108] S. Hashemi and S. Reda, “Generalized matrix factorization techniques
for approximate logic synthesis,” in 2019 Design, Automation Test in
Europe Conference Exhibition (DATE), March 2019, pp. 1289–1292.

[109] Y. Wu and W. Qian, “Alfans: Multi-level approximate logic synthesis
framework by approximate node simplification,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pp. 1–1,
2019.

[110] S. Su, C. Zou, W. Kong, J. Han, and W. Qian, “A novel heuristic search
method for two-level approximate logic synthesis,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, pp. 1–1,
2019.

[111] R. S. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh,
A. Hassibi, L. Ceze, and D. Burger, “General-purpose code acceleration
with limited-precision analog computation,” in 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA), June 2014,
pp. 505–516.

[112] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang, “Rram-based
analog approximate computing,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 34, no. 12, pp.
1905–1917, Dec 2015.

[113] S. Froehlich, D. Große, and R. Drechsler, “One method - all error-
metrics: A three-stage approach for error-metric evaluation in ap-

proximate computing,” in 2019 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2019, pp. 284–287.

[114] A. Chandrasekharan, M. Soeken, D. Große, and R. Drechsler, “Precise
error determination of approximated components in sequential circuits
with model checking,” in 2016 53nd ACM/EDAC/IEEE Design Au-
tomation Conference (DAC), June 2016, pp. 1–6.

[115] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “Macaco:
Modeling and analysis of circuits for approximate computing,” in
2011 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), Nov 2011, pp. 667–673.

[116] I. Polian, “Test and reliability challenges for approximate circuitry,”
IEEE Embedded Systems Letters, vol. 10, no. 1, pp. 26–29, March
2018.

[117] L. Anghel, M. Benabdenbi, A. Bosio, M. Traiola, and E. I. Vatajelu,
“Test and reliability in approximate computing,” Journal of Electronic
Testing, vol. 34, no. 4, pp. 375–387, Aug 2018.

[118] A. Chandrasekharan, D. Große, and R. Drechsler, Design Automation
Techniques for Approximation Circuits: Verification, Synthesis and Test.
Springer, 2019.

[119] G. Gielen, P. D. Wit, E. Maricau, J. Loeckx, J. Martin-Martinez,
B. Kaczer, G. Groeseneken, R. Rodriguez, and M. Nafria, “Emerging
yield and reliability challenges in nanometer cmos technologies,” in
Design, Automation and Test in Europe (DATE), March 2008, pp.
1322–1327.

[120] M. L. Bushnell and V. D. Agarwal, Essentials of Electronic Testing for
Digital, Memory, and Mixed-Signal VLSI Circuits, 01 2000.

[121] A. Chandrasekharan, S. Eggersglüß, D. Große, and R. Drechsler,
“Approximation-aware testing for approximate circuits,” in 2018 23rd
Asia and South Pacific Design Automation Conference (ASP-DAC), Jan
2018, pp. 239–244.

[122] Z. Jiang and S. K. Gupta, “An atpg for threshold testing: obtaining
acceptable yield in future processes,” in Proceedings. International Test
Conference, 2002, pp. 824–833.

[123] S. Sindia and V. D. Agrawal, “Tailoring tests for functional binning
of integrated circuits,” in 2012 IEEE 21st Asian Test Symposium, Nov
2012, pp. 95–100.

[124] A. Gebregiorgis and M. B. Tahoori, “Test pattern generation for
approximate circuits based on boolean satisfiability,” in 2019 Design,
Automation Test in Europe Conference Exhibition (DATE), March 2019,
pp. 1028–1033.

[125] M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio,
“Testing approximate digital circuits: Challenges and opportunities,”
in 2018 IEEE 19th Latin-American Test Symposium (LATS), March
2018, pp. 1–6.

[126] T. U. Aoki Laboratory. (2016). [Online]. Available: http://www.aoki.
ecei.tohoku.ac.jp/arith

[127] L. Amarú, P.-E. Gaillardon, and G. D. Micheli. (2015)
The epfl combinational benchmark suite. [Online]. Available:
http://infoscience.epfl.ch/record/207551

[128] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the iscas-85
benchmarks: a case study in reverse engineering,” IEEE Design Test
of Computers, vol. 16, no. 3, pp. 72–80, July 1999.

[129] M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio,
“Investigation of mean-error metrics for testing approximate integrated
circuits,” in 2018 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), Oct 2018, pp.
1–6.

[130] Tetramax. [Online]. Available: https://www.synopsys.com/
[131] M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “A

test pattern generation technique for approximate circuits based on
an ilp-formulated pattern selection procedure,” IEEE Transactions on
Nanotechnology, vol. 18, pp. 849–857, 2019.



PROCEEDINGS OF THE IEEE 17

Marcello Traiola received the Ph.D. degree in
Computer Engineering from the University of Mont-
pellier, France, in 2019. He received the Master’s
Degree in Computer Engineering cum laude in
2016, from the University of Naples Federico II,
Italy. After three years at LIRMM (Laboratory of
Computer Science, Robotics and Microelectronics
of Montpellier), since February 2020 Marcello is a
post-doctoral researcher at Lyon Institute of Nan-
otechnology (École centrale de Lyon), in France.
His main research topics are emerging computing

paradigms with special interest in testing and reliability. He is an IEEE
member.

Arnaud Virazel received the Ph.D. degree in Mi-
croelectronics from the University of Montpellier,
France, in 2001. He is currently Associate Professor
at the University of Montpellier, and works in the
Microelectronics Department of the LIRMM (Lab-
oratory of Computer Science, Robotics and Micro-
electronics of Montpellier — France). His research
interests span diverse disciplines, including DfT,
BIST, diagnosis, reliability, delay testing, power-
aware testing and memory testing. He is an IEEE
member.

Patrick Girard received a Ph.D. degree in Mi-
croelectronics from the University of Montpellier,
France, in 1992. He is currently Research Direc-
tor at CNRS (French National Center for Scien-
tific Research) and works in the Microelectronics
Department of the Laboratory of Computer Sci-
ence, Robotics and Microelectronics of Montpellier
(LIRMM) - France. His research interests include all
aspects of digital testing and memory testing, with
emphasis on critical constraints such as timing and
power. Reliability and fault tolerance are also part

of his research activities. Patrick Girard is a Fellow of the IEEE.

Mario Barbareschi received the Ph.D. in Computer
and Automation Engineering in 2015 and the Master
Degree in Computer Engineering cum laude in 2012,
both from the University of Naples Federico II, Italy,
where he is currently working a post-doctoral fellow.
His research interests include Hardware Security
and Trust, Cyber Physical Security, Approximate
Computing and embedded systems based on the
FPGA technology.

Alberto Bosio received the Ph.D. in Computer
Engineering from Politecnico di Torino in Italy in
2006. Currently he is a full professor at the INL-
École Centrale de Lyon in France. He published ar-
ticles spanning diverse disciplines, including testing,
verification, reliability, approximate computing and
emerging technologies. He is an IEEE member.


