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ON THE STRUCTURE OF SCHNYDER WOODS ON ORIENTABLE

SURFACES∗

Daniel Gonçalves,†Kolja Knauer,‡ and Benjamin Lévêque,�

Abstract. We propose a simple generalization of Schnyder woods from the plane to
maps on orientable surfaces of higher genus. This is done in the language of angle
labelings. Generalizing results of de Fraysseix and Ossona de Mendez, and Felsner, we
establish a correspondence between these labelings and orientations and characterize the
set of orientations of a map that correspond to such a Schnyder labeling. Furthermore,
we study the set of these orientations of a given map and provide a natural partition into
distributive lattices depending on the surface homology. This generalizes earlier results
of Felsner and Ossona de Mendez. In the particular case of toroidal triangulations, this
study enables us to identify a canonical lattice that lies at the core of several bijection
proofs.

1 Introduction

Schnyder [27] introduced Schnyder woods for planar triangulations with the following
local property:

De�nition 1 (Schnyder property) Given an embedded graph G, a vertex v and an
orientation and coloring1 of the edges incident to v with the colors 0, 1, 2, we say that v
satis�es the Schnyder property, (see Figure 1) if v satis�es the following local property:

• Vertex v has out-degree one in each color.

• The edges e0(v), e1(v), e2(v) leaving v in colors 0, 1, 2, respectively, occur in
counterclockwise order.

• Each edge entering v in color i enters v in the counterclockwise sector from ei+1(v)
to ei−1(v).

∗This work was supported by grants EGOS ANR-12-JS02-002-01 and GATO ANR-16-CE40-0009-01
†CNRS, Université de Montpellier, LIRMM, UMR 5506, CC477, 161 rue Ada, 34095 Montpellier
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1Throughout the paper colors and some of the indices are given modulo 3.
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Figure 1: The Schnyder property. The depicted correspondence between red, blue, green,
0, 1, 2, and the arrow shapes will be used through the paper.

De�nition 2 (Schnyder wood) Given a planar triangulation G, a Schnyder wood is
an orientation and coloring of the inner edges of G with the colors 0, 1, 2 (edges are
oriented in one direction only), where each inner vertex v satis�es the Schnyder property.

See Figure 2 for an example of a Schnyder wood.

Figure 2: Example of a Schnyder wood of a planar triangulation.

Schnyder woods are today one of the main tools in the area of planar graph rep-
resentations. Among their most prominent applications are the following: They provide
a machinery to construct space-e�cient straight-line drawings [28, 20, 9], yield a charac-
terization of planar graphs via the dimension of their vertex-edge incidence poset [27, 9],
and are used to encode triangulations [25, 3]. Further applications lie in enumeration [4],
representation by geometric objects [14, 17], graph spanners [5], etc. The richness of
these applications has stimulated research towards generalizing Schnyder woods to non
planar graphs.

For higher genus triangulated surfaces, a generalization of Schnyder woods has
been proposed by Castelli Aleardi, Fusy and Lewiner [7], with applications to encoding.
Actually, they prove that every triangulation with genus g admits a so-called g-Schnyder
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wood, which is a partition of the edge set (where 2g edges have been doubled) into 3 parts,
where the Schnyder property is followed except at the doubled edges. In this de�nition,
the simplicity and the symmetry of the original de�nition of Schnyder woods are lost.
Furthermore, this de�nition does not extend to non-triangular graphs (as Schnyder woods
do in the planar case). Here we propose an alternative generalization of Schnyder woods
for higher genus that generalizes the one proposed in [18] for the toroidal case. The
existence of these objects for large classes is open (see the conjectures in Section 2.5), but
this generalization of Schnyder woods is elegant and extends the case of non-triangular
plane graphs. This allows us to preserve the link between the Schnyder woods of a graph,
and those of its dual.

A closed curve on a surface is contractible if it can be continuously transformed
into a single point. Given a graph embedded on a surface, a contractible loop is an edge
forming a contractible curve. Two edges of an embedded graph are called homotopic
multiple edges if they have the same extremities and their union encloses a region home-
omorphic to an open disk. Except if stated otherwise, we consider graphs embedded on
surfaces that do not have contractible loops nor homotopic multiple edges. Note that this
is a weaker assumption, than the graph being simple, i.e. not having loops nor multiple
edges. A graph embedded on a surface is called a map on this surface if all its faces are
homeomorphic to open disks. A map is a triangulation if all its faces have size three.

In this paper we consider �nite maps. Maps are preferred to embedded graphs
because they allow the dual embedded graph to be uniquely de�ned. We will see also
that the notion of cyclic order around faces is needed in the following section. We denote
by n be the number of vertices and m the number of edges of a graph. Given a graph
embedded on a surface, we use f for the number of faces. Euler's formula says that any
map on an orientable surface of genus g satis�es n − m + f = 2 − 2g. In particular,
the plane is the surface of genus 0, the torus the surface of genus 1, the double torus
the surface of genus 2, etc. By Euler's formula, a triangulation of genus g has exactly
3n+ 6(g− 1) edges. So having a generalization of Schnyder woods in mind, for all g ≥ 2
there are too many edges to force all vertices to have out-degree exactly three. This
problem can be overcome by allowing vertices to ful�ll the Schnyder property �several
times�, i.e. such vertices have out-degree 6, 9, etc. with the color property of Figure 1
repeated several times (see Figure 3).

Figure 4 is an example of such a Schnyder wood on a triangulation of the double
torus. The double torus is represented by an octagon whose sides are identi�ed according
to their labels. All the vertices of the triangulation have out-degree three except two
vertices, the circled ones, that have out-degree six. Each of the latter appear twice in
the representation.

In this paper we formalize this idea to obtain a concept of Schnyder woods ap-
plicable to general maps (not only triangulations) on arbitrary orientable surfaces. This
is based on the de�nition of Schnyder woods via angle labelings in Section 2. We prove
several basic properties of these objects that extend the properties of Schnyder woods in
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Figure 3: The Schnyder property repeated several times around a vertex.
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Figure 4: A Schnyder wood of a triangulation of the double torus.

the plane. These properties are generally stated in the universal cover2 of the considered
map. While every map admits a �trivial� Schnyder wood, the existence of a non-trivial
one remains open but leads to interesting conjectures.

By a result of de Fraysseix and Ossona de Mendez [15], for any planar triangula-
tion there is a bijection between its Schnyder woods and the orientations of its inner edges
where every inner vertex has out-degree three. Thus, any orientation with the proper

2The universal cover of a map G is an in�nite plane map that is locally isomorphic to G. A full

de�nition is provided in Section 2.4.
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out-degree corresponds to a Schnyder wood and there is a unique way, up to symmetry of
the colors, to assign colors to the oriented edges in order to ful�ll the Schnyder property
at every inner vertex. This is not true in higher genus as already in the torus, there exist
orientations that do not correspond to any Schnyder wood (see Figure 5). In Section 3,
we exhibit a simple necessary and su�cient condition for an orientation to correspond to
a Schnyder wood. This characterization is stated in terms of the homology class of the
considered orientation. In Section 3 we thus consider the orientations of maps through
the lens of homology.

Figure 5: Two di�erent orientations of a toroidal triangulation. Only the one on the
right corresponds to a Schnyder wood.

In Section 4, we study the transformations between Schnyder orientations. We
obtain a partition of the set of Schnyder woods into homology classes of orientations,
each of these classes being a distributive lattice. In these lattices two orientations (of the
same map G) are linked if one is obtained from the other by reversing the edges of some
directed cycles (corresponding to the borders of faces of an associated map G̃). This
generalizes corresponding results obtained for the plane by Ossona de Mendez [24] and
Felsner [11].

In Section 5, we focus on toroidal triangulations for which a particular lattice,
called canonical lattice, is identi�ed. It is proved that the toroidal Schnyder woods
introduced in [18], that have a global property called crossing property, all belong to this
lattice. The minimal element of the canonical lattice has recently been used to obtain
bijections, and an optimal linear encoding method for toroidal triangulations by Despré,
the �rst author, and the third author [8], generalizing previous results of Poulalhon and
Schae�er for the plane [25]. An analogous canonical property has also been found for a
generalization of transversal structures to essentially 4-connected toroidal triangulations
with some enumerative consequences (see [6]).

Note that the results presented here also appear in the Habilitation manuscript
of the third author [19], where they are combined with [8, 18] to present these articles in
a uni�ed way.

2 Generalization of Schnyder woods

We now introduce angle labeling, and we will show that they allow an elegant char-
acterization of an extension of Schnyder woods to planar maps. These angle labelings
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then allow us to de�ne our generalization of Schnyder woods for any map, and this il-
lustrates how this generalization naturally extends the planar case. We will then study
these Schnyder woods on the universal cover of the considered map, and we will see that
several properties of the plane extend to these maps. We then conclude the section with
two conjectures on the existence of these Schnyder woods for large families of maps.

2.1 Angle labelings

Consider a map G on an orientable surface. An angle labeling of G is a labeling of
the angles of G (i.e. face corners of G) in colors 0, 1, 2. More formally, we denote an
angle labeling by a function ` : A → Z3, where A is the set of angles of G. Given an
angle labeling, we de�ne several properties of vertices, faces and edges that generalize
the notion of Schnyder angle labeling in the planar case [13].

Consider an angle labeling ` of G. A vertex or a face v is of type k, for k ≥ 1, if
the labels of the angles around v form, in counterclockwise order, 3k nonempty intervals
such that in the j-th interval all the angles have color (j mod 3). A vertex or a face v
is of type 0, if the labels of the angles around v are all of color i for some i in {0, 1, 2}.

An edge e is of type 1 or 2 if the labels of the four angles incident to edge e are, in
clockwise order, i− 1, i, i, i+ 1 for some i in {0, 1, 2}. The edge e is of type 1 if the two
angles with the same color are incident to the same extremity of e and of type 2 if the
two angles are incident to the same side of e. An edge e is of type 0 if the labels of the
four angles incident to edge e are all i for some i in {0, 1, 2}. The edges of type 0, 1, and
2 respectively correspond to edges with 0, 1, and 2 outgoing half-edges (See Figure 6).

If there exists a function f : V → N such that every vertex v of G is of type f(v),
we say that ` is f -vertex. If we do not want to specify the function f , we simply say
that ` is vertex. We sometimes use the notation K-vertex if the labeling is f -vertex
for a function f with f(V ) ⊆ K. When K = {k}, i.e. f is a constant function, then
we use the notation k-vertex instead of f -vertex. Similarly we de�ne face, K-face,
k-face, edge, K-edge, k-edge.

The following lemma expresses that property edge is the central notion here.
Properties K-vertex and K-face are used later on to express additional requirements
on the angle labelings that are considered.

Lemma 1 An edge angle labeling is vertex and face.

Proof. Let ` be an edge angle labeling. Consider two counterclockwise consecutive
angles a, a′ around a vertex (or a face). Property edge implies that `(a′) = `(a) or
`(a′) = `(a) + 1 (see Figure 6). Thus by considering all the angles around a vertex or a
face, it is clear that ` is also vertex and face. 2

Thus we de�ne a Schnyder labeling as follows:
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De�nition 3 (Schnyder labeling) Given a map G on an orientable surface, a Schny-
der labeling of G is an edge angle labeling of G.

Figure 6 shows how an edge angle labeling de�nes an �orientation� and coloring
of the edges of the graph with edges oriented in one direction or in two opposite directions.

1 1

11 0

1

1

2 2

1 1

0

Type 0 Type 1 Type 2

Figure 6: Correspondence between edge angle labelings and some orientations and col-
orings of the edges.

In the next two sections, the correspondence from Figure 6 is used to show that
Schnyder labelings correspond to or generalize previously de�ned Schnyder woods in the
plane and in the torus. Hence, they are a natural generalization of Schnyder woods for
higher genus.

2.2 Planar Schnyder woods

Originally, Schnyder woods were de�ned only for planar triangulations [27]. Felsner [9, 10]
extended this de�nition to planar maps. To do so he allowed edges to be oriented in one
direction or in two opposite directions (originally only one direction was possible). The
formal de�nition is the following:

De�nition 4 (Planar Schnyder wood) Given a planar map G. Let x0, x1, x2 be
three vertices occurring in counterclockwise order on the outer face of G. The suspension
Gσ is obtained by attaching a half-edge that reaches into the outer face to each of these
special vertices. A planar Schnyder wood rooted at x0, x1, x2 is an orientation and
coloring of the edges of Gσ with the colors 0, 1, 2, where every edge e is oriented in one
direction or in two opposite directions (each direction having a distinct color and being
outgoing), satisfying the following conditions:

• Every vertex satis�es the Schnyder property, and the half-edge at xi is directed
outward and colored i.

• There is no interior face whose boundary is a monochromatic cycle.

See Figure 7 for two examples of planar Schnyder woods.

The correspondence of Figure 6 gives the following bijection, as proved by Fel-
sner [10]:

Proposition 1 ([10]) If G is a planar map and x0, x1, x2 are three vertices occurring
in counterclockwise order on the outer face of G, then the planar Schnyder woods of Gσ
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Figure 7: A planar Schnyder wood of a planar map and of a planar triangulation.

are in bijection with the {1,2}-edge, 1-vertex, 1-face angle labelings of Gσ (with the
outer face being 1-face but in clockwise order).

Felsner [9] and Miller [22] characterized the planar maps that admit a planar
Schnyder wood. Namely, they are the internally 3-connected maps (i.e. those with
three vertices on the outer face such that the graph obtained from G by adding a vertex
adjacent to the three vertices is 3-connected).

2.3 Generalized Schnyder woods

Any map (on any orientable surface) admits a trivial edge angle labeling: the one with
all angles labeled i (and thus all edges, vertices, and faces are of type 0). A natural
non-trivial case, that is also symmetric for the duality, is to consider edge, N∗-vertex,
N∗-face angle labelings of general maps (where N∗ = N\{0}). In planar Schnyder woods
only type 1 and type 2 edges are used. Here we allow type 0 edges because they seem
unavoidable for some maps (see discussion below). This suggests the following de�nition
of Schnyder woods in higher genus.

First, the generalization of the Schnyder property is the following:

De�nition 5 (Generalized Schnyder property) Given a map G on a genus g ≥ 1
orientable surface, a vertex v and an orientation and coloring of the edges incident to
v with the colors 0, 1, 2, we say that v satis�es the generalized Schnyder property (see
Figure 3), if v satis�es the following local property for k ≥ 1:

• Vertex v has out-degree 3k.

• The edges e0(v), . . . , e3k−1(v) leaving v in counterclockwise order are such that ej(v)
has color j mod 3.

http://jocg.org/
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• Each edge entering v in color i enters v in a counterclockwise sector from ej(v) to
ej+1(v) with i ≡ j − 1 (mod 3).

Then, the generalization of Schnyder woods is the following (where the three
types of edges depicted on Figure 6 are allowed):

De�nition 6 (Generalized Schnyder wood) Given a map G on a genus g ≥ 1 ori-
entable surface, a generalized Schnyder wood of G is an orientation and coloring of the
edges of G with the colors 0, 1, 2, where every edge is oriented in one direction or in
two opposite directions (each direction having a distinct color and being outgoing, or each
direction having the same color and being incoming), satisfying the following conditions:

• Every vertex satis�es the generalized Schnyder property.

• There is no face whose boundary is a monochromatic cycle.

When there is no ambiguity we call �generalized Schnyder woods� just �Schnyder
woods�. See Figure 8 for two examples of Schnyder woods in the torus.

Figure 8: A Schnyder wood of a toroidal map and of a toroidal triangulation.

The �rst and third author already de�ned Schnyder woods for toroidal maps
in [18]. The above de�nition is broader than the one in [18] where an additional (global)
condition is required (see Section 5).

Figure 4 is an example of a Schnyder wood on a triangulation of the double torus.
The correspondence from Figure 6 immediately gives the following bijection whose proof
is omitted.

Proposition 2 If G is a map on a genus g ≥ 1 orientable surface, then the generalized
Schnyder woods of G are in bijection with the edge, N∗-vertex, N∗-face angle labelings
of G.
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The examples in Figures 8 and 4 do not have type 0 edges. However, for all g ≥ 2,
there are genus g maps, with vertex degrees and face degrees at most �ve. Figure 9 depicts
how to construct such maps, for all g ≥ 2. For these maps, type 0 edges are unavoidable.
Indeed, take such a map with an angle labeling that has only type 1 and type 2 edges.
Around a type 1 or type 2 edge there are exactly three changes of labels, so in total
there are exactly 3m such changes. As vertices and faces have degree at most �ve, they
are either of type 0 or 1, hence the number of label changes should be at most 3n+ 3f .
Thus, 3m ≤ 3n + 3f , which contradicts Euler's formula for g ≥ 2. Furthermore, note
that the maps described in Figure 9, as well as their dual maps, are 3-connected.

if’ fi

f’ fGi i i

Figure 9: A toroidal map Gi with two distinguished faces, fi and f
′
i . Take g copies Gi

with 1 ≤ i ≤ g and glue them by identifying fi and f
′
i+1 for all 1 ≤ i < g. Faces f1 and

f ′g are �lled to have only vertices and faces of degree at most �ve.

An orientation and coloring of the edges corresponding to an edge, N∗-vertex,
N∗-face angle labelings is given for the double-toroidal map of Figure 10. It contains
two edges of type 0 and it is 1-vertex and 1-face. Similarly, one can obtain edge,
N∗-vertex, N∗-face angle labelings for any map in Figure 9.

2.4 Schnyder woods in the universal cover

In this section we prove some properties of Schnyder woods in the universal cover. We
refer to [21] for the general theory of universal covers. The universal cover of the torus
(resp. an orientable surface of genus g ≥ 2) is a surjective mapping p from the plane
(resp. the open unit disk) to the surface that is locally a homeomorphism. The universal
cover of the torus is obtained by replicating a �at representation of the torus to tile the
plane (see Figure 11). Figure 12 shows how to obtain the universal cover of the double
torus. The key property is that a closed curve C on the surface corresponds to a set of
closed curves in the universal cover if and only if C is contractible.

Universal covers can be used to represent a map on an orientable surface as an
in�nite planar map. Any property of the map can be lifted to its universal cover, as
long as it is de�ned locally. Thus universal covers are an interesting tool for the study
of Schnyder labelings since all the de�nitions we have given so far are purely local.
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Figure 10: An orientation and coloring of the edges of a double-toroidal map that corre-
spond to an edge, N∗-vertex, N∗-face angle labeling. Here, the two parts are toroidal
and the two central faces are identi�ed (by preserving the colors) to obtain a double-
toroidal map.

Figure 11: Universal cover of the toroidal map in the left of Figure 8.

In a map, a walk is a (possibly in�nite) sequence of edges traversed in a given
direction, such that the head of an edge in the sequence coincides with the tail of the
next edge in the sequence (possibly two successive edges in the sequence are the same
edge traversed in opposite directions). A path is a walk with no repeated vertices. A
closed walk is a �nite walk such that the tail of the �rst edge in the sequence coincides
with the head of the last edge. A cycle is a closed walk with no repeated vertices.

Consider a map G on a genus g ≥ 1 orientable surface. Let G∞ be the in�nite
planar map drawn on the universal cover and de�ned by p−1(G) (where p is a surjective
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Figure 12: Canonical representation and universal cover of the double torus (source :
Yann Ollivier http://www.yann-ollivier.org/maths/primer.php).

mapping that is locally a homeomorphism from the plane, or from the open unit disk, to
that surface).

We need the following general lemma concerning universal covers:

Lemma 2 Suppose that for a �nite set of vertices X of G∞, the graph G∞ \ X is not
connected. Then G∞ \X has a �nite connected component.

Proof. Suppose the lemma is false and G∞ \ X is not connected and has no �nite
component. Then it has a face bounded by an in�nite number of vertices. As G is
�nite, the vertices of G∞ have bounded degree. Putting back the vertices of X, a face
bounded by an in�nite number of vertices would remain. The corresponding face in G is
not homeomorphic to an open disk, a contradiction with G being a map. 2

Suppose now that G is given with a Schnyder wood (i.e. an edge, N∗-vertex,
N∗-face angle labeling by Proposition 2). Consider the orientation and coloring of the
edges of G∞ corresponding to the Schnyder wood of G.

Let G∞i be the directed graph of edges of color i of G∞, i.e. G∞i is the graph whose
vertex set is the vertex set of G∞, whose edge set is the set of edges of G∞ that are colored
(or half-colored) i, and whose edges are oriented in one direction only, corresponding
precisely to the direction of color i in G∞. The graph (G∞i )−1 is the graph obtained
from G∞i by reversing the direction of all its edges. The graph G∞i ∪ (G∞i−1)

−1∪ (G∞i+1)
−1

is obtained from the graph G by orienting edges in one or two directions depending
on whether this orientation is present in G∞i , (G∞i−1)

−1 or (G∞i+1)
−1. Similarly to what

happens for planar Schnyder woods (see [9]), we have the following:

Lemma 3 The graph G∞i ∪ (G∞i−1)
−1 ∪ (G∞i+1)

−1 does not contain directed cycles.
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Proof. Suppose there is a directed cycle C in G∞i ∪ (G∞i−1)
−1 ∪ (G∞i+1)

−1. By Lemma 2,
there is a �nite number of vertices and of faces inside C. Assume now that C is a cycle
containing the minimum number of faces inside. Let D be the �nite submap of G∞

whose border is C. Suppose by symmetry that C turns around D counterclockwisely.
Then, by the Schnyder property (see De�nition 5), every vertex of D has at least one
outgoing edge of color i + 1 in D. This is clear for the vertices inside D, but note that
for every vertex v on C, the edge of C leaving v (resp. incoming in v) is an edge in the
counterclockwise sector from ei−1(v) to ei+1(v) (resp. from ei+1(v) to ei−1(v)), excluding
(resp. including) ei−1(v) and ei+1(v). This implies that ei+1(v) belongs to D. Thus there
is a cycle of color (i + 1) in D, and its edges coincide with C by minimality of C. So
C is a cycle of (G∞i+1)

−1. Then, again by the Schnyder property, every vertex of D has
at least one outgoing edge of color i in D. Thus, there is a cycle of color i in D and its
edges coincide with C by minimality of C. So C is a cycle of (G∞i ). Thus all the edges
of C are oriented in G∞ in color i counterclockwisely and in color i+ 1 clockwisely.

By the de�nition of Schnyder woods, there is no face the boundary of which is a
monochromatic cycle, so D is not a face. Let vx be an edge in the interior of D that is
outgoing for v. The vertex v can be either in the interior of D or in C (if v has more than
three outgoing edges). In both cases, v has necessarily an edge ei of color i and an edge
ei+1 of color i+ 1, leaving v and in the interior of D. Consider Wi(v) (resp. Wi+1(v)) a
monochromatic walk starting from ei (resp. ei+1), obtained by following outgoing edges
of color i (resp. i + 1). By minimality of C those walks are not self-intersecting in D.
We hence have that Wi(v) \ v and Wi+1(v) \ v intersect C. Thus each of these walks
contains a non-empty subpath from v to C. If these two subpaths intersect, let u be
an intersection such that the subpaths of Wi(v) and Wi+1(v) going from u to C are not
intersecting. The union of these two paths, plus a part of C contradicts the minimality
of C. 2

Let v be a vertex of G∞. For each color i, vertex v is the starting vertex of some
walks of color i, we denote the union of these walks by Pi(v). Every vertex has at least
one outgoing edge of color i and the set Pi(v) is obtained by following all these edges
of color i starting from v. Note that for some vertices v, the set Pi(v) may consist of
a single walk. This is the case when v cannot reach a vertex of out-degree six or more.
Note also that by Lemma 3 the graph Pi(v) is acyclic, and as each of its vertices has
positive out-degree, it is an in�nite graph.

Lemma 4 For every vertex v and color i, the two graphs Pi−1(v) and Pi+1(v) intersect
only on v.

Proof. If Pi−1(v) and Pi+1(v) intersect on two vertices, then G∞i−1 ∪ (G∞i+1)
−1 contains

a cycle, contradicting Lemma 3. 2

Recall that a graph is k-connected if it has at least k+1 vertices and if it remains
connected after removing any k − 1 vertices. Extending the notion of essentially 2-
connectedness de�ned in [23] for the toroidal case, we say thatG is essentially k-connected
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if G∞ is k-connected. Note that the notion of being essentially k-connected is di�erent
from G being k-connected. There are no implications in any direction [19], but note that
since G is a map, it is essentially 1-connected.

Theorem 1 If a map G on a genus g ≥ 1 orientable surface admits an edge, N∗-
vertex, N∗-face angle labeling, then G is essentially 3-connected.

Proof. Towards a contradiction, suppose that there exist two vertices x, y of G∞ such
that G′ = G∞ \ {x, y} is not connected. Then, by Lemma 2, the graph G′ has a �nite
connected component R. Let v be a vertex of R. By Lemma 3, for 0 ≤ i ≤ 2, the in�nite
graph Pi(v) does not lie in R so it intersects either x or y. So for two distinct colors
i, j, we have Pi(v) and Pj(v) intersect in a vertex distinct from v, a contradiction to
Lemma 4. 2

2.5 Conjectures on the existence of Schnyder woods

Proving that every triangulation on a genus g ≥ 1 orientable surface admits a 1-edge
angle labeling would imply the following theorem of Barát and Thomassen [2]:

Theorem 2 ([2]) Every simple triangulation on a genus g ≥ 1 orientable surface admits
an orientation of its edges such that every vertex has out-degree divisible by three.

Recently, Theorem 2 has been improved by Albar, the �rst author, and the second
author [1]:

Theorem 3 ([1]) Every simple triangulation on a genus g ≥ 1 orientable surface admits
an orientation of its edges such that every vertex has out-degree at least three, and divisible
by three.

Note that Theorems 2 and 3 are proved only in the case of simple triangulations
(i.e. no loops and no multiple edges). We believe them to be true also for non-simple
triangulations without contractible loops nor homotopic multiple edges.

Theorem 3 suggests the existence of 1-edge angle labelings with no sinks, i.e.
1-edge, N∗-vertex angle labelings. One can easily check that in a triangulation, a
1-edge angle labeling is also 1-face. Thus we can hope that a triangulation on a genus
g ≥ 1 orientable surface admits a 1-edge, N∗-vertex, 1-face angle labeling. Note
that a 1-edge, 1-face angle labeling of a map implies that faces have size three. So we
propose the following conjecture, whose �only if� part follows from the previous sentence:

Conjecture 1 A map on a genus g ≥ 1 orientable surface admits a 1-edge, N∗-vertex,
1-face angle labeling if and only if it is a triangulation.
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If true, Conjecture 1 would strengthen Theorem 3 in two ways. First, it considers
more triangulations (not only simple ones). Second, it requires the coloring property
around vertices.

How about general maps? We propose the following conjecture, whose �only if�
part is Theorem 1:

Conjecture 2 A map on a genus g ≥ 1 orientable surface admits an edge, N∗-vertex,
N∗-face angle labeling if and only if it is essentially 3-connected.

Conjecture 2 implies Conjecture 1 since for a triangulation every face would be of
type 1, and thus every edge would be of type 1. Conjecture 2 is proved in [18] for g = 1
whereas both conjectures are open for g ≥ 2.

3 Characterization of Schnyder orientations

As already mentioned, contrarily to the plane, the out-degrees in an orientation do not
characterize Schnyder woods. In this section we study the orientations of maps through
the lens of homology, and this eventually leads to a characterization of the orientations
corresponding to Schnyder woods.

3.1 A bit of homology

In the next sections, we need a bit of surface homology of general maps, which we will
discuss now. For a deeper introduction to homology we refer to [16].

For the sake of generality, in this subsection we consider that maps may have
loops or multiple edges. Consider a map G = (V,E), on an orientable surface of genus
g, given with an arbitrary orientation of its edges. This �xed arbitrary orientation is
implicit in all the paper and is used to handle �ows. A �ow φ on G is a vector in ZE .
For any e ∈ E, we denote by φe the coordinate e of φ.

A walk W has a characteristic �ow φ(W ) de�ned by:

φ(W )e := #times W traverses e forward−#times W traverses e backward

This de�nition naturally extends to a set of walkW by summing the characteristic
�ows (i.e. φ(W)e :=

∑
W∈W φ(W )e). From now on we consider that a set of walks and

its characteristic �ow are the same object and by abuse of notation we can write W
instead of φ(W ). As an oriented edge set X (i.e. an oriented subgraph H) can be seen
as a set of one-edge walks, it has a characteristic �ow φ(X) (resp. φ(H)) which we may
refer to by simply X (resp. H).

A facial walk is a closed walk bounding a face. Let F be the set of counterclock-
wise facial walks and let F = <φ(F)> be the subgroup of (ZE ,+) generated by F . Two
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�ows φ, φ′ are homologous if φ − φ′ ∈ F. They are weakly homologous if φ − φ′ ∈ F or
φ + φ′ ∈ F. We say that a �ow φ is 0-homologous if it is homologous to the zero �ow,
i.e. φ ∈ F.

Let W be the set of closed walks and let W = <φ(W)> be the subgroup of
(ZE ,+) generated by W. The group H(G) = W/F is the �rst homology group of G.
It is well-known that H(G) only depends on the genus of the map, and actually it is
isomorphic to Z2g.

A set {B1, . . . , B2g} of (closed) walks of G is said to be a basis for the homology
if the equivalence classes of their characteristic vectors ([φ(B1)], . . . , [φ(B2g)]) generate
H(G). Then for any closed walk W of G, we have W =

∑
F∈F λFF +

∑
1≤i≤2g µiBi

for some λ ∈ ZF , µ ∈ Z2g. Moreover one of the λF can be set to zero (and then all the
other coe�cients are unique). Indeed, for any map, there exists a set of cycles that forms
a basis for the homology and it is computationally easy to build. A possible way is by
considering a spanning tree T of G, and a spanning tree T ∗ of G∗ that contains no edges
dual to T . By Euler's formula, there are exactly 2g edges in G that are not in T nor
dual to edges of T ∗. Each of these 2g edges forms a unique cycle with T . It is not hard
to see that this set of cycles forms a basis for the homology.

The edges of the dual G∗ of G are oriented such that the dual e∗ of an edge e of
G goes from the face on the right of e to the face on the left of e. Let F∗ be the set of
counterclockwise facial walks of G∗. Consider {B∗1 , . . . , B∗2g} a set of closed walks of G∗

that form a basis for the homology. We now introduce the following function β, de�ned
for two �ows p and d of G and G∗, respectively, as follows:

β(p, d) =
∑
e∈G

pede∗

Note that β is a bilinear function. This function is needed to de�ne the parameter δ in
the following subsection, and to study the transformations between generalized Schnyder
woods in Section 4.1. For this last purpose we also prove the following new lemma.

Lemma 5 Given two �ows φ, φ′ of G, the following properties are equivalent to each
other:

1. The two �ows φ, φ′ are homologous.

2. For each closed walk W of G∗ we have β(φ,W ) = β(φ′,W ).

3. For each F ∈ F∗, we have β(φ, F ) = β(φ′, F ), and, for each 1 ≤ i ≤ 2g, we have
β(φ,B∗i ) = β(φ′, B∗i ).

Proof. (1. =⇒ 3.) Suppose that φ, φ′ are homologous. Then we have φ−φ′ =
∑

F∈F λFF
for some λ ∈ ZF . It is easy to see that, for each closed walk W of G∗, a facial walk
F ∈ F satis�es β(F,W ) = 0, so β(φ,W ) = β(φ′,W ) by linearity of β.
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(3. =⇒ 2.) Suppose that for each F ∈ F∗, we have β(φ, F ) = β(φ′, F ), and, for
each 1 ≤ i ≤ 2g, we have β(φ,B∗i ) = β(φ′, B∗i ). Let W be any closed walk of G∗. We
have W =

∑
F∈F∗ λFF +

∑
1≤i≤2g µiB

∗
i for some λ ∈ ZF , µ ∈ Z2g. Then by linearity of

β we have β(φ,W ) = β(φ′,W ).

(2. =⇒ 1.) Suppose β(φ,W ) = β(φ′,W ) for each closed walk W of G∗. Let
z = φ − φ′. Thus β(z,W ) = 0 for each closed walk W of G∗. We label the faces of G
with elements of Z as follows. Choose an arbitrary face F0 and label it 0. Then, consider
any face F of G and a path PF of G∗ from F0 to F . Label F with `F = β(z, PF ). Note
that the label of F is independent from the choice of PF . Indeed, for each two paths
P1, P2 from F0 to F , we have P1 − P2 is a closed walk, so β(z, P1 − P2) = 0 and thus
β(z, P1) = β(z, P2). Let us show that z =

∑
F∈F `Fφ(F ).

∑
F∈F

`Fφ(F ) =
∑
e∈G

(`F2 − `F1)φ(e) (face F2 is on the left of e and F1 on the right)

=
∑
e∈G

(β(z, PF2)− β(z, PF1))φ(e) (de�nition of `F )

=
∑
e∈G

β(z, PF2 − PF1)φ(e) (linearity of β)

=
∑
e∈G

β(z, e∗)φ(e) (PF1 + e∗ − PF2 is a closed walk)

=
∑
e∈G

(∑
e′∈G

ze′φ(e∗)e′∗

)
φ(e) (de�nition of β)

=
∑
e∈G

zeφ(e)

= z

So z ∈ F and thus φ, φ′ are homologous. 2

As β(p, d) = 0 when p or d is an everywhere zero �ow, Lemma 5 leads to the
following lemma.

Lemma 6 For any �ow φ of G, the following properties are equivalent to each other:

1. The �ow φ is 0-homologous.

2. For each closed walk W of G∗ we have β(φ,W ) = 0.

3. For each F ∈ F∗, we have β(φ, F ) = 0, and, for each 1 ≤ i ≤ 2g, we have
β(φ,B∗i ) = 0.
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3.2 General characterization

Consider a map G on an orientable surface of genus g. The mapping of Figure 6 shows
how an edge angle labeling of G can be mapped to an orientation of the edges with
edges oriented in one direction or in two opposite directions. These edges can be de�ned
more naturally in the primal-dual-completion of G.

The primal-dual-completion Ĝ is the map obtained from simultaneously embed-
ding G and G∗ such that vertices of G∗ are embedded inside faces of G and vice-versa.
Moreover, each edge crosses its dual edge in exactly one point in its interior, which also
becomes a vertex of Ĝ. Hence, Ĝ is a bipartite graph with one part consisting of primal-
vertices and dual-vertices and the other part consisting of edge-vertices (of degree four).
Each face of Ĝ is a quadrangle incident to one primal-vertex, one dual-vertex and two
edge-vertices. Actually, the faces of Ĝ are in correspondence with the angles of G. This
means that angle labelings of G correspond to face labelings of Ĝ.

Given α : V → N, an orientation of G is an α-orientation [11] if for every vertex
v ∈ V its out-degree d+(v) equals α(v). We call an orientation of Ĝ a mod3-orientation
if it is an α-orientation for a function α satisfying :

α(v) ≡

{
0 (mod 3) if v is a primal- or dual-vertex,

1 (mod 3) if v is an edge-vertex.

Note that an edge angle labeling of G corresponds to a mod3-orientation of Ĝ,
by the mapping of Figure 13, where the three types of edges are represented. Type 0
corresponds to an edge-vertex of out-degree four. Type 1 and type 2 both correspond
to an edge-vertex of out-degree 1; in type 1 (resp. type 2) the outgoing edge goes to a
primal-vertex (resp. dual-vertex). In all cases we have d+(v) ≡ 1 ( mod 3) if v is an edge-
vertex. By Lemma 1, the labeling is also vertex and face. Thus, d+(v) ≡ 0 (mod 3)
if v is a primal- or dual-vertex.

1

1 1

1

2

0

1

1

0 2

11

Type 0 Type 1 Type 2

Figure 13: How to map an edge angle labeling to a mod 3-orientation of the primal-dual
completion. Primal-vertices are black, dual-vertices are white and edge-vertices are gray.
This serves as a convention for the other �gures.

As mentioned earlier, de Fraysseix and Ossona de Mendez [15] give a bijection
between internal 3-orientations and Schnyder woods of planar triangulations. Felsner [11]
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generalizes this result for planar Schnyder woods and orientations of the primal-dual
completion having prescribed out-degrees. The situation is more complicated in higher
genus (see Figure 5). It is not enough to prescribe out-degrees in order to characterize
orientations corresponding to edge angle labelings. Indeed, some mod3-orientations
of Ĝ cannot be obtained from an edge angle labeling of G through the mapping of
Figure 13. We call an orientation of Ĝ corresponding to an edge angle labeling of G a
Schnyder orientation. Note that such an orientation is necessarily a mod3-orientation.
In this section we characterize which orientations of Ĝ are Schnyder orientations.

Consider an orientation of the primal-dual completion Ĝ. Let Out = {(u, v) ∈
E(Ĝ) | v is an edge-vertex}, i.e. the set of edges of Ĝ which are going from a primal-
or dual-vertex to an edge-vertex. We call these edges out-edges. Let Ĝ∗ denote the dual
of Ĝ. For a �ow φ of Ĝ∗, we de�ne δ(φ) := β(Out, φ), where Out is interpreted as the
characteristic �ow of the edge set Out. More intuitively, if W is a walk of Ĝ∗, then:

δ(W ) = #out-edges crossing W from left to right
−#out-edges crossing W from right to left.

The bilinearity of β implies the linearity of δ. The following lemma gives a
necessary and su�cient condition for an orientation to be a Schnyder orientation.

Lemma 7 An orientation of Ĝ is a Schnyder orientation if and only if each closed walk
W of Ĝ∗ satis�es δ(W ) ≡ 0 (mod 3).

Proof. (=⇒) Consider an edge angle labeling ` of G and the corresponding Schnyder
orientation (see Figure 13). Figure 14 illustrates how δ counts the variation of the label
when going from one face of Ĝ to another face of Ĝ . The represented cases correspond
to a walk W of Ĝ∗ consisting of just one edge. If the edge of Ĝ crossed by W is not
an out-edge, then the two labels in the face are the same and δ(W ) = 0. If the edge
crossed byW is an out-edge, then the labels di�er by one. IfW is going counterclockwise
around a primal- or dual-vertex, then the label increases by 1 (mod 3) and δ(W ) = 1.
If W is going clockwise around a primal- or dual-vertex then the label decreases by
1 (mod 3) and δ(W ) = −1. One can check that this is consistent with all the edges
depicted in Figure 13. Thus for each walk W of Ĝ∗ from a face F to a face F ′, the value
of δ(W ) (mod 3) is equal to `(F ′) − `(F ) (mod 3). Thus if W is a closed walk then
δ(W ) ≡ 0 (mod 3).

(⇐=) Consider an orientation of Ĝ such that each closed walk W of Ĝ∗ satis�es
δ(W ) ≡ 0 (mod 3). Pick any face F0 of Ĝ and label it 0. Consider any face F of Ĝ and
a path P of Ĝ∗ from F0 to F . Label F with the value δ(P ) mod 3. Note that the label
of F is independent from the choice of P as for any two paths P1, P2 going from F0 to
F , we have δ(P1) ≡ δ(P2) (mod 3) since δ(P1 − P2) ≡ 0 (mod 3) as P1 − P2 is a closed
walk.

Consider an edge-vertex v of Ĝ and a walk W of Ĝ∗ going clockwise around v.
By assumption δ(W ) ≡ 0 (mod3) and d(v) = 4 so d+(v) ≡ 1 (mod 3). One can check
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W

i

i i+1

i

W

δ(W ) = 0 δ(W ) = 1

Figure 14: How δ counts the variation of the labels.

(see Figure 13) that around an edge-vertex v of out-degree four, all the labels are the
same and thus v corresponds to an edge of G of type 0. One can also check that around
an edge-vertex v of out-degree 1, the labels are in clockwise order, i − 1, i, i, i + 1 for
some i in {0, 1, 2} where the two faces with the same label are incident to the outgoing
edge of v. Thus, v corresponds to an edge of G of type 1 or 2 depending on the outgoing
edge reaching a primal- or a dual-vertex. So the obtained labeling of the faces of Ĝ
corresponds to an edge angle labeling of G and the considered orientation is a Schnyder
orientation. 2

We now study properties of δ w.r.t homology in order to simplify the condition
of Lemma 7. Let F̂∗ be the set of counterclockwise facial walks of Ĝ∗.

Lemma 8 In a mod3-orientation of Ĝ, each F ∈ F̂∗ satis�es δ(F ) ≡ 0 (mod 3).

Proof. If F corresponds to an edge-vertex v of Ĝ, then v has degree exactly four and
out-degree one or four by de�nition of mod3-orientations. So there are exactly zero or
three out-edges crossing F from right to left, and δ(F ) ≡ 0 (mod 3).

If F corresponds to a primal- or dual-vertex v, then v has out-degree 0 (mod 3)
by de�nition of mod 3-orientations. So there are exactly 0 (mod 3) out-edges crossing F
from left to right, and δ(F ) ≡ 0 (mod 3). 2

Lemma 9 In a mod3-orientation of Ĝ, if {B1, . . . , B2g} is a set of cycles of Ĝ∗ that
forms a basis for the homology, then for each closed walk W of Ĝ∗ homologous to µ1B1 +
· · ·+ µ2gB2g, we have δ(W ) ≡ µ1δ(B1) + · · ·+ µ2gδ(B2g) (mod3).

Proof. We have W =
∑

F∈F̂∗ λFF +
∑

1≤i≤2g µiBi for some λ ∈ ZF . Then by linearity
of δ and Lemma 8, the claim follows. 2
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Lemma 9 can be used to simplify the condition of Lemma 7 and show that if
{B1, . . . , B2g} is a set of cycles of Ĝ∗ that forms a basis for the homology, then an
orientation of Ĝ is a Schnyder orientation if and only if it is a mod3-orientation such
that δ(Bi) ≡ 0 ( mod 3), for all 1 ≤ i ≤ 2g. Now, we de�ne a new function γ that is used
to formulate a similar characterization theorem (see Theorem 4).

Consider a (not necessarily directed) cycle C of G together with a direction of
traversal. We associate to C its corresponding cycle in Ĝ denoted by Ĉ. We de�ne γ(C)
by:

γ(C) = # edges of Ĝ leaving Ĉ on its right−# edges of Ĝ leaving Ĉ on its left

Since it considers cycles of Ĝ instead of walks of Ĝ∗, it is easier to deal with
parameter γ rather than parameter δ. However γ does not enjoy the same property
w.r.t. homology as δ. For homology we have to consider walks as �ows, but two walks
going several times through a given vertex may have the same characteristic �ow but
di�erent γ. This explains why δ is de�ned �rst. Now we adapt the results for γ.

The value of γ is related to δ by the next lemmas. Let C be a cycle of G with a
direction of traversal. LetWL(C) be the closed walk of Ĝ∗ just on the left of C and going
in the same direction as C (i.e. WL(C) is composed of the dual edges of the edges of Ĝ
incident to the left of Ĉ, see Figure 15). Note that since the faces of Ĝ∗ have exactly one
incident vertex that is a primal-vertex, walk WL(C) is in fact a cycle of Ĝ∗. Similarly,
let WR(C) be the cycle of Ĝ∗ just on the right of C.

C

(C)WL

Figure 15: A cycle C of G, and the corresponding cycle WL(C) of Ĝ∗.

Lemma 10 Consider an orientation of Ĝ and a cycle C of G, then γ(C) = δ(WL(C))+
δ(WR(C)).

Proof. We consider the di�erent cases that can occur. An edge that is entering a primal-
vertex of Ĉ, is not counting in either γ(C), δ(WL(C)), δ(WR(C)). An edge that is leaving
a primal-vertex of Ĉ from its right side (resp. left side) is counting +1 (resp. −1) for
γ(C) and δ(WR(C)) (resp. δ(WL(C))).

For edges incident to edge-vertices of Ĉ both sides have to be considered at the
same time. Let v be an edge-vertex of Ĉ. Vertex v is of degree four so it has exactly
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two edges incident to Ĉ and not on Ĉ. One of these edges, eL, is on the left side of Ĉ
and dual to an edge of WL(C). The other edge, eR, is on the right side of Ĉ and dual
to an edge of WR(C). If eL and eR are both incoming edges for v, then eR (resp. eL)
is counting −1 (resp. +1) for δ(WR(C)) (resp. δ(WL(C))) and not counting for γ(C).
If eL and eR are both outgoing edges for v, then eR and eL are not counting for both
δ(WR(C)), δ(WL(C)) and sums to zero for γ(C). If eL is incoming and eR is outgoing
for v, then eR (resp. eL) is counting 0 (resp. +1) for δ(WR(C)) (resp. δ(WL(C))), and
counting +1 (resp. 0) for γ(C). The last case, eL is outgoing and eR is incoming, is
symmetric and one can see that in the four cases we have that eL and eR count the same
for γ(C) and δ(WL(C)) + δ(WR(C)). We conclude γ(C) = δ(WL(C)) + δ(WR(C)). 2

Lemma 11 In a mod3-orientation of G, a cycle C of G satis�es

δ(WL(C)) ≡ 0 (mod 3) and δ(WR(C)) ≡ 0 (mod 3) ⇐⇒ γ(C) ≡ 0 (mod 3)

Proof. (=⇒) Clear by Lemma 10.

(⇐=) Suppose that γ(C) ≡ 0 ( mod 3). Let xL (resp. yL) be the number of edges
of Ĝ that are dual to edges of WL(C), that are outgoing for a primal-vertex of Ĉ (resp.
incoming for an edge-vertex of Ĉ). Similarly, let xR (resp. yR) be the number of edges
of Ĝ that are dual to edges of WR(C), that are outgoing for a primal-vertex of Ĉ (resp.
incoming for an edge-vertex of Ĉ). So δ(WL(C)) = yL − xL and δ(WR(C)) = xR − yR.
So by Lemma 10,

γ(C) ≡ 0 (mod 3)

δ(WL(C)) + δ(WR(C)) ≡ 0 (mod 3)

(yL + xR)− (xL + yR) ≡ 0 (mod 3)

Let k be the number of vertices of C. So Ĉ has k primal-vertices, k edge-vertices
and 2k edges. Edge-vertices have out-degree 1 ( mod 3) so their total number of outgoing
edges on Ĉ is −k + (yL + yR) (mod 3). Primal-vertices have out-degree 0 (mod 3) so
their total number of outgoing edges on Ĉ is −(xL + xR) (mod 3). So in total

−k + (yL + yR)− (xL + xR) ≡ 2k (mod 3)

(yL + yR)− (xL + xR) ≡ 0 (mod 3)

By combining this with plus (resp. minus) (yL+xR)−(xL+yR) ≡ 0 ( mod 3), one obtains
that 2δ(WL(C)) = 2(yL − xL) ≡ 0 (mod 3) (resp. 2δ(WR(C)) = 2(xR − yR) ≡ 0 (mod
3)). Since δ(WL(C)) and δ(WR(C)) are integers we obtain δ(WL(C)) ≡ 0 (mod 3) and
δ(WR(C)) ≡ 0 (mod 3). 2

Finally we have the following characterization theorem concerning Schnyder ori-
entations:
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Theorem 4 Consider a map G on an orientable surface of genus g. Let {B1, . . . , B2g} be
a set of cycles of G that forms a basis for the homology. An orientation of Ĝ is a Schnyder
orientation if and only if it is a mod3-orientation such that γ(Bi) ≡ 0 (mod 3), for all
1 ≤ i ≤ 2g.

Proof. (=⇒) Consider an edge angle labeling ` of G and the corresponding Schnyder
orientation (see Figure 13). Type 0 edges correspond to edge-vertices of out-degree four,
while type 1 and 2 edges correspond to edge-vertices of out-degree 1. Thus d+(v) ≡
1 (mod 3) if v is an edge-vertex. By Lemma 1, the labeling is vertex and face.
Thus d+(v) ≡ 0 (mod 3) if v is a primal- or dual-vertex. So the orientation is a mod3-
orientation. By Lemma 7, we have δ(W ) ≡ 0 (mod 3) for each closed walk W of Ĝ∗. So
we have that δ(WL(B1)), . . . , δ(WL(B2g)), δ(WR(B1)), . . . , δ(WR(B2g)) are all congruent
to 0 (mod 3). Thus, by Lemma 11, we have γ(Bi) ≡ 0 (mod 3), for all 1 ≤ i ≤ 2g.

(⇐=) Consider a mod3-orientation of G such that γ(Bi) ≡ 0 (mod 3), for all
1 ≤ i ≤ 2g. By Lemma 11, we have δ(WL(Bi)) ≡ 0 (mod 3) for all 1 ≤ i ≤ 2g.
Moreover {WL(B1), . . . ,WL(B2g)} forms a basis for the homology. So by Lemma 9,
δ(W ) ≡ 0 (mod 3) for each closed walk W of Ĝ∗. So the orientation is a Schnyder
orientation by Lemma 7. 2

The condition of Theorem 4 is easy to check: choose 2g cycles that form a basis
for the homology and check whether γ is congruent to 0 mod 3 for each of them.

When restricted to triangulations and to edges of type 1 only, the de�nition of
γ can be simpli�ed. Consider a triangulation G on an orientable surface of genus g and
an orientation of the edges of G. Figure 16 shows how to transform the orientation of
G into an orientation of Ĝ. Note that all the edge-vertices have out-degree exactly 1.
Furthermore, all the dual-vertices only have outgoing edges and since we are considering
triangulations they have out-degree exactly three.

G Ĝ

Figure 16: How to transform an orientation of a triangulation G into an orientation of
Ĝ.

Then the de�nition of γ can be simpli�ed by the following:

γ(C) = # edges of G leaving C on its right−# edges of G leaving C on its left
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Note that comparing to the general de�nition of γ, only the symbols ˆ have been
removed.

The orientation of the toroidal triangulation on the left of Figure 5 is an example
of a 3-orientation of a toroidal triangulation where some non-contractible cycles have
value γ not congruent to 0 mod 3. The value of γ for the three loops is 2, 0 and −2. This
explains why this orientation does not correspond to a Schnyder wood. On the contrary,
on the right of the �gure, the three loops have γ equal to 0 and we have a Schnyder
wood.

4 Structure of Schnyder orientations

We now investigate how two Schnyder orientations can di�er, that is for which set of
edges their orientations di�er. We will see that these sets have homological properties
that are de�ned at the beginning of the section. We will then see that given a Schnyder
orientation, the set of orientations that di�er on a 0-homologous subgraph are also Schny-
der orientations, and we will see in the second subsection how those form a distributive
lattice, as in the planar case.

4.1 Transformations between Schnyder orientations

We investigate the structure of the set of Schnyder orientations of a given graph. For that
purpose we need some de�nitions that are given on a general map G and then applied
to Ĝ.

Consider a map G on an orientable surface of genus g. Given two orientations
D and D′ of G, let D \D′ denote the subgraph of D induced by the edges that are not
oriented as in D′.

An oriented subgraph T of G is partitionable if its edge set can be partitioned
into three sets T0, T1, T2 such that all the Ti are pairwise homologous, i.e. Ti − Tj ∈ F
for i, j ∈ {0, 1, 2}. An oriented subgraph T of G is called a topological Tutte-orientation
if β(T,W ) ≡ 0 (mod 3) for every closed walk W in G∗ (more intuitively, the number of
edges crossing W from left to right minus the number of those crossing W from right to
left is divisible by three).

The name �topological Tutte-orientation� comes from the fact that an oriented
graph T is called a Tutte-orientation if the di�erence of out-degree and in-degree is
divisible by three, i.e. d+(v) − d−(v) ≡ 0 (mod 3), for every vertex v. So a topological
Tutte-orientation is a Tutte orientation, since the latter requires the condition of the
topological Tutte orientation only for the walks W of G∗ going around a vertex v of G.

The notions of partitionable and topological Tutte-orientation are equivalent:

Lemma 12 An oriented subgraph of G is partitionable if and only if it is a topological
Tutte-orientation.
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Proof. (=⇒) If T is partitionable, then by de�nition it is the disjoint union of three
homologous edge sets T0, T1, and T2. Hence by Lemma 5, β(T0,W ) = β(T1,W ) =
β(T2,W ) for each closed walk W of G∗. By linearity of β this implies that β(T,W ) ≡
0 (mod 3) for any closed walk W of G∗. So T is a topological Tutte-orientation.

(⇐=) Let T be a topological Tutte-orientation of G, i.e. β(T,W ) ≡ 0 (mod 3)
for each closed walk W of G∗. In the following, T -faces are the faces of T considered
as an embedded graph. Note that T -faces are not necessarily disks. Let us introduce a
{0, 1, 2}-labeling of the T -faces. Label an arbitrary T -face F0 by 0. For each T -face F ,
�nd a path P of G∗ from F0 to F . Label F with β(T, P ) (mod3). Note that the label of
F is independent from the choice of P by our assumption on closed walks. For 0 ≤ i ≤ 2,
let Ti be the set of edges of T with two incident T -faces labeled i−1 and i+1. Note that
an edge of Ti has label i − 1 on its left and label i + 1 on its right. The sets Ti form a
partition of the edges of T . Let Fi be the counterclockwise facial walks of G that are in
a T -face labeled i. We have φ(Ti+1)−φ(Ti−1) =

∑
F∈Fi

φ(F ), so the Ti are homologous.
2

Let us re�ne the notion of partitionable. Denote by E the set of oriented Eulerian
subgraphs of G (i.e. the oriented subgraphs of G where each vertex has the same in- and
out-degree). Consider a partitionable oriented subgraph T of G, with homologous edge
sets T0, T1, T2. We say that T is Eulerian-partitionable if Ti ∈ E for all 0 ≤ i ≤ 2. Note
that if T is Eulerian-partitionable then it is Eulerian. Note that an oriented subgraph
T of G that is 0-homologous is also Eulerian and thus Eulerian-partitionable (with the
partition T, ∅, ∅).

We now investigate the structure of Schnyder orientations. For that purpose,
consider a map G on an orientable surface of genus g and apply the above de�nitions
and results to orientations of Ĝ.

Let D,D′ be two orientations of Ĝ such that D is a Schnyder orientation and T =
D\D′. Note that summing φ(D), and −φ(D′) the edges of T are counted twice, while the
other edges cancel out. Thus 2φ(T ) = φ(D)− φ(D′), and T is 0-homologous if and only
if D,D′ are homologous. Let Out = {(u, v) ∈ E(D) | v is an edge-vertex}. Similarly,
let Out′ = {(u, v) ∈ E(D′) | v is an edge-vertex}. Note that an edge of T is either in
Out or in Out′ (but oriented in the opposite direction), so φ(T ) = φ(Out)−φ(Out′). By
Lemma 7, for any closed walk W of Ĝ∗, β(Out,W ) ≡ 0 (mod 3). The three following
lemmas give necessary and su�cient conditions on T for D′ being a Schnyder orientation.

Lemma 13 D′ is a Schnyder orientation if and only if T is partitionable.

Proof. Let D′ is a Schnyder orientation. By Lemma 7, this is equivalent to the fact that
for each closed walk W of Ĝ∗, we have β(Out′,W ) ≡ 0 (mod 3). Since β(Out,W ) ≡
0 (mod 3), this is equivalent to the fact that for any closed walk W of Ĝ∗, we have
β(T,W ) ≡ 0 (mod 3). Finally, by Lemma 12 this is equivalent to T being partitionable.
2
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Lemma 14 D′ is a Schnyder orientation having the same out-degrees as D if and only
if T is Eulerian-partitionable.

Proof. (=⇒) Suppose D′ is a Schnyder orientation having the same out-degrees as D.
Lemma 13 implies that T is partitionable into homologous T0, T1, T2. By Lemma 5,
for each closed walk W of Ĝ∗, we have β(T0,W ) = β(T1,W ) = β(T2,W ). Since D,D′

have the same out-degrees, we have that T is Eulerian. Consider a vertex v of Ĝ and a
walk Wv of Ĝ∗ going counterclockwise around v. For each oriented subgraph H of Ĝ∗,
we have d+H(v)− d−H(v) = β(H,Wv), where d

+
H(v) and d−H(v) denote the out-degree and

in-degree of v restricted to H, respectively. Since T is Eulerian, we have β(T,Wv) = 0.
Since β(T0,Wv) = β(T1,Wv) = β(T2,Wv) and

∑
β(Ti,Wv) = β(T,Wv) = 0, we obtain

that β(T0,Wv) = β(T1,Wv) = β(T2,Wv) = 0. So each Ti is Eulerian.

(⇐=) Suppose T is Eulerian-partitionable. Then Lemma 13 implies that D′ is
a Schnyder orientation. Since T is Eulerian, the two orientations D,D′ have the same
out-degrees. 2

Consider {B1, . . . , B2g} a set of cycles of G that forms a basis for the homology.
For Γ ∈ Z2g, an orientation of Ĝ is of type Γ if γ(Bi) = Γi for all 1 ≤ i ≤ 2g.

Lemma 15 D′ is a Schnyder orientation having the same out-degrees and the same
type as D (for the considered basis) if and only if T is 0-homologous (i.e. D,D′ are
homologous).

Proof. (=⇒) Suppose D′ is a Schnyder orientation having the same out-degrees and
the same type as D. Then, Lemma 14 implies that T is Eulerian-partitionable and
thus Eulerian. As already observed in the proof of Lemma 14, this implies that for
each F ∈ F̂∗, we have β(T, F ) = 0. Moreover, for 1 ≤ i ≤ 2g, consider the region Ri
between WL(Bi) and WR(Bi) containing Bi. Since T is Eulerian, it is going in and out
of Ri the same number of times. So β(T,WL(Bi)−WR(Bi)) = 0. Since D,D′ have the
same type, we have γD(Bi) = γD′(Bi). So by Lemma 10, δD(WL(Bi)) + δD(WR(Bi)) =
δD′(WL(Bi)) + δD′(WR(Bi)). Thus β(T,WL(Bi) +WR(Bi)) = β(Out−Out′,WL(Bi) +
WR(Bi)) = δD(WL(Bi))+δD(WR(Bi))−δD′(WL(Bi))−δD′(WR(Bi)) = 0. By combining
this with the previous equality, we obtain β(T,WL(Bi)) = β(T,WR(Bi)) = 0 for all
1 ≤ i ≤ 2g. As {WL(B1), . . . ,WL(B2g)} forms a basis for the homology, we thus have by
Lemma 6 that T is 0-homologous.

(⇐=) Suppose that T is 0-homologous. Then T is in particular Eulerian-
parti-tionable (with the partition T, ∅, ∅). So Lemma 14 implies that D′ is a Schny-
der orientation with the same out-degrees as D. Since T is 0-homologous, by
Lemma 6, for all 1 ≤ i ≤ 2g, we have β(T,WL(Bi)) = β(T,WR(Bi)) = 0. Thus
δD(WL(Bi)) = β(Out,WL(Bi)) = β(Out′,WL(Bi)) = δD′(WL(Bi)) and δD(WR(Bi)) =
β(Out,WR(Bi)) = β(Out′,WR(Bi)) = δD′(WR(Bi)). So by Lemma 10, γD(Bi) =
δD(WL(Bi))+ δD(WR(Bi)) = δD′(WL(Bi)) + δD′(WR(Bi)) = γD′(Bi). So D,D′ have
the same type. 2
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Lemma 15 implies that when you consider Schnyder orientations having the same
out-degrees the property that they have the same type does not depend on the choice of
the basis since being homologous does not depend on the basis. So we have the following:

Lemma 16 If two Schnyder orientations have the same out-degrees and the same type
(for the considered basis), then they have the same type for any basis.

Lemma 13, 14 and 15 are summarized in the following theorem (where by
Lemma 16 we do not have to assume a particular choice of a basis for the third item):

Theorem 5 Let G be a map on an orientable surface and D,D′ orientations of Ĝ such
that D is a Schnyder orientation and T = D \D′. We have the following:

• D′ is a Schnyder orientation if and only if T is partitionable.

• D′ is a Schnyder orientation having the same out-degrees as D if and only if T is
Eulerian-partitionable.

• D′ is a Schnyder orientation having the same out-degrees and the same type as D
if and only if T is 0-homologous (i.e. D,D′ are homologous).

We show in the next section that the set of Schnyder orientations that are ho-
mologous (see third item of Theorem 5) carries a structure of distributive lattice.

4.2 The distributive lattice of homologous orientations

Consider a partial order ≤ on a set S. Given two elements x, y of S, let m(x, y) (resp.
M(x, y)) be the set of elements z of S such that z ≤ x and z ≤ y (resp. z ≥ x and
z ≥ y). If m(x, y) (resp. M(x, y)) is not empty and admits a unique maximal (resp.
minimal) element, we say that x and y admit a meet (resp. a join), noted x ∨ y (resp.
x ∧ y). Now, (S,≤) is a lattice if each pair of elements of S admits a meet and a join.
Thus, in particular a (�nite) lattice has a unique minimal (resp. maximal) element. A
lattice is distributive if the two operators ∨ and ∧ are distributive over each other.

For the sake of generality, in this subsection we consider that maps may have loops
or multiple edges. Consider a map G on an orientable surface and a given orientation
D0 of G. Let O(G,D0) be the set of all the orientations of G that are homologous
to D0. In this section we prove that O(G,D0) forms a distributive lattice. We show
some additional interesting properties that are used in a recent paper by Despré, the
�rst author, and the third author [8]. This generalizes results for the plane obtained by
Ossona de Mendez [24] and Felsner [11]. The distributive lattice structure can also be
derived from a result of Propp [26] interpreted on the dual map, see the discussion below
Theorem 6.

In order to de�ne an order on O(G,D0), �x an arbitrary face f0 of G and let F0 be
its counterclockwise facial walk. Let F ′ = F\{F0} (where F is the set of counterclockwise
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facial walks of G as de�ned earlier). Note that φ(F0) = −
∑

F∈F ′ φ(F ). Since the
characteristic �ows of F ′ are linearly independent, any oriented subgraph of G has at
most one representation as a combination of characteristic �ows of F ′. Moreover the 0-
homologous oriented subgraphs of G are precisely the oriented subgraphs that have such a
representation. We say that a 0-homologous oriented subgraph T of G is counterclockwise
(resp. clockwise) if its characteristic �ow can be written as a combination with positive
(resp. negative) coe�cients of characteristic �ows of F ′, i.e. φ(T ) =

∑
F∈F ′ λFφ(F ),

with λ ∈ N|F ′| (resp. −λ ∈ N|F ′|). Given two orientations D,D′, of G we set D ≤f0 D′
if and only if D \D′ is counterclockwise. Then we have the following theorem.

Theorem 6 ([26]) Let G be a map on an orientable surface given with a particular
orientation D0 and a particular face f0. Let O(G,D0) the set of all the orientations of
G that are homologous to D0. We have (O(G,D0),≤f0) is a distributive lattice.

We attribute Theorem 6 to Propp even if it is not presented in this form in [26].
Here we do not introduce Propp's formalism, but provide a new proof of Theorem 6 (as
a consequence of the forthcoming Proposition 3). This allows us to introduce notions
used later in the study of this lattice. It is notable that the study of this lattice found
applications in [8], where the authors found a bijection between toroidal triangulations
and unicellular toroidal maps.

To prove Theorem 6, we need to de�ne the elementary �ips that generates the
lattice. We start by reducing the graph G. We call an edge of G rigid with respect to
O(G,D0) if it has the same orientation in all elements of O(G,D0). Rigid edges do not
play a role for the structure of O(G,D0). We delete them from G and call the obtained
embedded graph G̃. This graph is embedded but it is not necessarily a map, as some
faces may not be homeomorphic to open disks. Note that if all the edges are rigid, i.e.
|O(G,D0)| = 1, then G̃ has no edges.

Lemma 17 Given an edge e of G, the following are equivalent:

1. e is non-rigid

2. e is contained in a 0-homologous oriented subgraph of D0

3. e is contained in a 0-homologous oriented subgraph of D, for each D ∈ O(G,D0)

Proof. (1 =⇒ 3) Let D ∈ O(G,D0). If e is non-rigid, then it has a di�erent orientation
in two elements D′, D′′ of O(G,D0). Then we can assume by symmetry that e has a
di�erent orientation in D and D′ (otherwise in D and D′′ by symmetry). Since D,D′

are homologous to D0, they are also homologous to each other. So T = D \ D′ is a
0-homologous oriented subgraph of D that contains e.

(3 =⇒ 2) Trivial since D0 ∈ O(G,D0)

(2 =⇒ 1) If an edge e is contained in a 0-homologous oriented subgraph T of
D0, then let D be the element of O(G,D0) such that T = D0 \D. Clearly e is oriented
di�erently in D and D0, thus it is non-rigid. 2
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Note that by Lemma 17, one can build G̃ by keeping only the edges that are
contained in a 0-homologous oriented subgraph of D0. Denote by F̃ the set of oriented
subgraphs of G̃ corresponding to the boundaries of faces of G̃ considered counterclockwise.
Note that for each F̃ ∈ F̃ , its characteristic �ow can be written φ(F̃ ) =

∑
F∈X

F̃
φ(F ),

where X
F̃

corresponds to the faces of F that lie inside F̃ . Let f̃0 be the face of G̃

containing f0 and F̃0 be the element of F̃ corresponding to the boundary of f̃0. Let
F̃ ′ = F̃ \ {F̃0}. Note that for F̃ ∈ F̃ ′ we have φ(F̃ ) =

∑
F∈X

F̃
φ(F ), where X

F̃
⊆ F ′

(i.e. f0 /∈ XF̃
). We thus have that every element of F̃ ′ is counterclockwise.

We prove in Proposition 3 that the elements of F̃ ′ are precisely the elementary
�ips which su�ce to generate the entire distributive lattice (O(G,D0),≤f0). Towards

this aim we �rst prove two technical lemmas concerning F̃ ′:

Lemma 18 Let D ∈ O(G,D0) and T be a non-empty 0-homologous oriented subgraph
of D. Then there exist a partition of T into 0-homologous oriented subgraphs T1, . . . , Tk
such that φ(T ) =

∑
1≤i≤k φ(Ti), and, for 1 ≤ i ≤ k, there exists X̃i ⊆ F̃ ′ and εi ∈ {−1, 1}

such that φ(Ti) = εi
∑

F̃∈X̃i
φ(F̃ ).

Proof. Since T is 0-homologous, we have φ(T ) =
∑

F∈F ′ λFφ(F ), for λ ∈ Z|F ′|. Let
λf0 = 0. Thus we have φ(T ) =

∑
F∈F λFφ(F ). Let λmin = minF∈F λF and λmax =

maxF∈F λF . We may have λmin = 0 or λmax = 0 but not both since T is non-empty.
For 1 ≤ i ≤ λmax, let Xi = {F ∈ F ′ |λF ≥ i} and εi = 1. Let X0 = ∅ and ε0 = 1. For
λmin ≤ i ≤ −1, let Xi = {F ∈ F ′ |λF ≤ i} and εi = −1. For λmin ≤ i ≤ λmax, let Ti
be the 0-homologous oriented subgraph such that φ(Ti) = εi

∑
F∈Xi

φ(F ). Note that we
have φ(T ) =

∑
λmin≤i≤λmax

φ(Ti).

Since T is an oriented subgraph, we have φ(T ) ∈ {−1, 0, 1}|E(G)|. Thus for each
edge of G, incident to faces F1 and F2, we have (λF1 − λF2) ∈ {−1, 0, 1}. So, for
1 ≤ i ≤ λmax, the oriented graph Ti is the border between the faces with λ value equal
to i and i − 1. Symmetrically, for λmin ≤ i ≤ −1, the oriented graph Ti is the border
between the faces with λ value equal to i and i + 1. So every edge of T is contained in
exactly one Ti, and all the Ti are edge disjoint and are oriented subgraphs of T .

Let X̃i = {F̃ ∈ F̃ ′ |φ(F̃ ) =
∑

F∈X′ φ(F ) for some X ′ ⊆ Xi}. Since Ti is 0-
homologous, the edges of Ti can be reversed in D to obtain another element of O(G,D0).
Thus there is no rigid edge in Ti. Thus φ(Ti) = εi

∑
F∈Xi

φ(F ) = εi
∑

F̃∈X̃i
φ(F̃ ). 2

Lemma 19 Let D ∈ O(G,D0) and T be a non-empty 0-homologous oriented subgraph
of D such that there exists X̃ ⊆ F̃ ′ and ε ∈ {−1, 1} satisfying φ(T ) = ε

∑
F̃∈X̃ φ(F̃ ).

Then there exists F̃ ∈ X̃ such that ε φ(F̃ ) corresponds to an oriented subgraph of T .

Proof. The proof is done by induction on |X̃|. Assume that ε = 1 (the case ε = −1 is
proved similarly).
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If |X̃| = 1, then the conclusion is clear since φ(T ) =
∑

F̃∈X̃ φ(F̃ ). We now assume

that |X̃| > 1. Towards a contradiction, suppose that for each F̃ ∈ X̃ we do not have

the conclusion, i.e φ(F̃ )e 6= φ(T )e for some e ∈ F̃ . Let F̃1 ∈ X̃ and e ∈ F̃1 such that

φ(F̃1)e 6= φ(T )e. Since F̃1 is counterclockwise, we have F̃1 on the left of e. Let F̃2 ∈ F̃
that is on the right of e. Note that φ(F̃1)e = −φ(F̃2)e and for any other face F̃ ∈ F̃ ,
we have φ(F̃ )e = 0. Since φ(T ) =

∑
F̃∈X̃ φ(F̃ ), we have F̃2 ∈ X̃ and φ(T )e = 0. By

possibly swapping the role of F̃1 and F̃2, we can assume that φ(D)e = φ(F̃1)e, i.e., e is

oriented the same way in F̃1 and D. Since e is not rigid, there exists an orientation D′

in O(G,D0) such that φ(D)e = −φ(D′)e.

Let T ′ be the non-empty 0-homologous oriented subgraph ofD such that T ′ = D\
D′. Lemma 18 implies that T ′ admits a partition into 0-homologous oriented subgraphs
T1, . . . , Tk such that φ(T ′) =

∑
1≤i≤k φ(Ti), and, for 1 ≤ i ≤ k, there exists X̃i ⊆ F̃ ′

and εi ∈ {−1, 1} such that φ(Ti) = εi
∑

F̃∈X̃i
φ(F̃ ). Since T ′ is the disjoint union of

T1, . . . , Tk, there exists 1 ≤ i ≤ k, such that e is an edge of Ti. Assume by symmetry
that e is an edge of T1. Since φ(T1)e = φ(D)e = φ(F̃1)e, we have ε1 = 1, F̃1 ∈ X̃1 and

F̃2 /∈ X̃1.

Let Ỹ = X̃∩X̃1. Thus F̃1 ∈ Ỹ and F̃2 /∈ Ỹ . So |Ỹ | < |X̃|. Let TỸ be the oriented

subgraph of G such that T
Ỹ

=
∑

F̃∈Ỹ φ(F̃ ). Note that the edges of T (resp. T1) are

those incident to exactly one face of X̃ (resp. X̃1). Similarly every edge of T
Ỹ
is incident

to exactly one face of Ỹ = X̃ ∩ X̃1, i.e. it has one incident face in Ỹ = X̃ ∩ X̃1 and the
other incident face not in X̃ or not in X̃1. In the �rst case this edge is in T , otherwise
it is in T1. So every edge of T

Ỹ
is an edge of T ∪ T1. Hence TỸ is an oriented subgraph

of D. So we can apply the induction hypothesis on T
Ỹ
. This implies that there exists

F̃ ∈ Ỹ such that F̃ is an oriented subgraph of D. Since Ỹ ⊆ X̃, this is a contradiction
to our assumption. 2

We need the following characterization of distributive lattice from [12]:

Theorem 7 ([12]) An oriented graph H = (V,E) is the Hasse diagram of a distributive
lattice if and only if it is connected, acyclic, and admits an edge-labeling c of the edges
such that:

• if (u, v), (u,w) ∈ E, with v 6= w, then

(U1) c(u, v) 6= c(u,w) and

(U2) there is z ∈ V such that (v, z), (w, z) ∈ E, c(u, v) = c(w, z), and c(u,w) =
c(v, z).

• if (v, z), (w, z) ∈ E, with v 6= w, then

(L1) c(v, z) 6= c(w, z) and

(L2) there is u ∈ V such that (u, v), (u,w) ∈ E, c(u, v) = c(w, z), and c(u,w) =
c(v, z).
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We de�ne the directed graph H with vertex set O(G,D0). There is an oriented
edge from D1 to D2 in H (with D1 ≤f0 D2) if and only if D1 \D2 ∈ F̃ ′. We de�ne the
label of that edge as c(D1, D2) = D1 \D2. We show that H ful�lls all the conditions of
Theorem 7, and thus obtain the following:

Proposition 3 H is the Hasse diagram of a distributive lattice.

Proof. The characteristic �ows of elements of F̃ ′ form an independent set, hence the
digraph H is acyclic. By de�nition all outgoing and all incoming edges of a vertex of H
have di�erent labels, i.e. the labeling c satis�es (U1) and (L1). If (Du, Dv) and (Du, Dw)
belong to H, then Tv = Du \ Dv and Tw = Du \ Dw are both elements of F̃ ′, so they
must be edge disjoint. Thus, the orientation Dz obtained from reversing the edges of Tw
in Dv or equivalently Tv in Dw is in O(G,D0). This gives (U2). The same reasoning
gives (L2). It remains to show that H is connected.

Given a 0-homologous oriented subgraph T of G, such that T =
∑

F∈F ′ λFφ(F ),
we de�ne s(T ) =

∑
F∈F ′ |λF |.

Let D,D′ be two orientations in O(G,D0), and T = D \ D′. We prove by
induction on s(T ) that D,D′ are connected in H. This is clear if s(T ) = 0 as then
D = D′. So we now assume that s(T ) 6= 0 and so that D,D′ are distinct. Lemma 18
implies that T admits a partition into 0-homologous oriented subgraphs T1, . . . , Tk such
that φ(T ) =

∑
1≤i≤k φ(Ti), and, for 1 ≤ i ≤ k, there exists X̃i ⊆ F̃ ′ and εi ∈ {−1, 1} such

that φ(Ti) = εi
∑

F̃∈X̃i
φ(F̃ ). Lemma 19 applied to T1 implies that there exists F̃1 ∈ X̃1

such that ε1 φ(F̃1) corresponds to an oriented subgraph of T1. Let T ′ be the oriented

subgraph obtained from T by removing the border of F̃1. As φ(T ′) = φ(T ) − ε1φ(F̃1),

we have that T ′ also is 0-homologous. Let D′′ be such that ε1F̃1 = D \D′′. So we have
D′′ ∈ O(G,D0) and there is an edge between D and D′′ in H. Moreover T ′ = D′′ \D′
and s(T ′) = s(T ) − |X

F̃1
| < s(T ), where X

F̃1
corresponds to the faces of F ′ that lie

inside F̃1. So the induction hypothesis on D′′, D′ implies that they are connected in H.
So D,D′ are also connected in H. 2

Note that Proposition 3 gives a proof of Theorem 6 independent from Propp [26].

We continue to further investigate the set O(G,D0).

Proposition 4 For every element F̃ ∈ F̃ , there exists D in O(G,D0) such that F̃ is an
oriented subgraph of D.

Proof. Let F̃ ∈ F̃ . Let D be an element of O(G,D0) that maximizes the number of
edges of F̃ that have the same orientation in F̃ and D, i.e. D maximizes the number of
edges oriented counterclockwise on the boundary of the face of G̃ corresponding to F̃ .
Towards a contradiction, suppose that there is an edge e of F̃ that does not have the
same orientation in F̃ and D. The edge e is in G̃ so it is non-rigid. Let D′ ∈ O(G,D0)
such that e is oriented di�erently in D and D′. Let T = D \ D′. By Lemma 18,
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there exist a partition of T into 0-homologous oriented subgraphs T1, . . . , Tk such that
φ(T ) =

∑
1≤i≤k φ(Ti), and, for 1 ≤ i ≤ k, there exists X̃i ⊆ F̃ ′ and εi ∈ {−1, 1} such

that φ(Ti) = εi
∑

F̃ ′∈X̃i
φ(F̃ ′). W.l.o.g., we can assume that e is an edge of T1. Let D

′′ be

the element of O(G,D0) such that T1 = D \D′′. The oriented subgraph T1 intersects F̃
only on edges of D oriented clockwise on the border of F̃ . So D′′ contains strictly more
edges oriented counterclockwise on the border of the face F̃ than D, a contradiction.
So all the edges of F̃ have the same orientation in D. So F̃ is a 0-homologous oriented
subgraph of D. 2

By Proposition 4, for every element F̃ ∈ F̃ ′ there exists D in O(G,D0) such that
F̃ is an oriented subgraph of D. Thus there exists D′ such that F̃ = D \D′ and D,D′
are linked in H. Thus, F̃ ′ is a minimal set that generates the lattice.

A distributive lattice has a unique maximal (resp. minimal) element. Let Dmax

(resp. Dmin) be the maximal (resp. minimal) element of (O(G,D0),≤f0).

Proposition 5 F̃0 (resp. −F̃0) is an oriented subgraph of Dmax (resp. Dmin).

Proof. By Proposition 4, there exists D in O(G,D0) such that F̃0 is an oriented subgraph
of D. Let T = D \Dmax. Since D ≤f0 Dmax, the characteristic �ow of T can be written

as a combination with positive coe�cients of characteristic �ows of F̃ ′, i.e. φ(T ) =∑
F̃∈F̃ ′ λFφ(F̃ ) with λ ∈ N|F ′|. So T is disjoint from F̃0. Thus F̃0 is an oriented subgraph

of Dmax. The proof is analogous for Dmin. 2

Proposition 6 Dmax (resp. Dmin) contains no counterclockwise (resp. clockwise) non-
empty 0-homologous oriented subgraph.

Proof. Towards a contradiction, suppose that Dmax contains a counterclockwise non-
empty 0-homologous oriented subgraph T . Then there exists D ∈ O(G,D0) distinct from
Dmax such that T = Dmax\D. We have Dmax ≤f0 D by de�nition of ≤f0 , a contradiction
to the maximality of Dmax. 2

In the de�nition of counterclockwise (resp. clockwise) non-empty 0-homologous
oriented subgraph, used in Proposition 6, the sum is taken over elements of F ′ and thus
does not use F0. In particular, Dmax (resp. Dmin) may contain regions whose boundary
is oriented counterclockwise (resp. clockwise) according to the region but then such a
region contains F0.

We conclude this section by applying Theorem 6 to Schnyder orientations:

Theorem 8 Let G be a map on an orientable surface given with a particular Schnyder
orientation D0 of Ĝ and a particular face f0 of Ĝ. Let S(Ĝ,D0) be the set of all the
Schnyder orientations of Ĝ that have the same out-degrees and same type as D0. We
have that (S(Ĝ,D0),≤f0) is a distributive lattice.
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Proof. By the third item of Theorem 5, we have S(Ĝ,D0) = O(Ĝ,D0). Then the
conclusion holds by Theorem 6. 2

Note that the minimal element of the lattice and its properties (Proposition 3
to 6) are used in [8] to obtain a new bijection concerning toroidal triangulations.

5 Toroidal triangulations

In this section we look speci�cally at the case of toroidal triangulations, for which we
identify a particular lattice characterized in terms of its type (for any choice of a basis).
We prove that this lattice contains all the crossing Schnyder woods [18] - to be de�ned
below.

According to Euler's formula, toroidal maps are such that n−m+ f = 0. Thus
when generalizing Schnyder woods, one can avoid vertices satisfying several times the
Schnyder property (see Figure 3), avoid edges of type 0 (two incoming edges with the
same color, see Figure 6), and the general de�nition of Schnyder woods (see De�nition 6)
can be simpli�ed for toroidal triangulation.

Indeed an edge, N∗-vertex, N∗-face angle labeling of a toroidal triangulation
is in fact a 1-edge, 1-vertex, 1-face angle labeling. One gets this by counting label
changes on the angles around vertices, faces and edges. Around vertices and faces there
are at least 3 changes. Around an edge there are at most 3 changes (see Figure 6). So
3n+3f ≤ 3m. By Euler's formula we have equality 3n+3f = 3m. So around all vertices,
faces and edges there are exactly 3 changes. This implies that vertices and faces are of
type 1, and that edges are of type 1 or 2. Since for triangulations 3f = 2m, we have that
m = 3n. Since every vertex is of type 1, there are exactly 3n arcs and thus all the edges
carry exactly one arc each, that is all the edges are of type 1.

Let G be a toroidal triangulation given with a Schnyder wood. The graph Gi
denotes the directed graph induced by the edges of color i. Each graph Gi has exactly
n edges. For each connected component of Gi, every vertex has exactly one outgoing
edge. Thus each connected component of Gi has exactly one directed cycle that is called
a monochromatic cycle of color i. By Lemma 3 and the Schnyder property, it is not
di�cult to see that for a given color i ∈ {0, 1, 2}, all i-cycles are non-contractible, non
intersecting and weakly homologous. Moreover, two monochromatic cycles of distinct
colors are intersecting if and only if they are not weakly homologous.

Monochromatic cycles capture some �global� property that a Schnyder wood may
have. A Schnyder wood of a toroidal triangulation is said to be crossing, if for each
pair i, j of di�erent colors, there exists a monochromatic cycle of color i intersecting a
monochromatic cycle of color j. In [18], the following theorem is proved:

Theorem 9 ([18]) Every toroidal triangulation admits a crossing Schnyder wood.

Note that the right side of Figure 8 is an example of a crossing Schnyder wood of
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a toroidal triangulation. On the contrary Figure 17 gives an example of a non-crossing
Schnyder wood of a toroidal triangulation (all the monochromatic cycles are vertical).

Figure 17: A Schnyder wood of a toroidal triangulation that is non-crossing.

Crossing Schnyder woods play a particular role w.r.t. to the type of a Schnyder
orientation as de�ned in Section 4.1. Consider a toroidal triangulation G and a pair
{B1, B2} of cycles that form a basis for the homology. Figure 16 shows how to transform
an orientation ofG into an orientation of Ĝ. With this transformation a Schnyder wood of
G naturally corresponds to a Schnyder orientation of Ĝ. This allows us to not distinguish
between a Schnyder wood or the corresponding Schnyder orientation of Ĝ. Recall, that
the type of a Schnyder orientation of Ĝ in the basis {B1, B2} is the pair (γ(B1), γ(B2)).
Then we have the following lemma:

Lemma 20 A crossing Schnyder wood is of type (0, 0) (for the considered basis).

Proof. Let us prove that for any non-contractible cycle B we have γ(B) = 0. As observed
at the end of Section 3, for triangulations γ(B) = 0 if and only if the vertices of B have
as many edges leaving on one side as edges leaving on the other side. Consider an in�nite
walk B∞ of G∞ corresponding to the cycle B. If B is homologous to a monochromatic
cycle (colored i) Ci of G, then it is not homologous to the monochromatic cycles of color
i+ 1 or i− 1 (See Theorem 7 in [18]). We thus assume without loss of generality that B
is not homologous to a monochromatic cycle (colored 1) C1 of G. Let v ∈ B ∩ C1 be a
vertex such that for any copy of v, vi ∈ B∞, the path P1(vi) and B

∞ only intersect at vi.
Let now v0, v1 be two consecutive copies of v in B∞. As B and C1 are not homologous,
the paths P1(v0) and P1(v1) do not intersect. Consider now two vertices u0 ∈ P1(v0)
and u1 ∈ P1(v1) such that either u0 ∈ P2(u1) or u1 ∈ P2(u0). By inverting v0 and v1 if
necessary, we assume that u1 ∈ P2(u0) (see Figure 18). We also assume that the subpath
of P2(u0) between u0 and u1 does not intersect B

∞. This can be achieved by considering
a vertex u0 further away from v0 on P1(v0).

Consider now the �nite plane graph H, bounded by B∞, P1(v0), P1(v1), and
P2(u0). Note that by construction, and by Lemma 4, the outer-boundary of H is a cycle.
It is well known by Euler's formula that if H has n inner vertices and k outer-vertices, it
has exactly 3n+ 2k − 3 edges. This implies that in the considered orientation of G, the
vertices on the boundary have exactly k − 3 edges oriented towards the interior.

By the Schnyder property u0 has no edge leaving towards the interior of H. For
the same reason each of the other vertices on the boundary of H and that do not belong
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v0

v1

u0

u1

B∞

P1(v1)

P1(v0)
P2(u0)

Figure 18: A path B∞ in the universal cover of a toroidal triangulation G with a crossing
Schnyder wood.

to B∞ has exactly one such edge. This implies that if the subpath of B∞ between v0, v1
has length ` (and has `+ 1 vertices), its vertices have `− 1 such edges. Adding the edge
colored 1 leaving from v0 you obtain that the ` vertices of B∞ between v0 (including) and
v1 (excluding) have exactly ` edges leaving on some side of B∞ (the side corresponding
to the interior of H). Since they have ` edges on B∞, we deduce that they have ` edges
leaving on the other side of B∞. Thus γ(B) = 0. 2

A consequence of Lemma 20 is the following:

Theorem 10 (Existence of a canonical lattice) Let G be a toroidal triangulation,
given with a particular crossing Schnyder wood D0, then the set T (G,D0) of all Schnyder
woods of G that have the same type as D0 contains all the crossing Schnyder woods of G.

Recall from Section 4.2, that the set T (G,D0) carries the structure of a distribu-
tive lattice. This lattice contains all the crossing Schnyder woods. Thus Theorem 10
shows the existence of a canonical lattice that is used to build a bijection between toroidal
triangulations and particular maps [8].

Note that T (G,D0) may contain Schnyder woods that are not crossing. The
Schnyder wood of Figure 17 is an example where γ(C) = 0 for each non-contractible
cycle C. So it is of the same type as any crossing Schnyder wood but it is not crossing.
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Note also that there exist Schnyder woods not in T (G,D0). The Schnyder wood of
Figure 19 is an example where the horizontal cycle has value γ equal to ±6, and so this
Schnyder wood is not in T (G,D0).

Figure 19: A Schnyder wood of a toroidal triangulation where γ(C) 6= 0 for a non-
contractible cycle C.

See [19] for a full representation of the lattice T (G,D0) for the toroidal triangu-
lation of Figures 17-19.
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