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Abstract

We prove that every planar graph is the intersection graph of homo-
thetic triangles in the plane1.
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746 D. Gonçalves et al. Homothetic triangle representations of planar graphs

1 Introduction

Here, an intersection representation is a collection of shapes in the plane. The
intersection graph described by such a representation has one vertex per shape,
and two vertices are adjacent if and only if the corresponding shapes intersect.
In the following we only consider shapes that are homeomorphic to disks. In
this context, if for an intersection representation the shapes are interior disjoint,
we call such a representation a contact representation. In such a representation,
a contact point is a point that is in the intersection of (at least) two shapes.

Research on contact representations of (planar) graphs with predefined shapes
started with the work of Koebe in 1936, and was recently widely studied; see
for example the literature for disks [3, 6, 17], triangles [5], homothetic trian-
gles [4, 12, 15, 16, 24], rectangles [9, 20, 25], squares [18, 23], pentagons [11],
hexagons [7], convex bodies [22], or (non-convex) axis aligned polygons [1, 2, 14].
In the present article, we focus on homothetic triangles. It has been shown that
many planar graphs admit a contact representation with homothetic triangles.

Figure 1: Contact representations with homothetic triangles.

Theorem 1 Every 4-connected planar triangulation admits a contact represen-
tation with homothetic triangles.

Note that one cannot drop the 4-connectedness requirement from Theorem 1.
Indeed, in every contact representation ofK2,2,2 with homothetic triangles, there
are three triangles intersecting in a point (see the right of Figure 1). This
implies that the triangulation (not 4-connected) obtained from K2,2,2 by adding
a degree three vertex in every face does not admit a contact representation with
homothetic triangles. Some questions related to this theorem remain open. For
example, it is believed that if a triangulation T admits a contact representations
with homothetic triangles, it is unique up to some choice for the triangles in the
outer-boundary. However this statement is still not proved. Another line of
research lies in giving another proof to Theorem 1 (a combinatorial one), or in
providing a polynomial algorithm constructing such a representation [8, 24].

Theorem 1 has a nice consequence. It allowed Felsner and Francis [10] to
prove that every planar graph has a contact representation with cubes in R3. In
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the present paper we remain in the plane. Theorem 1 is the building block for
proving our main result. An intersection representation is said simple if every
point belongs to at most two shapes.

Theorem 2 A graph is planar if and only if it has a simple intersection repre-
sentation with homothetic triangles.

This answers a conjecture of Lehmann that planar graphs are max-tolerance
graphs (as max-tolerance graphs have shown to be exactly the intersection
graphs of homothetic triangles [16]). Müller et al. [19] proved that for some
planar graphs, if the triangle corners have integer coordinates, then their in-
tersection representation with homothetic triangles needs coordinates of order
2Ω(n), where n is the number of vertices. The following section is devoted to
the proof of Theorem 2.

2 Intersection representations with homothetic
triangles

It is well known that simple contact representations produce planar graphs. The
following lemma is slightly stronger.

Lemma 3 Consider a graph G = (V,E) given with a simple intersection rep-
resentation C = {c(v) : v ∈ V }. If the shapes c(v) are homeomorphic to disks,
and if for any couple (u, v) ∈ V 2 the set c(u)\ c(v) is non-empty and connected,
then G is planar.

Proof: Observe that since C is simple, the sets c◦(u) = c(u)\
(
∪v∈V \{u}c(v)

)
are

disjoint non-empty connected regions. Let us draw G by first choosing a point
pu inside c◦(u), for representing each vertex u (see Figure 2). Then for each
neighbor v of u, draw a curve inside c◦(u) from pu to the border of c(u) ∩ c(v)
(in the border of c◦(u)) to represent the half-edge of uv incident to u. As the
regions c◦(u) are disjoint and connected, this can be done without crossings.
Finally, for each edge uv it is easy to link its two half edges by drawing a curve
inside c(u)∩ c(v). As the obtained drawing has no crossings, the lemma follows.

�

Note that for any two homothetic triangles ∆ and ∆′, the set ∆ \ ∆′ is
connected. Lemma 3 thus implies the sufficiency of Theorem 2. For proving
Theorem 2 it thus suffices to construct an intersection representation with homo-
thetic triangles for any planar graph G. In fact we restrict ourselves to (planar)
triangulations because any such G is an induced subgraph of a triangulation T
(an intersection representation of T thus contains a representation of G). The
following Proposition 4 thus implies Theorem 2.

From now on we consider a particular triangle. Given a Cartesian coordinate
system, let ∆ be the triangle with corners at coordinates (0, 0), (0, 1) and (1, 0)
(see Figure 3.(a)). Thus the homothets of ∆ have corners of the form (x, y),
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Figure 2: (left) A non-simple intersection representation of K3,3 (right) How to
draw a graph planarly from its simple intersection representation.

(1,0)(0,0)

(0,1)

pt(u)
t(v)

t(w)

(a) (b)

Figure 3: (a) The triangle ∆ (b) The triangles t(u), t(v) and t(w).

(x, y + h) and (x+ h, y) with h > 0, and we call (x, y) their right corner and h
their height.

Proposition 4 For any triangulation T with outer vertices a, b and c, for any
three triangles t(a), t(b), and t(c) homothetic to ∆, that pairewise intersect but
do not intersect (i.e. t(a) ∩ t(b) ∩ t(c) = ∅), and for any ε > 0, there exists an
intersection representation T = {t(v) : v ∈ V (T )} of T with homothets of ∆
such that:

(a) No three triangles intersect.

(b) The representation is bounded by t(a), t(b), and t(c) and the inner triangles
intersecting those outer triangles intersect them on a point or on a triangle
of height less than ε.

Proof: Let us first prove the proposition for 4-connected triangulations. The-
orem 1 tells us that 4-connected triangulations have such a representation if we
relax condition (a) by allowing 3 triangles t(u), t(v) and t(w) to intersect if they
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pairewise intersect in the same single point p (i.e. t(u) ∩ t(v) = t(u) ∩ t(w) =
t(v) ∩ t(w) = p). We call (a’) this relaxation of condition (a), and we call “bad
points”, the points at the intersection of 3 triangles. Let us now reduce their
number (to zero) as follows (and thus fulfill condition (a)).

Note that the corners of the outer triangles do not intersect inner triangles.
This property will be preserved along the construction below.

Let p = (xp, yp) be the highest (i.e. maximizing yp) bad point. If there are
several bad points at the same height, take among those the leftmost one (i.e.
minimizing xp). Then let t(u), t(v) and t(w) be the three triangles pairewise
intersecting at p. Let us denote the coordinates of their right corners by (xu, yu),
(xv, yv) and (xw, yw), and their height by hu, hv and hw. Without loss of
generality we let p = (xu +hu, yu) = (xv, yv) = (xw, yw +hw) (see Figure 3.(b)).
By definition of p it is clear that p is the only bad point around t(u). Note also
that none of t(u), t(v) and t(w) is an outer triangle.

q

pt(u)
t(v)

t(w)

p

q

t(z)

t(u)
t(v)

t(w)

(a) (b)

Figure 4: (a) Step 1 (b) Step 2

Step 1: By definition of p and t(u), the corner q = (xu, yu +hu) of t(u) is not
a bad point. Now inflate t(u) in order to have its right angle in (xu − ε1, yu)
and height hu + ε1, for a sufficiently small ε1 > 0 (see Figure 4.(a)). Here ε1
is sufficiently small to avoid new pairs of intersecting triangles, new triples of
intersecting triangles, or an intersection between t(u) and an outer triangle on a
too big triangle (with height ≥ ε). Since the new t(u) contains the old one, the
triangles originally intersected by t(u) are still intersected. Hence, t(u) intersects
the same set of triangles, and the new representation is still a representation of
T . Since there was no bad point distinct from p around t(u), it is clear by the
choice of ε1 > 0 that the new representation still fulfills (a’) and (b). After this
step we have the following.

Claim 5 The top corner of t(u) is not a contact point.

Step 2: For every triangle t(z) that intersects t(u) on a single point of the
open segment ]p, q[ do the following. Denote (xz, yz) the right corner of t(z),



750 D. Gonçalves et al. Homothetic triangle representations of planar graphs

and hz its height. Note that t(z) is an inner triangle of the representation and
that by definition of p there is no bad point involving t(z). Now inflate t(z) in
order to have its right corner at (xz, yz−ε2), and height hz +ε2, for a sufficiently
small ε2 > 0 (see Figure 4.(b)). Here ε2 is again sufficiently small to avoid new
pairs or new triples of intersecting triangles, and to preserve (b). Since t(z) was
not involved in a bad point, the new representation still fulfills (a’). Since the
new t(z) contains the old one, the triangles originally intersected by t(z) are
still intersected. Hence, t(z) intersects the same set of triangles, and the new
representation is still a representation of T . After doing this to every t(z) we
have the following.

Claim 6 There is no contact point on ]p, q].

p

q

t(u)
t(v)

t(w)

(a) (b)

Figure 5: (a) Step 3 (b) Condition (c)

Step 3: Now translate t(u) downwards in order to have its right corner in
(xu, yu − ε3), and inflate t(v) in order to have its right angle in (xv − ε3, yv),
and height hv + ε3, for a sufficiently small ε3 > 0 (see Figure 5.(a)). Here ε3
is again sufficiently small to avoid new pairs or triples of intersecting triangles,
and to preserve (b) but it is also sufficiently small to preserve the existing pairs
of intersecting triangles. This last requirement can be fulfilled because the only
intersections that t(u) could loose would be contact points on ]p, q], which do
not exist.

After these three steps, it is clear that the new representation has one
bad point less and induces the same graph. This proves the proposition for
4-connected triangulations. The conditions (a) and (b) imply the following
property.

(c) For every inner face xyz of T , there exists a triangle t(xyz), negatively
homothetic to ∆, which interior is disjoint to any triangle t(v) but which
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3 sides are respectively contained in the sides of t(x), t(y) and t(z). Fur-
thermore, there exists an ε′ > 0 such that any triangle t homothetic to
∆ of height ε′ with a side in t(x) ∩ t(xyz) does not intersect any triangle
t(v) with v 6= x, and similarly for y and z (see Figure 5.(b) where the grey
regions represent the union of all these triangles).

We are now ready to prove the proposition for any triangulation T . We
prove this by induction on the number of separating triangles. We just proved
the initial case of that induction, when T has no separating triangle (i.e. when
T is 4-connected). For the inductive step we consider a separating triangle
(u, v, w) and we call Tin (resp. Tout) the triangulation induced by the edges on
or inside (resp. on or outside) the cycle (u, v, w). By induction hypothesis Tout
has a representation fulfilling (a), (b), and (c). Here we choose arbitrarily the
outer triangles and ε. Since uvw is an inner face of Tout there exists a triangle
t(uvw) and an ε′ > 0 (with respect to the inner face uvw) as described in (c).
Then it suffices to apply the induction hypothesis for Tin (which outer vertices
are u, v and w), with the already existing triangles t(u), t(v), and t(w) , and
for ε′′ = min(ε, ε′). Then one can easily check that the obtained representation
fulfills (a), (b), and (c). This completes the proof of the proposition. �

3 Conclusion

Given a graph G its incidence poset is defined on V (G) ∪ E(G) and it is such
that x is greater than y if and only if x is an edge with an end at y. A triangle
poset is a poset which elements correspond to homothetic triangles, and such
that x is greater than y if and only if x is contained inside y. It has been shown
that a graph is planar if and only if its incidence poset is a triangle poset [21]2.
Theorem 2 improves on this result. Indeed, in the obtained representation
the triangles t(u) corresponding to vertices intersect only if those vertices are
adjacent, and the triangles corresponding to edges uv, t(u) ∩ t(v), are disjoint.

In R3, one can define tetrahedral posets as those which elements correspond
to homothetic tetrahedrons in R3, and such that x is greater than y if and
only if x is contained inside y. Unfortunately, graphs whose incidence poset
is tetrahedral do not always admit an intersection representation in R3 with
homothetic tetrahedrons. This is the case for the complete bipartite graph
Kn,n, for a sufficiently large n. It is easy to show that its incidence poset is
tetrahedral. In an intersection representation with homothetic tetrahedrons,
let us prove that the smallest tetrahedron t has a limited number of neighbors
that induce a stable set. Let t′ be the tetrahedron centered at t and with three
times its size. Note that every other tetrahedron intersecting t, intersects t′

on a tetrahedron at least as large as t. The limited space in t′ implies that
one cannot avoid intersections among the neighbors of t, if they are too many.
The interested reader will see in [13] that these graphs defined by tetrahedral
incidence posets also escape a characterization as TD-Delaunay graphs.

2Triangle posets are exactly dimension three posets.
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