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Hand Tracking Accuracy Enhancement by Data
Fusion Using Leap Motion and MYO

Jingxiang Chen, Chao Liu, Rongxin Cui, Chenguang Yang*

Abstract—In this paper, two methods for hand tracking and
and online hand guesture identification is proposed by using
the combination of Leap Motion and MYO armband. With the
proposed methods, We have improved the measurement accuracy
of the palm direction and solved the problem of insufficient
accuracy when the palm are at the limit of the measurment range.
We use the Kalman filter algorithm and the neural network
classification method to process and analyze the data measured
by Leap Motion and MYO, so that the tracking of the operator’s
hand gesture is more accurate and robust even when the hand
is at positions close to the measurement limit of one single
sensor. The improved hand tracking method can be used for
robotic control, teaching by demonstration or teleoperation. The
effectiveness of the proposed methods have been demonstrated
through comparative experiments.

Index Terms—Leap Motion, MYO, sensor fusion, hand track-
ing, hand guesture identification.

I. INTRODUCTION

Nowadays, robot technology is now widely used in more
and more fields, and robotic hand control is one of the impor-
tant areas. The real environment is much more complicated
than the ideal environment. When the robot relies on a single
vision sensor, it is sometimes difficult to get enough accurate
information to perform related tasks [1]. As a result, in order
to improve the accuracy of robot control, it is necessary to
study the method of sensor fusion and apply it to the control
of the robotic hand.

In some areas, robotic teleoperation has done a lot of work,
and these efforts have made great progress on this topic. In the
study of teleoperation, K. Ogawara et al. studied the problem
of visual occlusion in robot remote teaching tasks [2], and J.
Luo, C. Yang et al. conducted a detailed study on enhanced
teleoperation performance using hybrid control and virtual
fixture [3].

In addition to teleoperation and teaching research, the
process of obtaining signals for robot control by sensors is
also worthy of attention. Among the many sources of signals
that can be selected, hand movements are an accurate and
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convenient source of signals [4], which can be used for hand
tracking and gesture recognition. Currently, Kinect developed
by Microsoft is widely used in the work of capturing human
movements. For example, Z. Ping et al. developed a system
that uses the operator’s arms to control the robot arm using
Kinect sensors [5]. However, Kinect is a sensor designed for
full body movements that is not accurate enough to track hand
movements.

Leap Motion, designed to track hand movements, is a better
choice. Compared to Kinect, Leap Motion is a cost-effective
visual sensor. Moreover, Leap Motion is small enough to
be easily used with other devices or installed in a variety
of locations. In addition, Leap Motion officially provides a
mature software interface for developers to use, developers can
easily carry out secondary development. Therefore, there has
been great progress in the research and application of Leap
Motion. For example, T. V. S. N. Venna et al. used Leap
Motion to control the 4-DOF robot [6]. H. Jin et al. use Leap
Motion to capture human hand information and recognize
motion gestures for robotic [7]. D. Bassily et al. use Leap
motion for intuitive and adaptive robotic arm operations to
assist the elderly and the disabled in their daily lives [8]. J. C.
Coelho et al. present an evaluation of 3D pointing tasks using
Leap Motion sensor to support 3D object manipulation [9].

Although Leap Motion has high precision in tracking hand
activity, when the target we are tracking is in a visual blind
spot state, the tracking accuracy will drop a lot, such as when
the palm or arm is blocked or the fingers overlap. This problem
can cause system tracking performance to degrade, which may
lead to some errors in subsequent gesture recognition and
robot control.Therefore, in order to solve such problems, it
is possible to solve the problem by adding another sensor.
For example, in order to solve the problem of occlusion after
hand rotation, H. Jin et al.’s research uses Multi-Leap Motion
for tracking [10]. And for sensor fusion, G. Du et al. [11]
proposed a matrix-weighted multi-sensor optimal information
fusion criterion based on linear minimum variance in the study
of Kalman filtering (KF) and particle filtering (PF).

There are a lot of research to make up for the shortcomings
of single-sensor by multi-sensor. Among them, MYO armband
is a good choice for sensors that work with Leap Motion.
The MYO sensor can provide different types of signals than
Leap Motion, reflecting the state of the operator from another
aspect, and has the advantages of being easy to wear and cost-
effective. A. Boyali et al. used MYO and spectral collabora-
tive representation based classification for gesture recognition
[12].M. E. Benalcazar et al. used a model based on K-nearest



neighbor and dynamic time warping algorithm to identify five
types of gestures for MYO EMG signals [13]. S Rajan et al.
used MYO’s gesture recognition function to conduct research
on physiotherapy healthcare [14].

Using Leap Motion and MYO data to track the hand or arm
at the same time is a study related to sensor fusion. At present,
research on sensor fusion, there are many, for example, C Yang
et al. based on the Kalman filter algorithm for data fusion of
sensors, and had a research about the teleoperation control of
Baxter robot [15]. ECP Silva et al. combined the data of Leap
Motion and MYO to study the tracking problem of the arm
[16].

Working with two Leap Motions simultaneously allows
them to compensate for each other’s measurement dead zones.
However, the method of using two Leap Motion for data fusion
requires two devices to be placed at 60° [10], which constrains
the hand motion space and also causes inconvenience in
hardware configuration of the measurement system, as shown
in Fig. 1. At present, the research using the visual sensor and
Leap Motion is mainly for tracking the position and motion
of the arm or the entire palm. Therefore, work of this paper
not only considers the movement of the palm, but also tackles
the problem of motion tracking of a specific finger.

Fig. 1. The placement of Multi-Leap Motion

In this paper, in order to improve the accuracy of Leap
Motion’s tracking of the operator’s hand, we propose two
methods to combine Leap Motion and MYO data. We combine
Leap Motion data with MYO’s sEMG signal and rotation
signal for better measurement in tracking.

The main contributions of this paper are listed below:
(1) A method of combining Leap Motion and MYO in-

formation using Kalman filtering algorithm is proposed to
improve the accuracy of the direction of the operator’s hand.

(2) Improve the motion recognition accuracy of Leap Mo-
tion under abnormal working conditions by using MYO’s
sEMG signal. In the experiment where the fingers overlap
each other, the method we used accurately identified the active
finger with the accuracy of 99%.

(3) The two methods were verified by experiments. Based
on the results of the experiment, we found that the first method
effectively reduces the deviation between the measured angle
and the actual angle. The second method has 99% accuracy
in identifying single finger activity. Finally, the validity of the
above two methods can be verified.

II. SYSTEM SETUP

In this paper, we use Leap Motion, MYO armband, and a
PC to construct a hand tracking system. The components of the
system are shown in Fig.2. Among them, Leap Motion collects
the finger joint angle of the operator’s hand and the direction
of the hand. In addition, MYO provides the operator’s hand
sEMG signal and rotation signal.

Fig. 2. System Components

A. Leap Motion sensor

As shown in Fig.3, Leap Motion is an important sensor
in the simulation system to track the operator’s finger joint
angle and palm rotation information. Leap Motion’s detection
range is between 25 mm and 600 mm above the sensor,
and the space tested is an inverted quadrangular pyramid.
As can be seen from Frank Weichert’s research [17], in the
effective detection range of Leap Motion, the static accuracy
of the detected position information can reach 0.2 mm, and
the dynamic precision can reach 1.2 mm.

Leap Motion has two built-in cameras and three LED lights.
It works according to the principle of binocular imaging
and therefore performs poorly when occluded. The internal
structure of the Leap Motion is shown as Fig.4.



Fig. 3. Leap motion in practical applications

Fig. 4. Leap Motion inside

B. MYO

MYO is a device with built-in IMU modules and EMG
sensors developed by Thalmic Labs. Through the IMU, we
can get a rotation signal that represents the operator’s hand
[18]. In addition, using the 8 EMG sensors in MYO, we can
get the sEMG signal of the arm.Fig.5 shows the structure of
MYO armband:

Fig. 5. MYO armband

In addition, some simple gesture recognition algorithms are
built into MYO. These algorithms can use the sEMG signal to
roughly recognize some gestures of the operator’s hand. In this
paper, the MYO armband measures the sEMG signal and the

rotation signal of the operator’s hand, which helps to improve
the accuracy of the data returned by Leap Motion.

III. HAND MOVEMENT TRACKING AND GESTURE
IDENTIFICATION

This section mainly introduces the two methods on how
to fuse the data from Leap Motion and MYO armband and
consequently how to improve the tracking accuracy of the
operator’s hand.

As we can see from section 2, Leap Motion is a sensor con-
sisting of a pair of cameras. Under normal circumstances, Leap
Motion is a good way to track the operator’s hand. However,
when the operator’s hand is rotated to a certain angle, mutual
occlusion occurs between the fingers of the hand, which makes
it impossible for Leap Motion to accurately track each finger.
For example, when the operator’s hand is rotated to near
90°, Leap Motion’s built-in algorithm sometimes incorrectly
recognizes the moving finger as another finger. As shown in
Fig.6, Leap Motion mistakenly identifies the middle finger as
a ring finger:

Fig. 6. An example of a mistake in identifying a finger

In order to solve the above-mentioned problems, we propose
two methods of combining Leap Motion and MYO. These
methods can improve the tracking accuracy of the operator’s
hand rotation angle and help Leap Motion correctly identify
active fingers.

A. Direction information fusion between Leap Motion and
MYO

Combining the direction information of Leap Motion with
the rotation signal of MYO is one of the key points. Because
determining an accurate palm rotation angle can be used not
only to control the rotation of the robotic hand, but also to



determine whether the palm can be tracked normally by Leap
Motion.

In this paper, two sensor data fusion is achieved by the
Kalman filter [19]. The idea of Kalman filtering is to obtain an
optimal estimate by synthesizing the results of ”speculation”
and ”observation”, and based on this best estimate, proceed to
the next iteration. The following formulas represent the main
steps of the Kalman filter algorithm and all the variables used
are defined as in Table 1:

xt = Atxt−1 (1)

P t = AtPt−1A
T
t +Qt (2)

zt = Ctxt +Rt (3)

K = P tC
T
t

(
CtP tC

T
t +Rt

)−1
(4)

xt = xt +K (zt − Ctxt) (5)

Pt = (I −KCt)P t (6)

In the method proposed in this paper, we use the rotation
information provided by MYO to obtain the result of the
”speculation” process through the state transition equation, and
use the direction information detected by Leap Motion as the
result of ”observation”. Finally, the Kalman gain coefficient
K is obtained by using equation (4), and the results obtained
by two different processes are combined to obtain a best
estimated direction vector. This direction vector xt represents
the direction vector of the palm of the hand being tracked. A
fixed space coordinate system is established with Leap Motion
as the coordinate origin. In the process of only flipping the
palm, the direction vector of the palm of the hand can indicate
the posture of the entire palm rotation.

Among them, equations (1) and (2) represent the process
of ”speculation”. Equation (1) is a state transition equation
used to calculate the estimated value xt at the current t time.
In equation (1), At is the state transition matrix. In the data
fusion process studied in this paper, we use the rotation matrix
provided by MYO armband as At to infer the direction vector
xt.

In addition, equation (3) represents the process of ”obser-
vation”, zt is the palm direction vector directly observed by
Leap Motion, and Ct is the matrix of the vector space where
the vector xt is mapped to the observed vector (here zt). In
the study of this paper, since the observed direction vector and
the best estimation vector are the same type of information,
we take Ct as the identity matrix.

Finally, equations (5) and (6) solve the optimal estimated
value xt at the current t time and its covariance matrix Pt after
the above operation. After the result of the operation, the best
estimate and the covariance matrix at the current time t can
participate in the iterative process of the best estimate at the
next moment.

Through the above process, we can get a more accurate
palm posture, instead of using Leap Motion alone.

TABLE I
NOMENCLATURE

xt
A state variable representing a direction vector with three

components representing the values in the x, y, and z directions
xt Predicted state variables obtained by state transition equation
At State transition matrix, here is the rotation matrix provided by MYO
Pt Best estimated covariance matrix at time t
P t Prediction covariance matrix at time t

Qt
Gaussian noise, as an approximation of the interference

situation in the prediction process
zt Observations obtained by Leap Motion (direction vector)

Ct
A the gain matrix of the state variable mapped to the observation,

here is the identity matrix

Rt
Gaussian noise, as the approximate uncertainty

in the sensor measured values
K Kalman gain coefficient

B. Improve finger recognition accuracy with sEMG signal

Although MYO has some built-in gesture recognition algo-
rithms, these algorithms cannot accurately identify the activity
of a single finger. When MYO is working, eight sEMG sensors
are placed around the arm to measure the sEMG signal at eight
different positions on the arm surface. When different finger is
active (only one finger is active), the sEMG signals of these 8
channels are different. Thus, When the palm is at 90°, we can
use the 8 channel sEMG signal provided by MYO armband to
help Leap Motion identify the active finger. In this paper, we
mainly study the sEMG signal when a single finger is active.

The eight channels of sEMG signals provided by MYO
represent the signals obtained by MYO’s eight sEMG signal
sensors that surround the operator’s arm. During the sampling
process, the time series signals of these 8 channels are impor-
tant original signals for us to identify the active fingers.

In this paper, we use Convolutional Neural Network(CNN)
[20] to classify the collected sEMG signals. The schematic
structure of CNN used in this paper includes 10 convolutional
layers, 5 pooled layers, and 2 fully connected layers. The
schematic structure of the CNN model we use is shown in
Fig.7:

Fig. 7. The schematic structure of the CNN model



In order to improve the robustness of the model and avoid
over-fitting as much as possible, we added the Maxpooling
layer. And in the training process we use the dropout method,
temporarily remove some of the neurons randomly for training
during each training iteration. In this paper, we set the dropout
value to 0.5. During the training process, the weight size of
the convolutional neural network is set to 48 for each update
weight selection. After experimental verification, such a value
can not only ensure the training speed, but also avoid the large
oscillation of the learning curve.

In the work of classifying sEMG using neural networks,
the sampling frequency of the sEMG signal is 200 Hz. And
the sEMG signal of 8 channels is extracted as the input of
the neural network with a sliding window of 320 ms duration.
Finally, the neural network outputs four values ranging from 0-
1 through the softmax output layer, representing the possibility
of the current four fingers. Through the output of the neural
network, we can determine which finger is most likely to have
activity.

With the palm rotated to 90° to the Leap Motion plane,
when Leap Motion detects finger activity, we can find the most
reliable active finger through the trained neural network model.
Finally, we compare the output of the neural network with
the results of Leap Motion feedback and correct the results
correctly.

IV. EXPERIMENT

In order to verify the above mentioned method, we con-
ducted two experiments separately. The first experiment was
to verify the validity of the hand direction information fusion
method. The second experiment was to verify the validity of
gesture recognition with the aide of EMG signal.

A. Experiment of direction information fusion

First, in the experiment of verifying the direction signal data
fusion, we let the operator’s hand rotate for a certain period
of time, and then record the operator’s hand rotation angle
detected by Leap Motion and the rotation angle obtained after
the Kalman filter algorithm. The results of the experiment are
shown in the TABLE II.

The resulting data is averaged by an operator after 20
measurements at each particular angle. The ground truth angle
data is measured using a protractor. During the experiment,
we strictly ensure that the operator’s palm is parallel to the
viewing plane of Leap Motion in the initial state, and the arm
has no obvious displacement and pitch during the rotation.
We ensure the above two constraints as much as possible by
observing the data from Leap Motion and MYO feedback.

From the experimental results in the TABLE II above, we
can see that there is a certain deviation between the measured
angle and the true angle when only Leap Motion is used. After
the data fusion of MYO’s rotation signal and Leap Motion, the
best estimate obtained can not fully reach the true value, but
the deviation from the true value is greatly reduced.

TABLE II
COMPARISON OF EXPERIMENTAL RESULTS

Actual angle 0 45° 60° 90° 120° 180°
Angle measured by

Leap Motion 2.29° 37.88° 52.9° 112.7° 138.7° 177°

Angle after
data fusion 2.1° 40° 63° 91° 124° 176°

However, as the angle of rotation of the palm increases,
the angle of rotation of the MYO armband around the arm
axis will deviate from the true angle of rotation of the palm.
The farther the MYO is worn from the wrist, the greater the
angular deviation produced. In order to minimize the deviation
and allow MYO to acquire a valid sEMG signal, we can wear
two MYO armbands at the same time, one on the wrist and the
other on the arm. Despite the above method, when the angle of
rotation of the arm is relatively large, the deviation generated
cannot be ignored. As shown in the last column of the data in
Table II, when the true angle is 180°, the data obtained after
data fusion is more biased.

B. Experiment of sEMG signal for hand gesture recognition

In the experiment of using sEMG signal to improve the
recognition accuracy, we used the Convolutional Neural Net-
work(CNN) mentioned in Section 3 for classification. In order
to construct a classifier that accurately identifies the activity of
a single finger, we obtain the data used to train the model by
collecting the operator’s finger activity. Since the EMG signals
of different people performing the same action are different,
the data composing the data set comes from an operator’s hand
activity. In addition, different wearing positions will also cause
differences in myoelectric signals, so each acquisition ensures
that the MYO armband is always at the same position. In the
course of the experiment, we asked the experimenter wearing
MYO armband to only move one finger in each round of data
acquisition, and each finger had to perform a signal acquisition
process of up to 90s each time. In order to make the collected
data enough and universal, the number of signals collected by
each finger of MYO was as equal as possible, and each finger
was subjected to 4 times of signal acquisition for 90 seconds.

After obtaining the long-term sequence signals of the four
fingers, we intercept the original sequence signal with a
sliding window of 320ms duration and 30ms steps, and finally
get more short time series signals. Each time-series signal
intercepted by the sliding window represents an 8-channel
myoelectric signal over a short period of time. Finally, we
obtained a total of 30,361 time-series signals with a length of
320 ms as a data set. Before training the model, we set the
training Batch size to 48 and the epoch to 60. The training set,
the validation set and the test set are randomly selected from
the data set, accounting for 60%, 20% and 20% of the data set,
respectively. The loss in the learning curve is obtained by the
categorical crossentropy cost function.The resulting Learning
curve is in Fig.8:



Fig. 8. The learning curve of model training

From the above figure, we can see that although there are
more oscillations in the validation set curve at the beginning of
the training iteration, when the number of iterations increases
gradually, the validation set curve gradually converges to
the training set curve, indicating that the model has certain
generalization ability. Finally, the trained model is verified by
the test set, and the accuracy rate is 99.58%. Therefore, we
can conclude that the model trained by the above method has a
better performance in solving the problem of identifying single
finger activity.

V. CONCLUSION

In this paper, we propose two methods to fuse the data of
Leap Motion and MYO sensors, which effectively improves
the tracking accuracy of the operator’s hand. In addition,
we use the sEMG signal of MYO sensor and convolutional
neural network to overcome Leap Motion’s shortcomings in
distinguishing the active finger quite accurately.

Our experiments show that by using the Kalman filter
algorithm to combine the rotation information of MYO with
the information measured by Leap Motion can improve the
operator’s hand tracking accuracy. In addition, from the ex-
perimental results of the classification of MYO’s sEMG signal
by the CNN, the 8-channel sEMG signal can distinguish
the activity state of a single finger under certain conditions.
Therefore, using the sEMG signal to distinguish the finger
activity state, we overcome the shortcomings of Leap Motion
under challenging conditions to distinguish active fingers, and
improve the robustness of Leap Motion tracking.

ACKNOWLEDGMENT

This work was partially supported by National Nature
Science Foundation (NSFC) under Grant B5182860 and
B5180260; the LabEx NUMEV incorporated into the I-Site

MUSE [Grant AAP-Exploratoire 1830]; the French National
Center for Scientific Research [Grant PRC2014].

REFERENCES

[1] W. Yue, C. Jie, Y. Wang, Y. Hu, X. Rong, L. Yong, J. Zhang, and
L. Qi, “Probabilistic graph based spatial assembly relation inference
for programming of assembly task by demonstration,” in IEEE/RSJ
International Conference on Intelligent Robots & Systems, 2015.

[2] K. Ogawara, J. Takamatsu, H. Kimura, and K. Ikeuchi, “Generation of
a task model by integrating multiple observations of human demonstra-
tions,” in IEEE International Conference on Robotics & Automation,
2002.

[3] J. Luo, C. Yang, N. Wang, and M. Wang, “Enhanced teleoperation
performance using hybrid control and virtual fixture,” International
Journal of Systems Science, vol. 50, no. 3, pp. 451–462, 2019.

[4] A. Simorov, R. S. Otte, C. M. Kopietz, and D. Oleynikov, “Review of
surgical robotics user interface: what is the best way to control robotic
surgery?” Surgical Endoscopy, vol. 26, no. 8, pp. 2117–2125, 2012.

[5] G. Du and Z. Ping, “Markerless human-robot interface for dual robot
manipulators using kinect sensor,” Robotics & Computer Integrated
Manufacturing, vol. 30, no. 2, pp. 150–159, 2014.

[6] T. V. S. N. Venna, “Real-time robot control using leap motion technol-
ogy,” 2015.

[7] H. Jin, L. Zhang, S. Rockel, J. Zhang, H. Ying, and J. Zhang, “A novel
optical tracking based tele-control system for tabletop object manipula-
tion tasks,” in IEEE/RSJ International Conference on Intelligent Robots
& Systems, 2015.

[8] D. Bassily, C. Georgoulas, J. Guettler, T. Linner, and T. Bock, “Intuitive
and adaptive robotic arm manipulation using the leap motion controller,”
in Isr/robotik ; International Symposium on Robotics, 2014.

[9] J. C. Coelho and F. J. Verbeek, “Pointing task evaluation of leap motion
controller in 3d virtual environment,” Creating the difference, vol. 78,
pp. 78–85, 2014.

[10] H. Jin, Q. Chen, Z. Chen, Y. Hu, and J. Zhang, “Multi-leapmotion sensor
based demonstration for robotic refine tabletop object manipulation
task,” 2016.

[11] G. Du and Z. Ping, “A markerless human-robot interface using particle
filter and kalman filter for dual robots,” IEEE Transactions on Industrial
Electronics, vol. 62, no. 4, pp. 2257–2264, 2015.

[12] A. Boyali, N. Hashimoto, and O. Matsumoto, “Hand posture and gesture
recognition using myo armband and spectral collaborative representation
based classification,” in 2015 IEEE 4th Global Conference on Consumer
Electronics (GCCE). IEEE, 2015, pp. 200–201.
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