F. Al-shahrour, Selection upon genome architecture: conservation of functional neighborhoods with changing genes, PLoS Comput. Biol, vol.6, p.1000953, 2010.

M. A. Alekseyev and P. A. Pevzner, Comparative genomics reveals birth and death of fragile regions in mammalian evolution, Genome Biol, vol.11, p.117, 2010.

D. A. Bader, A linear-time algorithm for computing inversion distance between signed permutations with an experimental study, J. Comput. Biol, vol.8, pp.483-491, 2001.

M. F. Berger, The genomic complexity of primary human prostate cancer, Nature, p.214, 2011.

A. Bergeron, A unifying view of genome rearrangements, Algorithms Bioinformatics, vol.4175, pp.163-173, 2006.

C. Berthelot, The 3D organization of chromatin explains evolutionary fragile genomic regions, Cell Rep, vol.10, pp.1913-1924, 2015.

M. R. Branco and A. Pombo, Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations, PLoS Biol, vol.4, p.138, 2006.

C. R. Catacchio, Inversion variants in human and primate genomes, Genome Res, vol.28, pp.910-920, 2018.

M. J. Chaisson, Multi-platform discovery of haplotype-resolved structural variation in human genomes, Nat. Commun, p.10, 2018.

E. V. Chambers, Divergence of mammalian higher order chromatin structure is associated with developmental loci, PLoS Comput. Biol, vol.9, p.1003017, 2013.

Z. Dai, Neighboring genes show interchromosomal colocalization after their separation, Mol. Biol. Evol, vol.31, pp.1166-1172, 2014.

W. H. Day and D. Sankoff, Computational complexity of inferring phylogenies from chromosome inversion data, J. Theor. Biol, vol.124, pp.213-218, 1987.

J. R. Dixon, Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, vol.485, pp.376-380, 2012.

G. Fudenberg and K. S. Pollard, Chromatin features constrain structural variation across evolutionary timescales, Proc. Natl. Acad. Sci. USA, vol.116, pp.2175-2180, 2019.

J. González, Testing chromosomal phylogenies and inversion breakpoint reuse in Drosophila, Genetics, vol.175, pp.167-177, 2007.

O. Hakim, DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes, Nature, vol.484, pp.69-74, 2012.

S. Hannenhalli and P. A. Pevzner, Transforming men into mice (polynomial algorithm for genomic distance problem), Proceedings of 36th Annual Symposium on Foundations of Computer Science, pp.581-592, 1995.

H. Hinsch and S. Hannenhalli, Recurring genomic breaks in independent lineages support genomic fragility, BMC Evol. Biol, vol.6, p.90, 2006.

L. D. Hurst, The evolutionary dynamics of eukaryotic gene order, Nat. Rev. Genet, vol.5, pp.299-310, 2004.

L. Huynh and F. Hormozdiari, Contribution of structural variation to genome structure: TAD fusion discovery and ranking, Research in Computational Molecular Biology -22nd Annual International Conference, vol.10812, pp.259-260, 2018.

J. Kö-ster and S. Rahmann, Snakemake -a scalable bioinformatics workflow engine, Bioinformatics, vol.28, pp.2520-2522, 2012.

Z. N. Kronenberg, High-resolution comparative analysis of great ape genomes, Science, vol.360, p.6343, 2018.

N. H. Lazar, Epigenetic maintenance of topological domains in the highly rearranged gibbon genome, Genome Res, vol.28, pp.983-997, 2018.

C. Lemaitre, Precise detection of rearrangement breakpoints in mammalian chromosomes, BMC Bioinformatics, vol.9, p.286, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00278553

Y. Li, Systematic analysis of head-to-head gene organization: evolutionary conservation and potential biological relevance, PLoS Comput. Biol, vol.2, p.74, 2006.

B. Liao and J. Zhang, Coexpression of linked genes in mammalian genomes is generally disadvantageous, Mol. Biol. Evol, vol.25, pp.1555-1565, 2008.

E. Lieberman-aiden, Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, vol.326, pp.289-293, 2009.

P. Liu, Mechanisms for recurrent and complex human genomic rearrangements, Curr. Opin. Genet. Dev, vol.22, pp.211-220, 2012.

J. Lu, Comment on "chromosomal speciation and molecular divergence-accelerated evolution in rearranged chromosomes, Science, vol.302, p.988, 2003.

K. J. Meaburn, Spatial genome organization in the formation of chromosomal translocations, Semin Cancer Biol, vol.17, pp.80-90, 2007.

J. K. Moore and J. E. Haber, Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae, Mol. Cell Biol, vol.16, pp.2164-2173, 1996.

N. Naumova, Organization of the mitotic chromosome, Science, vol.342, pp.948-953, 2013.

A. Navarro and N. H. Barton, Chromosomal speciation and molecular divergence -accelerated evolution in rearranged chromosomes, Science, vol.300, pp.321-324, 2003.

M. N. Nikiforova, Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells, Science, vol.290, pp.138-141, 2000.

M. A. Noor, Chromosomal inversions and the reproductive isolation of species, Proc. Natl. Acad. Sci. USA, vol.98, pp.12084-12088, 2001.

S. Pulicani, Rearrangement scenarios guided by chromatin structure, RECOMB International Workshop on Comparative Genomics, pp.141-155, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01791974

L. H. Rieseberg, Chromosomal rearrangements and speciation, Trends Ecol. Evol, vol.16, pp.351-358, 2001.

T. Ryba, Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types, Genome Res, vol.20, pp.761-770, 2010.

D. Sankoff, Edit distance for genome comparison based on non-local operations, Combinatorial Pattern Matching, pp.121-135, 1992.

M. Sémon and L. Duret, Evolutionary origin and maintenance of coexpressed gene clusters in mammals, Mol. Biol. Evol, vol.23, pp.1715-1723, 2006.

C. Sequencing and A. Consortium, Initial sequence of the chimpanzee genome and comparison with the human genome, Nature, vol.437, pp.69-87, 2005.

T. Sexton, Three-dimensional folding and functional organization principles of the Drosophila genome, Cell, vol.148, pp.458-472, 2012.

P. Simonaitis and K. M. Swenson, Finding local genome rearrangements, Algorithms Mol. Biol, vol.13, p.9, 2018.
URL : https://hal.archives-ouvertes.fr/lirmm-01794753

G. A. Singer, Clusters of co-expressed genes in mammalian genomes are conserved by natural selection, Mol. Biol. Evol, vol.22, pp.767-775, 2005.

M. Spielmann, Structural variation in the 3D genome, Nat. Rev. Genet, vol.19, pp.453-467, 2018.

P. Stankiewicz and J. R. Lupski, Genome architecture, rearrangements and genomic disorders, Trends Genet, vol.18, pp.74-82, 2002.

K. M. Swenson, Sorting signed permutations by inversions in o (n log n) time, J. Comput. Biol, vol.17, pp.489-501, 2010.

K. M. Swenson, Models and algorithms for genome rearrangement with positional constraints, Algorithms Mol. Biol, vol.11, pp.1-10, 2016.
URL : https://hal.archives-ouvertes.fr/lirmm-01348502

E. Tannier, Advances on sorting by reversals, Discrete Appl. Math, vol.155, pp.881-888, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434657

A. Thévenin, Functional gene groups are concentrated within chromosomes, among chromosomes and in the nuclear space of the human genome, Nucleic Acids Res, vol.42, pp.9854-9861, 2014.

A. S. Véron, Close 3D proximity of evolutionary breakpoints argues for the notion of spatial synteny, BMC Genomics, vol.12, p.303, 2011.

C. C. Weber and L. D. Hurst, Support for multiple classes of local expression clusters in Drosophila melanogaster, but no evidence for gene order conservation, Genome Biol, vol.12, p.23, 2011.

P. J. Wijchers and W. De-laat, Genome organization influences partner selection for chromosomal rearrangements, Trends Genet, vol.27, pp.63-71, 2011.

E. Yaffe, Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture, PLoS Genet, vol.6, p.1001011, 2010.

S. Yancopoulos, Efficient sorting of genomic permutations by translocation, inversion and block interchange, Bioinformatics, vol.21, pp.3340-3346, 2005.

Y. Zhang, Spatial organization of the mouse genome and its role in recurrent chromosomal translocations, Cell, vol.148, pp.908-921, 2012.