
HAL Id: lirmm-02410441
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02410441

Submitted on 13 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Rapid alignment-free phylogenetic identification of
metagenomic sequences

Benjamin Linard, Krister M. Swenson, Fabio Pardi

To cite this version:
Benjamin Linard, Krister M. Swenson, Fabio Pardi. Rapid alignment-free phylogenetic identifica-
tion of metagenomic sequences. Bioinformatics, 2019, 35 (18), pp.3303-3312. �10.1093/bioinformat-
ics/btz068�. �lirmm-02410441�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02410441
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


d  
 

 

Phylogenetics 

Rapid alignment-free phylogenetic identifica-
tion of metagenomic sequences 
Benjamin Linard1,2,3,*, Krister Swenson1,4 and Fabio Pardi1,4 
1LIRMM, Univ. Montpellier, CNRS, Montpellier, France. 
2ISEM, Univ. Montpellier, CNRS, IRD, EPHE, CIRAD, INRAP, Montpellier, France. 
3AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier Supagro, Montpellier, France. 
4Institut de Biologie Computationnelle, Montpellier, France. 

 

*To whom correspondence should be addressed. 

Associate Editor: XXXXXXX 

Received on XXXXX; revised on XXXXX; accepted on XXXXX  

Abstract 
Motivation: Taxonomic classification is at the core of environmental DNA analysis. When a phyloge-
netic tree can be built as a prior hypothesis to such classification, phylogenetic placement (PP) pro-
vides the most informative type of classification because each query sequence is assigned to its 
putative origin in the tree. This is useful whenever precision is sought (e.g. in diagnostics). However, 
likelihood-based PP algorithms struggle to scale with the ever-increasing throughput of DNA se-
quencing. 
Results: We have developed RAPPAS (Rapid Alignment-free Phylogenetic Placement via Ancestral 
Sequences) which uses an alignment-free approach, removing the hurdle of query sequence align-
ment as a preliminary step to PP. Our approach relies on the precomputation of a database of k-mers 
that may be present with non-negligible probability in relatives of the reference sequences. The 
placement is performed by inspecting the stored phylogenetic origins of the k-mers in the query, and 
their probabilities. The database can be reused for the analysis of several different metagenomes. 
Experiments show that the first implementation of RAPPAS is already faster than competing likeli-
hood-based PP algorithms, while keeping similar accuracy for short reads. RAPPAS scales PP for 
the era of routine metagenomic diagnostics. 
Availability: Program and sources freely available for download at https://github.com/blinard-
BIOINFO/RAPPAS. 
Contact: benjamin.linard@lirmm.fr  
Supplementary information: Supplementary data are available at Bioinformatics online. 

 

1. Introduction  
Inexpensive high-throughput sequencing has become a standard ap-
proach to inspect the biological content of a sample. Well-known exam-
ples range from health care, where sequencing-based diagnostics are 
being implemented in many hospitals and in reaction to disease out-
breaks (Gilchrist et al., 2015; Gardy and Loman, 2018), to environmental 
and agricultural applications, where the diversity of the microorganisms 
in soil, water, plants, or other samples can be used to monitor an ecosys-

tem (Deiner et al., 2017; Porter and Hajibabaei, 2018). Furthermore, with 
the advent of sequencing miniaturization, the study of environmental 
DNA will soon be pushed to many layers of society (Gilbert, 2017; 
Zaaijer et al., 2016). 

Metagenomics is the study of the genetic material recovered from 
this vast variety of samples. Contrary to genomic approaches studying a 
single genome, metagenomes are generally built from bulk DNA extrac-
tions representing complex biological communities that include known 
and yet unknown species (e.g. protists, bacteria, viruses). Because of the 
unexplored and diverse origin of the DNA recovered, and because of the 
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sheer volume of sequence data, the bioinformatic analysis of meta-
genomes is very challenging. Metagenomic sequences are often anony-
mous, and identifying a posteriori the species from which they originated 
remains an important bottleneck for analyses based on environmental 
DNA.  

Several classes of approaches are possible for taxonomic classifica-
tion of metagenomic sequences, the choice of which will generally 
depend on the availability of prior knowledge (e.g. a reference database 
of known sequences and their relationships) and a trade-off between 
speed and precision. For instance, without prior knowledge, the explora-
tion of relatively unknown clades can rely on unsupervised clustering 
(Mahé et al., 2014; Ondov et al., 2016; Sedlar et al., 2017). The preci-
sion of this approach is limited, and clusters are generally assigned to 
taxonomic levels via posterior analyses involving local alignment 
searches against reference databases. An alternative is to contextualise 
local alignments with taxonomic metadata. For instance, MEGAN 
(Huson et al., 2007, 2016) assigns a query metagenomic sequence (QS 
for simplicity) to the last common ancestor (LCA) of all sequences to 
which it could be aligned with a statistically-significant similarity score 
(e.g. using BLAST or other similarity search tools). A faster alternative 
is to build a database of taxonomically-informed k-mers which are 
extracted from a set of reference sequences. Classification algorithms 
then assign a QS to the taxonomic group sharing the highest number of 
k-mers with the QS (Ames et al., 2013; Wood and Salzberg, 2014; 
Müller et al., 2017; Liu et al., 2018). All of these approaches use simple 
sequence similarity metrics and no probabilistic modeling of the evolu-
tionary phenomena linking QSs to reference sequences. The advantage 
is that, particularly in the case of k-mer-based approaches, these meth-
ods facilitate the analysis of millions of QSs in a timescale compatible 
with large-scale monitoring and everyday diagnostics. 

Nevertheless, in many cases a precise identification of the evolu-
tionary origin of the QSs is desired. This is particularly true for medical 
diagnostics where adapted treatments will be administered only after 
precise identification of a pathogen (Butel, 2014; Trémeaux et al., 2016). 
In the case of viruses (under studied and characterized by rapid evolu-
tion), advanced evolutionary modelling is necessary to perform detailed 
classifications. A possible answer in this direction may be the use of 
phylogenetic inference methods. However, the standard tools for phylo-
genetic inference are not applicable to metagenomic datasets, simply 
because the sheer number of sequences cannot be handled by current 
implementations (Izquierdo-Carrasco et al., 2011). 

A solution to this bottleneck is phylogenetic placement (PP) (Matsen 
et al., 2010; Berger et al., 2011). The central idea is to ignore the evolu-
tionary relationships between the QSs and to focus only on elucidating 
the relationships between a QS and the known reference sequences. A 
number of reference genomes (or genetic markers) are aligned and a 
“reference” phylogenetic tree is inferred from the resulting alignment. 
This reference tree is the backbone onto which the QSs matching the 
reference genomes will be “placed”, i.e. assigned to specific edges. 
When a QS is placed on an edge, this is interpreted as the evolutionary 
point where it diverged from the phylogeny. Note that when the place-
ment edge of a QS is not incident to a leaf of the tree, the interpretation 
is that it does not belong to any reference genome, but to a yet un-
known/unsampled genome for which the divergence point has been 
identified. This is different from LCA-based approaches where a QS 
assigned to an internal node usually means that it cannot be confidently 
assigned to any leaf of the corresponding subtree. Currently, only two PP 
software implementations are available: PPlacer (Matsen et al., 2010; 
McCoy and Matsen, 2013) and EPA (until recently a component of 
RAxML) (Berger et al., 2011). They are both likelihood-based, i.e. they 

try to place each QS in the position that maximises the likelihood of the 
tree that results from the addition of the QS at that position. Alternative 
algorithms were also described, but implementations were not publicly 
released (Brown and Truszkowski, 2013; Filipski et al., 2015). These 
methods have some limitations: (i) likelihood-based methods require an 
alignment of each QS to the reference genomes prior to the placement 
itself, a complex step that may dominate the computation time for long 
references, and (ii) despite being much faster than a full phylogenetic 
reconstruction, they struggle to scale with increasing sequencing 
throughputs. Recently, the development of EPA-ng (Barbera et al., 2018) 
provided an answer to the second point via the choice of advanced 
optimization and efficient parallel computing. But no fundamental 
algorithmic changes were introduced, and the method still relies on a 
preliminary alignment.  

To avoid these bottlenecks, we have developed the phylogenetic 
placement program RAPPAS (Rapid Alignment-free Phylogenetic 
Placement via Ancestral Sequences). The novelty of our approach rests 
on two key ideas: (i) a database of phylogenetically-informed k-mers 
(“phylo-kmers”) is built from the reference tree and reference alignment, 
(ii) QSs are then placed on the tree by matching their k-mers against the 
database of phylo-kmers. For a specific group of organisms, the mainte-
nance of the RAPPAS database can be seen as a periodic “build-and-
update” cycle, while the phylogenetic placement of new metagenomes 
becomes a scalable, alignment-free process compatible with day-to-day 
routine diagnostics. This algorithmic evolution bypasses the alignment of 
QSs to the reference required by existing algorithms. For short reads 
RAPPAS produces placements that are as accurate as previous likeli-
hood-based methods, even in the presence of sequencing errors. Our 
experiments also show that the placement phase of RAPPAS is signifi-
cantly faster on real datasets than competing alignment-based tools. 

2. Methods 

2.1 Analysing metagenomes with RAPPAS 
In order to perform phylogenetic placement, one must define a reference 
dataset (alignment and tree) onto which future QSs will be aligned and 
placed. Such references are generally based on well-established genetic 
markers (e.g. 16S rRNA, rbcl, etc.) or short genomes (e.g. organelles, 
viruses, etc.).  

One of the main differences between our approach and the existing 
PP methods is in the workflows that they entail. Existing PP algorithms 
require the alignment of every QS to the reference alignment prior to the 
placement itself, a complex step that relies on techniques such as profile 
Hidden Markov Models that in some cases may dominate computation 
time. The HMMER package (Eddy, 2011), and PaPaRa (Berger and 
Stamatakis, 2011) are popular tools for this step. As we show in sec. 3.3, 
the alignment step is particularly onerous in the presence of long refer-
ence sequences, in which case this step may actually take longer than 
placement (Fig. 5A, cf. hmmalign vs. EPA-ng for D155). For each 
sample analyzed, the alignment phase is then followed by the placement 
phase, which relies on phylogenetic inference (Figure 1A).  

RAPPAS uses a different approach where all computationally-
heavy phylogenetic analyses are performed as a preprocessing step, 
which is only executed once for a given reference dataset, before the 
analysis of any metagenomic sample. This phase builds a data structure 
(named pkDB; see next section) which will be the only information 
needed to place QSs. Many samples can then be routinely placed on the 
tree without the need for any alignment. Since the same pkDB can be 
reused for several query datasets (Figure 1B), the use of RAPPAS is 
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particularly adept when QSs are placed on standardized, long-lifespan 
reference trees. On the other hand, when references must be very fre-
quently updated, the overhead for rebuilding the pkDB reduces the 
advantage of our approach. 

To follow the standards defined by previous PP methods, the 
placements are reported in a JSON file following the “jplace” specifica-
tion (Matsen et al., 2012) (see Suppl. File S1, sec. 3, for more details). 
The results of RAPPAS can then be exploited in all jplace-compatible 
software, such as iTOL (visualization), Guppy (diversity analyses) or 
BoSSA (visualisation and diversity analysis) (Letunic and Bork, 2016; 
Matsen and Evans, 2013; Lefeuvre, 2018).  
 

 
Fig. 1. Comparison between existing PP software and RAPPAS. The pipelines from 
query sequence datasets to placement results (jplace files) are depicted. A. Likelihood-
based software requires, for each new query dataset, the step of aligning the query 
sequences to the reference alignment via an external tool (red box). The resulting extend-
ed alignment is the input for the phylogenetic placement itself (blue box). B. RAPPAS 
builds a database of k-mers (the pkDB) once for a given reference tree and alignment. 
Many query datasets can then be placed without alignment, matching their k-mer content 
to this database. Each operation is run with a separate call to RAPPAS (blue boxes).  

2.2 Construction of the phylo-kmers DB (pkDB) 
Before performing placements, a database of phylogenetically informa-
tive k-mers must be built; these “phylo-kmers” are those that we would 
expect to see in a QS with non-negligible probability. The input for this 
phase is a reference alignment (denoted “refA”) and a reference tree 
(denoted “refT”) reconstructed from refA. The refT is interpreted as a 
rooted tree (as specified by the Newick file) and has lengths associated to 
its edges. This process is divided in three steps (see Figure 2): A) the 
injection of “ghost nodes” on every edge of refT, B) a process of ances-
tral state reconstruction based on this extended tree, and C) the genera-
tion of the phylo-kmers and their storage in a data structure.  

The first step enables us to simulate evolution that has occurred and 
resulted in sequences not present in the reference alignment. For each 
edge of refT, a new edge branching off at its midpoint 𝑀𝑀 is created 
(Figure 2, step A). The length of the new edge is set to the average 
length over all paths from 𝑀𝑀 to its descendant leaves. The new leaves of 
these new edges (e.g. 𝐺𝐺 in Figure 2), and the midpoints 𝑀𝑀 are referred to 
as “ghost nodes”. They represent unsampled sequences related to those 
in the reference alignment, whose most probable k-mers are the phylo-
kmers. Note that the root of refT has an influence on computing the 
length of the newly added edges (e.g. from M to G in Figure 2) as it 
determines the descendant leaves of each midpoint M. Although the 
position of the root is irrelevant to all other computations, it may have an 
effect on the quality of placements. If uncertain, we advise users to 
choose a root that has an “internal” position within the reference tree (see 
Suppl. File S1, sec. 10). 

The second step computes the probabilities necessary to the con-
struction of the phylo-kmers. It is based on standard phylogenetic meth-
ods for ancestral sequence reconstruction (Figure 2, step B). Given refA, 
an alignment consisting of 𝑚𝑚 sites over 𝑆𝑆 possible states (4 for DNA, 20 
for amino acids), for each individual ghost node 𝐺𝐺 we compute an 𝑆𝑆 × 𝑚𝑚 
table (𝑝𝑝𝜎𝜎,𝑗𝑗) of probabilities, where 𝑝𝑝𝜎𝜎,𝑗𝑗 represents the marginal probabil-
ity of state 𝜎𝜎 at site 𝑗𝑗 (Yang et al., 1995). From this table, we compute 
the probabilities of any given k-mer at any ghost node 𝐺𝐺 (Figure 2, step 
C). Let 𝑘𝑘 be the chosen k-mer size (k=8 by default) and let 𝑛𝑛 ∈
{1,2, . . . ,𝑚𝑚 − (𝑘𝑘 − 1)}  be a particular site of refA. Assuming independ-
ence among sites (see, e.g., Felsenstein, 2004), the probability 𝑃𝑃 of k-
mer 𝜎𝜎1𝜎𝜎2. . .𝜎𝜎𝑘𝑘   in 𝐺𝐺 at sites {𝑛𝑛,𝑛𝑛 + 1, . . . ,𝑛𝑛 + 𝑘𝑘 − 1}  is given by:   

 𝑃𝑃 = ∏ 𝑝𝑝𝜎𝜎𝑖𝑖,𝑛𝑛+𝑖𝑖−1
𝑘𝑘
𝑖𝑖=1  (1) 

Each k-mer with a probability 𝑃𝑃 larger than a (parameterized) 
threshold (by default 1/𝑆𝑆𝑘𝑘) is stored together with (i) the edge corre-
sponding to the ghost node of origin, and (ii) the probability 𝑃𝑃 associated 
to this k-mer at the ghost node of origin (Figure 2, step C). 

In the end, all the k-mers reconstructed above are stored in a data 
structure that allows fast retrieval of all relevant information associated 
to a k-mer, namely the list of edges for which it has high-enough proba-
bility, and the probabilities associated to each of these edges. This struc-
ture will be referred to as the phylo-kmers database (pkDB). We note 
that when the same k-mer is generated at different positions 𝑛𝑛 of refA, or 
at different ghost nodes for the same edge, only the highest probability is 
retained in the pkDB. 

2.3 Placement algorithm 
RAPPAS places each QS on the sole basis of the matches that can be 
found between the k-mers in the QS and the phylo-kmers stored in the 
pkDB. An algorithm akin to a weighted vote is employed: each k-mer in 
a QS casts multiple votes – one for each edge associated to that k-mer in 
the pkDB – and each vote is weighted proportionally to the logarithm of 
the k-mer probability at the voted edge (Suppl. File S1, sec 1). The edge 
or edges receiving the largest total weighted vote are those considered as 
the best placements for a given QS.  
 

Fig. 2. Construction of the phylo-kmers DB. The construction of phylo-kmers for an 
edge is depicted (see the Methods section for details.) A. Each edge e1 is bisected by a 
ghost node M, to which a terminal edge leading to another ghost node G is attached. B. 
For each ghost node, a probability table for the sequence states expected at each site is 
generated using ancestral state reconstruction. C. The most probable k-mers are computed 
from each table and then stored in the pkDB, together with the corresponding edge in the 
reference tree and the corresponding probability.  
 

A. B.

Alignment 
Reference

Query
datasets

1

n times
Alignments (profile HMM)

Tree
Reference

n times
ML inference: placement

. . . .
n placements
(jplace files)

…

n

…

…

2

Alignment 

Tree

References

pkDB

1 time
Probabilistic 

inference 
of phylo-kmers

Query
datasets

1

..

n times
k-mer match

analysis

n placements
(jplace files)

…

n2

…
. .

refT

e1

A.
B.

C.

G

M

Phylo-kmer Edge Probability

AACGT

e1 0.75
e3 0.71
e2 0.33
⁝ ⁝

TGTGC
e3 0.45
e1 0.38
⁝ ⁝

… ⁝ ⁝

G

n m1
A
C
G
T

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btz068/5303992 by guest on 29 January 2019



A detailed description and complexity analysis for this algorithm can be 
found in Suppl. File S1. Unlike for alignment-dependent algorithms, the 
running time of RAPPAS does not depend on the length of the reference 
sequences, and rather than scaling linearly in the size of the reference 
tree, it only depends on the number of edges that are actually associated 
to some k-mer in the QS.  

2.4 Accuracy experiments 
The accuracy of the placements produced by RAPPAS and by competing 
likelihood-based PP software were evaluated following established 
simulation protocols (Matsen et al., 2010; Berger et al., 2011). Briefly, 
these protocols rely on independent pruning experiments, in which 
sequences are removed from refA and refT, and then used to generate 
QSs (we use the word read interchangeably, in these experiments), 
which are finally placed back to the pruned tree. The QSs are expected to 
be placed on the edge from which they were pruned. If the observed 
placement disagrees with the expected one, the distance between them is 
measured by counting the number of nodes separating the two edges. To 
make the placement procedure more challenging, we not only prune 
random reference taxa, but whole subtrees chosen at random. We con-
sider this approach realistic in the light of current metagenomic chal-
lenges, because it is indeed common that large sections of the tree of life 
are absent from the reference phylogenies. The procedure was repeated 
for read lengths of 150, 300, 600, 1200 bp. As in previous studies, the 
simulated reads are contiguous substrings of the pruned sequences 
obtained without introducing sequencing errors (Matsen et al., 2010; 
Berger et al., 2011). A detailed description of the procedure can be found 
in Suppl. File S1, sec. 4. 

The impact of sequencing errors was evaluated independently. We 
repeated the procedure above on a single dataset (D652), and introduced 
errors in the simulated reads with the Mason read simulator (Holtgrewe, 
2010) using the Illumina error model. Different rates (0.0%, 0.1%, 1% or 
5%) were tested for two types of sequencing errors: substitutions and 
indels (detailed procedure and motivation found in Suppl. File S1, sec. 
5). 

2.5 Placement consistency on real-world data 
As a complement to the experiments above, we also evaluated the 
placements of real-world reads on relatively large reference trees by 
reproducing the protocol described in Barbera et al., 2018. Because no 
proxy for the correct placement can be defined on these datasets, we 
evaluate the consistency between placements produced by RAPPAS and 
by the other methods. For each dataset (see Sec. 2.7 below) between 
10,000 and 15,060 reads were placed on the reference tree using each 
method (EPA, EPA-ng, PPlacer and RAPPAS). For each pair of meth-
ods, the resulting placements were compared using the Phylogenetic 
Kantorovich–Rubinstein (PKR) metric (Evans and Matsen, 2012). 
Naturally, the lower the distance between two methods, the more similar 
the placements they produce are. We report median PKR-distances over 
all the placed reads, measured using the default behaviour of each soft-
ware (Suppl. File S1, sec 6). 

2.6 Runtime and memory experiments 
CPU times were measured for each software with the Unix command 
time, using a single CPU core and on the same desktop PC (64GB of 
RAM, Intel i7 3.6GHz, SSD storage). The fast aligner program hmmalign 
from HMMER (Eddy, 2011) was used to align the QSs to the refA, as in 
previous placement studies (Matsen et al., 2010). Placement runtimes 
were measured for two of the reference datasets that we describe in the 

next section, chosen so as to represent different combinations of the two 
parameters with the largest impact on runtimes (number of taxa and 
alignment length). Prior to starting the time measurement, for each 
dataset, GTR+Γ model parameters were estimated using RAxML. Then, 
dedicated options were used in EPA-ng and PPlacer to load these param-
eters and avoid optimization overheads (Suppl File S1, sec. 9). Each 
software was launched independently 3 times and the median CPU time 
was retained. When available, masking options were kept as defaults. 
For EPA and EPA-ng, a single thread was explicitly assigned (option -T 
1). PPlacer only uses a single thread and required no intervention. De-
fault values were used for all other parameters. RAPPAS is based on 
Java 8+, which uses a minimum of 2 threads. We ensured fair compari-
son by using the Unix controller cpulimit, which aligns CPU consump-
tion to the equivalent of a single thread (options --pid process_id --
limit 100). For each RAPPAS process, memory was monitored by 
programmatically reading its usage at regular intervals.  

2.7 Software and datasets used in experiments 
The performance of RAPPAS (v1.00), both in terms of accuracy and 
computational efficiency, was compared against that of EPA (from 
RAxML v8.2.11) (Berger et al., 2011), PPlacer (v1.1alpha19) (Matsen et 
al., 2010) and EPA-ng (v0.3.4 for the experiments on real-world data and 
v0.2.0-beta for all other experiments) (Barbera et al., 2018).  

Reference datasets (refA, refT) used for evaluating accuracy were 
taken from (Matsen et al., 2010; Berger et al., 2011) with the exception 
of D155, which was built for this study and corresponds to a whole 
genome alignment and tree for the hepatitis C virus. Each dataset is 
identified by the number of taxa present in the tree (e.g. D150 has 150 
taxa). In total, 10 reference datasets were tested. Descriptive metadata 
reporting the nature of the locus, the length of the alignment and the gap 
content are displayed in Figure 3 (left headers) and Suppl. File S2. One 
of the reference datasets (D140) is based on a reference alignment of 
protein sequences. Globally, the reference datasets represent a panel of 
loci commonly used in metabarcoding and metagenomic studies.  

PKR distances between alternative placement methods were meas-
ured using five real world datasets: the three datasets available in Bar-
bera et al., 2018 (named bv, neotrop, tara) and two large datasets of 5088 
and 13903 taxa (named green85 and LTP). The latter two datasets were 
retrieved from the Greengenes database (DeSantis et al., 2006; release 
gg_13_8_otus, 85% OTUs tree) and the “All-Species Living Tree Pro-
ject” (Yilmaz al., 2014; ssuRNA tree, release 132, june 2018), respec-
tively. On the reference trees for green85 and LTP, we placed the QSs 
provided with the bv dataset, as they correspond to the same genetic 
region. 

The runtime experiments are based on two of the above reference 
datasets, D652 (1.7 kbp) and D155 (9.5 kbp), and the QSs for placement 
were obtained in the following way. For D652, real-world 16S rRNA 
bacterial amplicons of about 150 bp were retrieved from the Earth Mi-
crobiome Project (Thompson et al., 2017) via the European Nucleotide 
Archive (Silvester et al., 2018) using custom scripts from 
github.com/biocore/emp/. Only sequences longer than 100 bp were 
retained. A collection of 3.1×108 QSs were thus obtained. For D155, 107 
Illumina short reads of 150 bp were simulated from the 155 viral ge-
nomes in this reference dataset using the Mason read simulator (Holt-
grewe, 2010). A substitution rate of 0.1% and very low indel rate of 
0.0001% were chosen to avoid impacting negatively the runtime of the 
alignment phase for EPA, EPA-ng and PPlacer. 

3. Results 
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3.1 Accuracy 
The simulation procedure (see Methods) was repeated for 10 different 
reference datasets representing genes commonly used for taxonomic 
identification. Accuracy is measured on the basis of the node distance 
between observed placement and expected placement (i.e. the number of 
nodes separating the two edges). The closer to zero the node distances 
are, the more accurate the method is. Figure 3 summarizes the results of 
the experiments for each choice of dataset, read length, and software. 
Each point in the plot shows the mean node distance for the reads gener-
ated by one pruned subtree of the reference tree. Each violin plot is based 
on as many points as there are pruned subtrees (i.e. 100). Horizontal 
lines link the per software node distance means, calculated as the mean 
of the 100 means above. Detailed mean values are reported in Suppl. File 
S3. 

As expected, given that they are based on the same general likeli-
hood-based approach, EPA, EPA-ng, and PPlacer show very similar 
performance for all datasets and read lengths (Figure 3, blue lines almost 
perfectly horizontal). As expected, the longer the reads are, the more 
accurate the placement is (Figure 3, left to right boxes). The worst per-
formances were observed for the D628 and D855 datasets, which agrees 
with previous studies (Matsen et al., 2010; Berger et al., 2011).  

RAPPAS was subjected to the same tests using four k-mer sizes. 
The corresponding results can be classified into two groups. The first 
group contains the datasets for which using different values of k has a 
limited impact (Figure 3, all except the last three). For these, RAPPAS 
shows globally an accuracy comparable to likelihood-based software. In 
simulations based on the shortest read lengths (Figure 3, leftmost boxes) 
similar or even slightly better accuracies (leftmost boxes of D1604, 
D652) are measured. On the other hand, the longest read lengths general-
ly resulted in lower accuracy compared to other methods (rightmost 
boxes of D140, D150, D500, D855, D1604). 

The second group contains datasets where different values of k re-
sulted in variable accuracy (Figure 3, D218, D628, D155). Two out of 
these three datasets are also characterized by a high proportion of gaps in 
their reference alignments (Figure 3, left headers), which may be an 
adverse factor for the current version of RAPPAS (discussed below). 
Finally, D155, which corresponds to the longest reference alignment (9.5 
kbp), is the only dataset where shorter k-mer sizes clearly lowered the 
accuracy of RAPPAS. 
 

 
Fig. 4. Accuracy loss in the presence of sequencing errors. Each square is a software 
tested under 16 conditions corresponding to varying rates of errors introduced into 300 bp 
reads (substitutions on the horizontal axis, indels on the vertical axis). Values represent 
the accuracy loss, calculated as the difference (Δ ND) between the mean node distance 
with indel/substitutions, and the mean node distance in the absence of sequencing errors 
(the bottom left condition with 0% indels, 0% substitutions). 
 

Figure 4 shows the accuracy loss measured on the D652 dataset after 
introducing different rates of sequencing errors in the simulation proce-
dure (300 bp reads, k=8 for RAPPAS). For all tested software, a very 
limited accuracy loss (<=0.2 node distance units) was measured for 0.1% 
to 1% substitutions/indel rates. Such error rates are typical for short read 
technologies (Glenn et al., 2011), suggesting that RAPPAS and all tested 
software are equally suitable for the placement of sequences produced by 
current technologies. When higher error rates are considered (5% substi-
tutions/indels), RAPPAS appears to lose more accuracy than competing 
tools (Figure 4, top rows and rightmost columns). Interestingly, indels 
appear to induce a higher accuracy loss than substitutions for every 
placement method tested. Different read lengths and different values of k 
for RAPPAS were also tested but showed similar trends (Suppl. File S1, 
sec. 5).  
 

 
 
Table 1. Median PKR distances over the placements of real-world reads on five 
different datasets. The lower the value, the closer the placements on the reference tree 
are between the two methods. The third column reports the time to build the pkDB (h, 
hours; m, minutes) and its size (GB, gigabytes) when using default parameters (k = 8). 
The distances for PPlacer on the LTP dataset are not reported (indicated by an asterisk) as 
this program reported numerical errors (see Suppl. File S1, sec. 6).  

3.2 Placement of real-world reads 
The PKR distances measured for real-world reads placed on five medi-
um-to-large reference trees are reported in Table 1. The question here is 
whether RAPPAS produces placements that can be viewed as strong 
outliers to those of the alignment-based methods. Note that some degree 
of difference is to be expected, given that RAPPAS has a radically 
different approach than the other methods. Another prediction is that 
PPlacer and EPA-ng should produce similar placements, as their default 
behaviour includes similar heuristics aiming to reduce runtimes. 

Consistent with the latter prediction, we observe that the PKR dis-
tances between PPlacer and EPA-ng are the smallest across all tested 
datasets. As for the former prediction (RAPPAS vs. the other methods), 
for the tara and neotrop datasets, PKR distances between RAPPAS and 
the alignment-based methods are about two to three times higher than the 
average distance between the alignment-based methods. The difference, 
however, is much smaller for the other datasets. For the very large LTP 
dataset, we do not show the results of PPlacer, as it reported several 
warning messages and produced low-quality placements. (See Suppl. 
File S1, sec. 6 for more detail.) 

dataset #taxa pkDB
PPlacer EPA-ng RAPPAS

(k=8)

EPA 0.129 0.164 0.308
512 PPlacer 0.048 0.247

EPA-ng 0.310
EPA 0.011 0.010 0.012

797 PPlacer 0.002 0.005
EPA-ng 0.004

EPA 0.076 0.073 0.175
3748 PPlacer 0.026 0.132

EPA-ng 0.129
EPA 0.076 0.065 0.076

5088 PPlacer 0.006 0.045
EPA-ng 0.030
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Fig. 3. Accuracy comparison of RAPPAS and likelihood-based methods. Datasets corresponding to different marker genes or small genomes (left headers) were used to test placement 
accuracy for QSs of different lengths (top header). Lengths are measured in amino acids for D140 and in base pairs otherwise. Each grey box corresponds to a combination of dataset and 
QS length. In each box, the horizontal axis represents the tested software (RAPPAS was tested for several k-mer sizes), while the vertical axis corresponds to the measured node distance 
(ND) (the closer to 0, the more accurate the placement). For each software, each black dot represents the mean ND for one of the 100 independent pruning experiment (see Methods) and 
white violins show the approximate distribution of the sample containing these 100 measures. The means of the four samples for RAPPAS are linked by a red line. The means of the three 
samples for the other methods are linked by a blue line. 
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3.3 Runtime  
Figure 5 summarises runtimes measured for the placement of 103 to 107 
QSs on two reference datasets corresponding to short and long reference 
sequences (a marker gene for bacteria, and a complete virus genome, 
respectively). Figure 5A shows the times measured independently for 
each software. To consider the actual time needed in a scenario where a 
long-lifespan reference tree is used, in Figure 5B, the runtime reported 
for EPA, EPA-ng, and PPlacer includes both read alignment and place-
ment, while the runtime of RAPPAS does not include pkDB construction 
(as the pkDB is already available).  

As expected, EPA, PPlacer, and EPA-ng show a runtime scaling lin-
early with the number of placed reads for both datasets (Figure 5B). 
With the D155 dataset, EPA and PPlacer could not be run with a set of 
107 reads due to high memory requirements. Note that the runtime of 
EPA-ng for D155 is dominated by the time required to align the QSs 
(Figure 5A).  

The runtimes of RAPPAS appear to grow non-linearly when less 
than 105 reads are placed due to the overhead imposed by loading the 
pkDB into memory. On the other hand, for larger read sets (≥105) this 
overhead becomes negligible and the runtime of RAPPAS scales linearly 
with the number of reads. RAPPAS is much faster than the other meth-
ods. With D652, which is a short refA (Figure 5B, right box), RAPPAS 
was up to 5x faster than EPA-ng (5.0x for k = 12 and 2.4x for k = 8) and 
up to 53x faster than PPlacer (52.7x for k = 12 and 26.3x for k = 8). With 
D155, which is a longer refA (Figure 5B, left box), greater speed in-
creases are observed: RAPPAS was about 40x faster than EPA-ng (36.9x 
for k = 8 and 38.9x for k = 12) and about 130x times faster than PPlacer. 
Concretely, using a single CPU and a common desktop computer, 
RAPPAS is capable to place one million 100-150 bp DNA reads in 30 
minutes on D652 and in 11 minutes on D155.  

3.4 Implementation 
RAPPAS is distributed as a standalone command-line application.  It is 
compatible with any system supporting Java 1.8+. Ancestral sequence 
reconstruction is performed via an external program. Currently PhyML 

3.3+ (Guindon et al., 2010) and PAML 4.9 (Yang, 2007) binaries are 
supported by RAPPAS. The main limiting factor for RAPPAS is the 
amount of memory required to build the pkDB (and subsequently, to 
load the pkDB for the placement phase). Figure 6 reports the memory 
and drive storage requirements related to building and storing the pkDB 
for three representative datasets and different values of k. D150 (few 
taxa, short alignment), D155 (few taxa, long alignment) and D1604 
(many taxa, short alignment) show memory usage below 4GB for k = 10, 
and 12GB for k = 12, which indicates that RAPPAS can be launched on 
most standard laptop computers, if k is set to a low value. A Git reposito-
ry, instructions to compile RAPPAS and tutorials are available at 
https://gite.lirmm.fr/linard/RAPPAS.  

4. Discussion 

4.1 Advantages of alignment-free placements 
The novel algorithm introduced in RAPPAS removes a major limitation 
imposed by previous PP software: these methods rely on the computation 
of a multiple alignment merging the reference alignment and query 
sequences, a step which must be repeated for each new set of query 
sequences (Figure 2-A). The idea of attaching k-mers to pre-computed 
metadata to accelerate sequence classification has been explored by 
algorithms combining taxonomically-informed k-mers and LCA-based 
classification (Liu et al., 2018; Müller et al., 2017; Wood and Salzberg, 
2014; Ounit et al., 2015).  However, none of these methods have the goal 
of producing evolutionarily precise classifications based on probabilistic 
models of sequence evolution. RAPPAS adapts this idea to PP by recon-
structing sets of probable, phylogenetically-informed k-mers, called 
phylo-kmers.  

Compared to previous PP methods, RAPPAS has two critical algo-
rithmic advantages (see Suppl. File S1, sec. 2 for details). First, its 
runtime does not depend on the length of the reference alignment, since 
the sequences in the reference tree, and those that are related to them, are 
summarized by their phylo-kmers. Note that the alignment phase re-
quired by the other PP methods has a runtime that scales linearly with 
the length of refA (if profile alignment is used (Eddy, 1998)). Second, 

Fig. 5. Placement runtime comparison. Runtimes were measured for a long (D155) and a short (D652) reference alignment, for a number of placement pipelines. A. The execution time 
for each pipeline is decomposed into “preparation” and “placement” steps. The preparation step for alignment-based methods is the alignment of each read to the reference (denoted 
“align”), while RAPPAS prepares a database once (noted “DB”). Runtimes for the analyses of 103 and 106 query reads are reported (h, hours; m, minutes), and for each read set the fastest 
combination of preparation plus placement is highlighted in red. B. Boxes describe the placement runtime in a scenario where a long-lifespan pkDB is available (meaning that its con-
struction needs not be repeated before the placement of a new query dataset). The horizontal axis reports the number of placed reads. The blue line shows the time used to align those 
reads to the reference dataset, the preliminary step required by alignment-based methods. For those methods, runtimes include the alignment phase (red and orange lines). 
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while the placement runtime of other PP methods is linear in the number 
of reference taxa (i.e. the size of refT) (Matsen et al., 2010), for 
RAPPAS it depends only on the number of edges associated to the 
queried phylo-kmers, which may be significantly smaller than the num-
ber of taxa. This second property has limited impact for a small refT with 
very similar reference sequences, or for small values of k (as k-mers will 
be assigned to many tree edges), but is favorable for a large refT, span-
ning a wide taxonomic range, and large values of k (as k-mers will be 
assigned to a low proportion of the edges).  

Our experiments on two reference datasets with very different com-
binations of the parameters governing runtimes (number of taxa and 
alignment length) show that, on real data, the initial implementation of 
RAPPAS is already faster than alternative PP pipelines (Figure 5). This 
includes EPA-ng that, despite being based on low level optimizations 
(e.g. CPU instructions, optimized libraries, etc.) (Barbera et al., 2018), is 
only faster than RAPPAS when few query sequences are analysed. As 
expected, the speed gain provided by the alignment-free approach ap-
pears to be more pronounced for long reference alignments (Figure 5B, 
left box). Finally, while the present implementation is based on a single 
thread, most steps of RAPPAS should be fully parallelizable, offering 
even faster placements in the future. 

 
Fig. 6. Memory and storage requirements related to the pkDB. Memory and storage 
requirements of RAPPAS are reported for three datasets, representative of different 
combinations of number of taxa and alignment length (D150, 1.3 kbp; D155, 9.5 kbp; 
D1604, 1.3 kbp). The blue line reports the memory peaks experienced during pkDB 
construction. The orange line displays the size of the pkDB when saved as a compressed 
binary file. 

4.2 Accuracy limitations and future work 
The presence of dense gappy regions in refA appears to have a negative 
impact on the accuracy of RAPPAS, especially in combination with 
larger k-mer sizes:  D218 and D628 are the most gappy of the tested 
datasets and cause increasingly worse accuracy (compared to 
EPA/PPlacer) when k increases from 8 to 12 (Figure 3). The likely 
reason behind this limitation is the following. As is standard practice in 
phylogenetics, substitution models used for ancestral state reconstruction 
do not treat gaps in refA as sequence states. As a result, our phylo-kmers 
are sequences composed of nucleotides (or amino acids) only and cannot 
be used to model the presence of indels in the query sequences. The by-
default construction of phylo-kmers described in the Methods produces 
phylo-kmers that will not match the query sequences having indels 
among the corresponding positions. Clearly, the longer the k-mers are, 
the more likely these failed matches are to occur. A possible solution to 
this issue consists of recording the coordinates of the indels present in 
refA, and generate phylo-kmers that skip the refA intervals defined by 
those coordinates. This solution is implemented in RAPPAS, and we 

describe it in more detail in Suppl. File S1, sec. 8. Other improvements 
may be possible, for example allowing inexact (approximate) matching 
between the query and the stored k-mers, as explored in several k-mer 
based sequence classification tools (Müller et al., 2017; Brinda et al., 
2015) or in tools for sequence comparison (Horwege et al., 2014). These 
or other solutions, adapted to a probabilistic setting, will be examined in 
the future to reduce the sensitivity of RAPPAS to gaps. 

Another limitation of RAPPAS is that although it is practically as 
accurate as likelihood-based methods for read lengths that are commonly 
produced by Illumina sequencing (e.g. 150-300 bp), it tends to become 
less accurate on longer reads (Figure 3). This is not surprising: query 
sequences are treated by RAPPAS as unordered collections of k-mers, 
meaning that RAPPAS does not evaluate whether the matches between 
the phylo-kmers and the query k-mers respect some form of positional 
consistency or collinearity. It is intuitive that this problem is potentially 
more harmful to accuracy for longer query sequences. Since long read 
sequencing is developing rapidly, future versions of the algorithm will 
deal with this issue by taking into account the positions within refA from 
which the phylo-kmers originated. 

We note that low values of k and long reference alignments make it 
possible for the same phylo-kmer to be generated at more than one 
position in refA. Frequent occurrence of this event may have an unde-
sired impact on the placement score of reads, and ultimately affect 
placement accuracy.  This is the likely reason for the lower accuracy 
observed in the D155 dataset (especially for k = 6), which corresponds to 
a complete viral genome rather than a single short genetic marker (Fig-
ure 3, lowest row). 

The choice of the value of k should be made on the basis of the 
available computational resources, in particular memory. Larger values 
of k lead to larger pkDBs that require more memory. Currently, the 
default value for k is set to 8, as this appears to ensure a good combina-
tion of placement accuracy (Fig. 3), and memory requirements (Fig. 6 
and Table 1). The choice of k is an issue that applies to all k-mer based 
methods, and very few approaches to automatically adapt k to the data at 
hand have been proposed, for example for genome assembly (Shariat et 
al. 2014). In the case of phylogenetic placement, this may entail runtime-
expensive analyses such as pruning experiments based on the reference 
dataset at hand (producing accuracy estimates for several values of k, as 
in Fig. 3). Future releases of RAPPAS may include a module allowing 
advanced users to test different values of k prior to pkDB construction.    

When placing real-world reads, for most of the tested datasets, 
RAPPAS produced placements relatively similar to the other methods 
(Table 1). The differences observed in the tara and the neotrop dataset 
are probably due to the radically different approaches of RAPPAS and 
alignment-based methods. We observed that the tara dataset is character-
ized by a gappy reference alignment, which may impact RAPPAS 
placements, as described above. The neotrop refA is not only gappy, but 
also gives a reference tree that is very non-clocklike (the leaves are at 
very different distances from the root), which may also impact RAPPAS, 
as the branch lengths set at ghost node construction are conceived for 
data consistent with a molecular clock. 

4.3 Conclusion 
The design principle behind RAPPAS (Figure 1) is particularly adapted 
to metagenomic analyses based on standardized references (trees and 
alignments) with a long lifespan. This applies to the context of medical 
diagnostics where, for instance, virus “typing” aims to classify viral 
reads within group-specific standardized references (Sharma et al., 
2018). The references are built and manually curated by specialized 
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teams, and may become standard for months to years in these medical 
communities (Kroneman et al., 2011). Similarly, databases of standard 
prokaryotic and eukaryotic markers, such as EukRef (Del Campo et al., 
2018), SILVA (Quast et al., 2013), RDP (Cole et al., 2014), PhytoRef 
(Decelle et al., 2015), and Greengenes (De Santis et al., 2006), are 
widely used for taxonomic classification. pkDBs for such references can 
be built once and shared broadly, allowing many users to efficiently 
identify a sample’s composition with RAPPAS, without the need for 
rebuilding the database or aligning the sampled reads. 

While sec. 4.2 discusses potential improvements to placement accu-
racy, the computational efficiency of RAPPAS will also be a central 
focus of our future work. For example, tailored k-mer indexing tech-
niques can be developed similarly to other recent work (Müller et al., 
2017; Liu et al., 2018), and the memory footprint of the pkDB can be 
reduced by limiting storage to the most discriminant phylo-kmers (Ounit 
et al., 2015). Despite the potential improvements to RAPPAS, it is 
already faster than other PP implementations on real datasets (Figure 5). 
As the RAPPAS algorithm evolves to place query sequences with in-
creased efficiency and accuracy (especially for longer queries), it will 
open the door to phylogenetic placement as a means to standardized 
diagnostic species identification. 
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