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Abstract
We present the first known model of genome rearrangement with an arbitrary real-valued weight
function on the rearrangements. It is based on the dominant model for the mathematical and
algorithmic study of genome rearrangement, Double Cut and Join (DCJ). Our objective function
is the sum or product of the weights of the DCJs in an evolutionary scenario, and the function
can be minimized or maximized. If the likelihood of observing an independent DCJ was estimated
based on biological conditions, for example, then this objective function could be the likelihood
of observing the independent DCJs together in a scenario. We present an O(n4)-time dynamic
programming algorithm solving the Minimum Cost Parsimonious Scenario (MCPS) problem
for co-tailed genomes with n genes (or syntenic blocks). Combining this with our previous work on
MCPS yields a polynomial-time algorithm for general genomes. The key theoretical contribution is
a novel link between the parsimonious DCJ (or 2-break) scenarios and quadrangulations of a regular
polygon. To demonstrate that our algorithm is fast enough to treat biological data, we run it on
syntenic blocks constructed for Human paired with Chimpanzee, Gibbon, Mouse, and Chicken. We
argue that the Human and Gibbon pair is a particularly interesting model for the study of weighted
genome rearrangements.
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1 Introduction

Since its introduction in 2005, Double Cut and Join (DCJ) has become the foundational
model for mathematical and algorithmic study of genome rearrangement. Its power to
simulate a diverse combination of chromosomal events along with its relatively simple
mathematical structure has facilitated a diverse expansion and use of DCJ. Grounded on
primary work that outlines how to compute DCJ scenarios between pairs of genomes [42, 9],
many active research topics have blossomed including the sampling of scenarios [30], whole
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genome duplication [41, 4], orthology assignment and evolution under gene duplication and
indels [33, 44], family-free genomic distances [29], cancer genomics [43], ancestral genome
reconstruction [3, 2], and phylogenetic inference [28, 3].

Yet to further the utility of DCJ, there is a potential for the addition of biological
constraints to the model. This article, when combined with our previous work [35], represents
the first known algorithm – for any known model of genome rearrangement – where an
arbitrary real-valued weight function on rearrangements can be given as part of the input. The
objective function can be the sum or product of the weights of the DCJs in an evolutionary
scenario, and the function can be minimized or maximized. Say, for example, that one
was to weight a DCJ based on the likelihood of observing it given particular biological
conditions. Then our objective function could compute the maximum likelihood scenario
over all minimum-length scenarios.

Our dynamic programming algorithm is possible thanks to the existence of equivalence
classes on weighted parsimonious scenarios.

1.1 Background
Most research on weighted genome rearrangement has only considered constraints on the gene
sequences, or the types of rearrangements. Length-weighted reversals and centered reversals
are such examples [7]. Other examples weight the types of rearrangements relative to each
other, possible types being inversion, transposition, inverse transposition, insertion/deletion
(indel), and tandem duplication random loss [13, 17, 25]. The preservation of common intervals
or groups of co-localized genes can also be enforced. Hartman, Middendorf, and Bernt present
a summary of this work in [24]. The same authors have combined these approaches by
studying type-weighted rearrangement scenarios preserving common intervals [23].

Over the last few years research has emerged that incorporates external biological
information for weighting genome rearrangements. This includes methods that consider the
sizes of intergenic regions [12, 20, 14], or that minimize the number of DCJs cutting regions
that are distant in physical space [39, 36]. In [32], we computed scenarios that maximize the
Hi-C contacts between breakpoints of rearrangements using a greedy algorithm for weighted
pairs of gene adjacencies. It was left an open question as to whether an exact polynomial-time
algorithm to do this exists. This article answers a similar question, by describing an exact
polynomial-time algorithm for weighted pairs of gene extremities (rather than adjacencies).

We base our article on the model called Double Cut and Join (DCJ) [42, 9]. Each
chromosome is represented by an ordering of directed genes (or syntenic blocks), and each
gene is represented by two extremities. Extremities that are adjacent in this ordering are
paired, and transformations of these pairs occur by swapping extremities of two pairs. DCJ
can naturally be interpreted as a graph edit model with the use of the breakpoint graph, where
there is an edge between gene extremities a and b for each adjacent pair. A DCJ operation
replaces an edge pair

{
{a, b}, {c, d}

}
of the graph by

{
{a, c}, {b, d}

}
or

{
{a, d}, {b, c}

}
.

This edge edit operation on a graph is called a 2-break. 2-breaks – also known as edge
swaps, switches, rewirings, or flips [21] – have been studied in the restricted setting of genome
rearrangement [5, 9] and sorting strings by mathematical transpositions [1, 18], but also in
more general settings of generating random networks [21] and network design [11, 19].

1.2 The Problem
The foundational problem is that of finding a minimum length (or parsimonious) 2-break
scenario transforming an arbitrary multi-graph into another one having the same degree
sequence [11, 9, 30]. For an arbitrary real valued cost function ω defined on the set of
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2-breaks, we treat the problem of finding a parsimonious 2-break scenario minimizing the
sum of the ω-costs of its 2-breaks, the ω-Minimum Cost Parsimonious Scenario problem
(see Section 5 for a more precise definition of our cost function).

In this article we present an O(n4)-time algorithm solving ω-MCPS for the perfect
matchings on n vertices. These graphs represent co-tailed pairs of genomes, which are the
pairs of genomes that share the same telomeric adjacencies [31].

Consider the ω-MCPS problem for general genomes.

I Problem 1 (ω-Minimum Cost Parsimonious Scenario or ω-MCPS).

INPUT : A pair of genomes (A,B), and a real valued cost function ω defined
for the set of DCJ rearrangements on the gene extremities of A and B.

OUTPUT : A minimum length DCJ scenario transforming A into B
that minimizes the sum of the ω-costs of its operations.

Our previous work guarantees that our solution for ω-MCPS on co-tailed genomes can be
extended to ω-MCPS on general genomes, with an overhead that is linear in the number of
linear chromosomes [35]. Note that ω-MCPS asks for a parsimonious scenario minimizing
the sum of costs. Our algorithm from Section 5 can be easily modified to find a parsimonious
scenario minimizing the product of costs, or maximizing the sum or the product of costs.
For the sake of simplicity we only treat the case of minimizing the sum of costs.

Experiments presented in Section 6 show that our algorithm is efficient enough for species
as distant as Human and Chicken. We construct breakpoint graphs between Human and
four other species including Chimpanzee, Gibbon, Mouse, and Chicken, and demonstrate
that our algorithm can be used in practice despite its elevated time complexity.

Designing an informative cost function remains a challenging open problem. In Section 7
we provide a short overview of the recent results linking evolution by genome rearrangement
to various chromatin features. We also propose the use of sure 2-breaks as a testing ground for
potential cost functions. These are the rearrangements that are present in every parsimonious
scenario transforming one genome into another. We observe that such rearrangements
comprise at least 7% of the parsimonious scenarios for the studied species.

2 Genomes, Breakpoint Graphs and DCJ Scenarios

A genome consists of chromosomes that are linear or circular orders of genes separated by
potential breakpoint regions. In Figure 1 the tail of an arrow represents the tail extremity, and
the head of an arrow represents the head extremity of a gene. A set of adjacencies between
the gene extremities can uniquely represent a genome. An adjacency is either internal: an
unordered pair of the extremities that are adjacent on a chromosome, or external: a single
extremity adjacent to one of the two ends of a linear chromosome. We will suppose that
two genomes are partitioned into n genes or syntenic blocks each occurring exactly once in
each genome. We use the breakpoint graph to represent a pair of genomes, and our goal is to
transform one genome into another using a sequence of DCJ operations.

I Definition 1 (co-tailed genomes). Two genomes are co-tailed if their sets of external
adjacencies are equal.

I Definition 2 (breakpoint graph [5]). G(A,B) for genomes A and B is an 2-edge-colored
Eulerian undirected multi-graph. Its vertices are the 2n gene extremities and an additional
vertex ◦. For every internal adjacency {a, b} ∈ A (respectively {a, b} ∈ B) there is a

WABI 2019
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Figure 1 Three genomes A,B and C are depicted together with the breakpoint graphsG(A,B) and
G(C,B). A and B consists of a single linear chromosome, while C consists of a linear and a circular
chromosome. The three genomes contain the five genes depicted as dashed arrows. The adjacencies
of A are

{
{1t}, {1h, 2t}, {2h, 3t}, {3h, 4t}, {4h, 5t}{5h}

}
. A DCJ {2h, 3t}, {5h} → {5h, 3t}, {2h}

transforms A into C. The corresponding graph transformation G(A,B) → G(C,B) is a 2-break
transforming one simple alternating cycle into two.

black (respectively gray) edge {a, b} in G(A,B) and for every external adjacency {a} ∈ A
(respectively {a} ∈ B) there is a black (respectively gray) edge {a, ◦} in G(A,B). There
is also a number of black and gray loops {◦, ◦} ensuring that the black and gray degrees
of ◦ are equal.

I Definition 3 (double cut and join [42]). A DCJ cuts one or two adjacencies of a genome
and joins the resulting ends of the chromosomes back in one of the four following ways:
{a, b}, {c, d} → {a, c}, {b, d}; {a, b}, {c} → {a, c}, {b}; {a, b} → {a}, {b}; and {a}, {b} →
{a, b}.

3 Parsimonious 2-break Scenarios for 2-edge-colored Graphs

The problem of transforming a genome A into B using a sequence of DCJ operations can be
reduced to the problem of transforming the breakpoint graph G(A,B) into G(B,B) using
2-breaks on its black edges (see Figure 1) [35].

I Definition 4 (2-break). A 2-break
{
{u, v}, {q, s}

}
→

{
{u, q}, {v, s}

}
is a graph transfor-

mation replacing edges {u, v} and {q, s}, with edges {u, q} and {v, s}. The vertices and the
edges of this 2-break are respectively

{
u, v, q, s

}
and

{
{u, v}, {q, s}, {u, q}, {v, s}

}
.

The problem of transforming a breakpoint graph using 2-breaks can be formulated in
a more general setting of transforming an arbitrary multi-graph H1 into another H2. A
2-break preserves the degrees of the vertices, thus H1 can only be transformed into a graph
H2 having the same degree sequence as H1. Given H1 and H2 with equal degree sequences,
one could combine them into an 2-edge-colored multi-graph using a bijection between the
equal degree vertices, coloring the edges of H1 in black and the edges of H2 in gray. Such
an Eulerian 2-edge-colored graph admits a decomposition into edge-disjoint alternating
cycles. An alternating cycle is simple, if it cannot be further decomposed into edge-disjoint
alternating cycles. A simple alternating cycle is a circle, if the black and gray degrees of its
vertices are equal to 1. The size of a simple cycle is its number of vertices. The breakpoint
graph G(A,B) in Figure 1 has two simple cycles, but only one of them is a circle.

I Definition 5 (2-break scenario and terminal graph). A 2-break scenario for an 2-edge-colored
multi-graph G is a sequence of 2-breaks transforming the black edges of G into its gray edges.
We call an 2-edge-colored graph with equal multisets of black and gray edges a terminal graph.

See Figure 2 (a) for an example of a 2-break scenario and a terminal graph. The problem
of finding a minimum length (or parsimonious) 2-break scenario is closely related to the
problem of finding a Maximum Alternating Edge-disjoint Cycle Decomposition
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(MAECD) of a graph [9, 11, 30, 15]. The key observation is that a 2-break in a parsimonious
scenario increases the size of a MAECD of a graph by 1. Theorem 6 leads to a couple of
easy corollaries that we will use in our proofs.

I Theorem 6 (Bienstock and Günlük in [11]). The minimum length of a 2-break scenario for
an Eulerian 2-edge-colored multi-graph is equal to the number of its vertices divided by two
minus the size of its MAECD.

I Corollary 7. The first 2-break τ in a parsimonious scenario ρ for a circle transforms it
into a union of two vertex-disjoint circles. The rest of ρ does not contain τ .

I Corollary 8. A parsimonious scenario for a graph having two connected components can
be partitioned into two sub-sequences that are parsimonious scenarios for these components.
If parsimonious scenarios ρ1 and ρ2 for these components are given, then their shuffle, a
sequence that can be partitioned into two sub-sequences equal to ρ1 and ρ2, is a parsimonious
scenario for the graph.

4 Equivalence Classes of the Parsimonious Scenarios for a Circle

In Section 5 we concern ourselves with the cost of a scenario, that is, the sum of the costs of
its constituent 2-breaks. This way two scenarios consisting of the same 2-breaks, but possibly
in a different order, have the same cost. This motivates the following definition.

I Definition 9 (equivalent scenarios). 2-break scenarios are equivalent if they consist of the
same 2-breaks.

A Scenario graph of a parsimonious scenario ρ for a circle is introduced in Section 4.1, as
a graph whose edges are exactly the edges of the 2-breaks in ρ. Two parsimonious scenarios
for a circle are then proved to be equivalent if and only if their scenario graphs are equal in
Section 4.4. In Section 4.1 we show that the scenario graph of a parsimonious scenario is
planar and provide an embedding of this graph that is a partition of a regular even polygon
into quadrilaterals, also known as a “quadrangulation” or a “complete quadrillage”. In
Section 4.4 we show that for any quadrangulation of a circle there exists an equal scenario
graph, thus establishing a bijection between the quadrangulations and the equivalence classes
of the parsimonious scenarios for a circle. A bijection between the 2-breaks in a scenario and
the faces of its scenario graph is established in Section 4.2. This link enables us to partition
a parsimonious scenario for a circle into the subsequences that are parsimonious scenarios
for its sub-circles in Section 4.3, and ultimately allows us to efficiently search the space of all
the parsimonious scenarios in Section 5.

I Definition 10 (sub-circle). Take an odd length path in a circle. If the edges incident to
its endpoints are black (respectively gray), then add a gray (respectively black) edge incident
to the endpoints of this path to obtain a circle. We say that the added edge delimits the
sub-circle. See Figure 2 (b) for an example of sub-circles.

4.1 A Scenario Graph is a Quadrangulation of a Circle
We show that a scenario graph for a parsimonious scenario of a circle is planar, and provide
an embedding of this graph that is a partition of that circle into quadrilaterals (i.e. cycles of
length four).

WABI 2019
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Figure 2 An example of a parsimonious scenario for a circle, its sub-circles and the scenario
graph. a) A circular straight-line embedding ΣC of a circle C and a parsimonious 2-break scenario ρ
of length 4 transforming this circle into a terminal graph. b) The first 2-break of ρ transforms C
into a union of two vertex-disjoint circles C1 and C2, these are the sub-circles of C delimited by the
edges {1, 8} and {2, 7} respectively. c) The edge {4, 7} delimits the sub-circles C3 and C4 of C2. C4

is also a sub-circle of C, but C3 is not. d) A circular straight-line drawing ΣS(C,ρ) of the scenario
graph S(C, ρ). e) We draw an embedding of the trajectory graph [34] T of ρ on top of the scenario
graph. Operation nodes of T (in white) correspond to the faces of S(C, ρ), and adjacency nodes of
T (in gray) correspond to the edges of S(C, ρ). The edges incident to the black (respectively gray)
edges of the circle are directed outwards (respectively inwards). The rest of the edges are directed in
such a way as to guarantee that the in and out degrees of the rest of the vertices of T are equal. f)
An example of a scenario graph with a face that is not incident to any of the edges of the circle.

I Definition 11 (scenario graph). For a circle C and its parsimonious 2-break scenario ρ,
define an undirected simple graph S(C, ρ) called a scenario graph. The vertices of S(C, ρ)
are the vertices of C. If C has more than two vertices, then the edges of S(C, ρ) are the edges
of the 2-breaks in ρ. Otherwise, S(C, ρ) contains a single edge incident to its two vertices.

See Figure 2 (d) for an example of a circular straight-line drawing of a scenario graph.

I Definition 12 (circular straight-line drawing of a scenario graph). A circular straight-line
drawing of a graph is a drawing on a plane with the vertices of the graph arranged on a
circle and the edges drawn as straight lines. If the edges in the drawing do not cross, then
the drawing is an embedding. Fix a circular straight-line embedding ΣC of a circle C.
The sub-circles of C inherit their circular straight-line embeddings from ΣC . The scenario
graph S(C, ρ) for a parsimonious scenario ρ for C inherits a circular straight-line drawing
ΣS(C,ρ) from ΣC .

I Theorem 13. For every circle C and its parsimonious scenario ρ, the scenario graph S(C, ρ)
is planar, ΣS(C,ρ) is its embedding and all the internal faces of ΣS(C,ρ) are quadrilaterals.

Proof. C has an even number of vertices by construction. If C has two vertices, then its
scenario graph has a single edge and no internal faces. Suppose that the statement is true for
every circle having at most 2k − 2 ≥ 2 vertices and take a circle C with 2k vertices together
with its parsimonious scenario ρ.

Due to Corollary 7, the first 2-break τ of ρ transforms C into a union of two vertex
disjoint circles. Denote these circles by C1 and C2 (see Figure 2 (b)). Due to Corollary 8,
the rest of ρ can be partitioned into ρ1 and ρ2, that are scenarios for C1 and C2 respectively.
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If τ =
{
{u, v}, {q, s}

}
→

{
{u, q}, {v, s}

}
, then the edges of ΣS(C,ρ) can be obtained by

adding the edges {u, v} and {q, s} to the union of the edges of S(C1, ρ1) and S(C2, ρ2) (see
Figure 2 (d). ΣS(C1,ρ1) and ΣS(C2,ρ2) satisfy the inductive hypothesis, so their edges do not
cross. {u, v} and {q, s} do not cross the other edges and together with {u, q} and {v, s}
bound the only face of ΣS(C,ρ) not belonging to ΣS(C1,ρ1) or ΣS(C2,ρ2). J

I Definition 14 (Dual graph). The dual graph of an embedding of a planar graph G is a
graph that has a vertex for each face of G. The dual graph has an edge whenever two faces
of G are separated from each other by an edge.

The dual graph of an embedding of a scenario graph, up to some minor modifications,
is a trajectory graph introduced by Shao, Lin, and Moret (see Figure 2 (e) for an example).
In [34] these authors show that the trajectory graph of a parsimonious scenario for a circle
is a tree, which could be used to prove Theorem 13. By fixing an embedding of a scenario
graph, we are not only able to describe the equivalence classes of the parsimonious scenarios
for a circle, but also to search them efficiently.

4.2 A Bijection Between the 2-breaks in a Scenario and the Faces of a
Scenario Graph

I Lemma 15 (Proven in Appendix A.1). For an embedding of a connected graph G = (V,E)
with |V | edges incident to the outer face and all the inner faces being quadrilaterals, the
number of internal faces |Fint| is |V |2 − 1.

I Proposition 16. For a circle C and a parsimonious scenario ρ for C, there exists a
bijection between the 2-breaks in ρ and the internal faces of ΣS(C,ρ) that associates to every
2-break in ρ the face bounded by its edges.

Proof. Take a circle C = (V,E) and its parsimonious scenario ρ. There are |V |2 − 1 2-breaks
in ρ due to Theorem 6 and |V |2 − 1 internal faces in ΣS(C,ρ) due to Lemma 15. Take a 2-break
τ in ρ. By construction, the edges of τ form a cycle of length 4 in S(C, ρ). ΣS(C,ρ) is an
embedding of S(C, ρ) and in the part of the plane bounded by this cycle there are no vertices.
This means that the edges of τ bound a face in ΣS(C,ρ). All the 2-breaks in ρ are unique
due to Corollary 7, thus we obtain an injection between the 2-breaks in ρ and the faces in
ΣS(C,ρ). As the sizes of these two sets are equal, the function is bijection. J

I Corollary 17 (Proven in Appendix A.2). Consider a circle C, a parsimonious scenario
ρ for C, and an internal face f of ΣS(C,ρ) bounded by the edges {u, v}, {v, s}, {s, q} and
{q, u}, where {u, v} is a black edge of C. Then ρ contains a 2-break

{
{u, v}, {q, s}

}
→{

{u, q}, {v, s}
}
.

4.3 Partitioning Scenario into Scenarios for Sub-circles
In this section we demonstrate how a parsimonious scenario for a circle can be partitioned
into scenarios for its sub-circles. Theorem 19 is at the heart of the dynamic programming
algorithm for MCPS presented in Section 5.

I Lemma 18 (Proven in Appendix A.3). For every circle C, a parsimonious scenario ρ for
C, and an edge e of ΣS(C,ρ), ρ can be partitioned into two (possibly empty) parsimonious
scenarios, one for each sub-circle delimited by e.

WABI 2019
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Figure 3 An illustration of how to find a parsimonious scenario whose scenario graph is equal to
a given qadrangulation of a circle. On the left, the inner edges of a quadrangulation are depicted on
top of a circle. To the right, a parsimonious scenario realizing this quadrangulation is given.

I Theorem 19. For every circle C having at least four vertices, a parsimonious scenario
ρ for C, and an internal face f of ΣS(C,ρ), ρ can be partitioned into four (possibly empty)
parsimonious scenarios, one for each sub-circle delimited by the edges bounding f , plus the
2-break whose edges bound f .

Proof. Proposition 16 provides a 2-break τ in ρ whose edges bound f . An edge bounding f
delimits two sub-circles of C, denote the one containing only two vertices of τ to be external
(the other one contains all four vertices of τ). Repeat Lemma 18 for the four edges bounding
f to obtain parsimonious scenarios for the four external sub-circles. See Figure 2 (f) for an
example, where all four external sub-circles are of size larger than 2. By construction, these
scenarios do not intersect and together with τ partition ρ. J

4.4 A Bijection Between the Equivalence Classes of Scenarios and
Quadrangulations

The results in this subsection are presented for the sake of completeness. They establish
bijections between the equivalence classes of the parsimonious scenarios for a circle, their
scenario graphs and the quadrangulations of that circle, however they are not explicitly used
in the later sections.

I Theorem 20 (Proven in Appendix A.4). For every circle C and its parsimonious scenarios
ρ and µ, their scenario graphs are equal if and only if these scenarios are equivalent.

I Definition 21 (quadrangulation of a circle). Take a circular straight-line embedding of a
circle C and forget the colors of its edges. If C is has two vertices then keep a single edge
joining them to obtain an embedding ΣS. Otherwise add straight-line edges to obtain an
embedding ΣS with all the internal faces being quadrilaterals.

I Proposition 22 (Proven in Appendix A.5). For every circle C and its quadrangulation ΣS
there exists a parsimonious scenario ρ such that ΣS(C,ρ) = ΣS.

Quadrangulations of an even regular polygon, also known as complete quadrillages,
correspond to rooted ternary trees just as triangulations of a polygon correspond to rooted
binary trees [6]. This means that for a circle with 2n + 2 vertices there are 1

2n+1
(3n
n

)
≈

1
n3/2 ( 27

4 )n equivalence classes. For comparison, the number of the parsimonious scenarios for
such a circle is (n+ 1)(n−1) [31].

5 Minimum Cost Parsimonious Scenario for a Circle

Consider a circle C, the 2-breaks that act on the vertices of C, and a cost function ω mapping
these 2-breaks to real numbers. In other words, every 2-break τ =

{
{u, v}, {q, s}

}
→{

{u, q}, {v, s}
}
, with u, v, q, s being vertices of C, gets assigned a ω-cost ω(τ). The ω-cost
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ω(ρ) of a scenario ρ is the sum of the costs of its constituent 2-breaks. The ω-cost ω(C) of a
circle C is the minimum cost of a parsimonious scenario for C. Without loss of generality we
suppose the vertices of C are named {1, . . . , |V |} while respecting their clockwise order on
the circle, and that {1, 2} is a black edge as in Figure 2. For the vertices i, j ∈ V with i+ j

being odd, define C[i, j] to be the sub-circle of C containing the path in C going clockwise
from i to j. We denote its ω-cost by ω[i, j].

A quadrilateral is valid for a circle if it appears in some quadrangulation of that circle.
Take vertices 1 ≤ i < r < s < j ≤ |V |. They are the vertices of a valid quadrilateral for C if
and only if i+ r, r + s, s+ j, i+ j are all odd (see Figure 2). Due to Theorem 19, such a
quadrilateral partitions a parsimonious scenario for C[i, j] into parsimonious scenarios for
C[i, r], C[r, s], C[s, j], along with the 2-break acting on the edges bounding the quadrilateral.
In Lemma 23 we show how ω[i, j] can be found by iterating through the valid quadrilaterals
for C[i, j] containing the edge {i, j}. In Theorem 24 we conclude that ω(C) can be computed
by iterating once through all the valid quadrilaterals of C.

I Lemma 23 (Proven in Appendix A.6). For a sub-circle C[i, j] of a circle C with i < j, its
cost ω[i, j] is 0 if it has two vertices, otherwise

ω[i, j] = minr,s
(
ω[i, r] + ω[r, s] + ω[s, j] + ω(τ)

)
for vertices i < r < s < j of a valid quadrilateral for C[i, j], where τ =

{
{i, r}, {s, j}

}
→{

{i, j}, {r, s}
}
if i is odd, and τ =

{
{i, j}, {r, s}

}
→

{
{i, r}, {j, s}

}
if i is even.

I Theorem 24. If the ω-cost of a 2-break can be computed in constant time, then the ω-cost
of a circle can be computed in O(|V |4) time using dynamic programming.

Proof. Take a circle C. The ω-costs of its size 2 sub-circles can be initialized in O(|V |) time.
Suppose the ω-costs of its sub-circles of size at most 2k − 2 > 0 to be precomputed. We
will show that the ω-costs of its sub-circles of size 2k can be computed in O(|V |k2) time.
There are |V | − 2k + 1 sub-circles of C of size 2k. Due to Lemma 23, the ω-cost of such a
sub-circle is equal to the minimum of the set of size Θ(k2). Every element of this set can be
computed in constant time, as the ω-costs of the smaller sub-circles are precomputed and
the ω-cost of a 2-break can be found in constant time. This means that the time complexity
of computing the ω-costs for all the sub-circles of C of size 2k is Θ((|V | − k)k2). This leads
to an O(|V |4)-time dynamic programming algorithm for computing ω(C). J

In [35] we demonstrated how the ω-cost of a breakpoint graph can be found using an
algorithm finding the ω-cost of a circle. This leads directly to Theorem 25.

I Theorem 25. Take two genomes having m linear chromosomes and sharing n syntenic
blocks. If the ω-cost of a 2-break can be computed in constant time, then the ω-cost of their
breakpoint graph can be computed in O(mn4) time.

6 Experiments

We use OrthoCluster [45] to construct syntenic blocks between Human and four other species
including Chimpanzee, Gibbon, Mouse, and Chicken. See Appendix B for details regarding
this process. Several runs of OrthoCluster are performed for the species while setting the
input parameter of the minimum number of genes in a syntenic block to be ` ∈ {1, 2, 4, 8}.
Details concerning these runs are summarized in Table 1. Ideally we would like to use
the blocks with ` = 1, however the blocks containing a small number of genes could be
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less reliable due to annotation and assembly errors. For every set of syntenic blocks we
constructed a breakpoint graph, computed the size of its largest simple cycle, that we call
the circumference, and the length of a parsimonious scenario. Choosing an informative cost
function is out of the scope of this work, however, we test the running time of our algorithm
with a cost function ωp that is equal to 1 for every 2-break (the full dynamic program ran
despite all parsimonious scenarios having the same cost). If a breakpoint graph G has a circle
C of size four, then any parsimonious scenario for G must contain a 2-break transforming C
into a terminal graph. We call such 2-breaks sure and report the ratio of the number of sure
2-breaks to the length of a parsimonious scenario in Table 1.

6.1 The Elevated Time Complexity of Computing MCPS is not
Prohibitive and Sure 2-breaks are Abundant

While the breakpoint graphs obtained with Chimpanzee have low circumference and could
still be analyzed by hand, this is impossible for Gibbon and even more so for Mouse and
Chicken. Computing the ωp-cost took seconds for Chimpanzee and Gibbon, less than 3
minutes for Mouse, and less than 10 minutes for Chicken (see Table 1).

The parsimonious scenarios in all cases include a significant share of sure 2-breaks. We
can test a given cost function on these 2-breaks, knowing that they must appear in any
parsimonious scenario. This approach has been used before, for example, when ape/human
deletions were recently studied [26, 22], however we are not aware of such a study for
inversions or DCJs.

7 Biological Constraints

Recent studies revealed the role played by the structure of topologically associating domains
(TADs), active chromatin, and 3D co-localization of the breakpoint regions in evolution by
genome rearrangements. DNA breaks have been shown to occur in active chromatin regions
coming into 3D contact in the nucleus [40, 10, 38]. Gibbon rearrangements were shown to
occur at TAD boundaries, with most TADs maintained as intact modules during and after
rearrangement [27]. A genome-wide depletion of deletions in active chromatin, and at TAD
boundaries was observed across primate evolution [22]. Deletions causing TAD fusion were
shown to be rare and under negative selection [26].

Recently published high resolution maps of the breakpoint regions, Hi-C, and ChIP-seq
data for the highly rearranged Gibbon genome [27] combined with all the biological data
available for Human genome, make these two species a very interesting target for the study
of weighted genome rearrangements. This is especially so, since their parsimonious DCJ
scenario contains > 24% of sure 2-breaks. These can be studied in detail to better understand
the mechanisms behind the individual rearrangements. This dataset complements the set of
inversions detected in human individuals [37, 16].

The algorithm presented in this article could be used to find parsimonious scenarios
maximizing the number of DNA breaks at active chromatin or TAD boundaries. Breakpoint
co-locality is another parameter that has been maximized in a scenario [39, 36]. The
ω-cost could consider information on chromatin state, TAD boundaries and co-locality
simultaneously, meaning that all the features could be used at the same time.

MCPS could also be used with the DCJ scenarios preserving common intervals [8]. In
our framework, we could assign costs to the DCJs according to how well they preserve the
common intervals between the genomes.
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Table 1 This table summarizes our analysis of the breakpoint graphs between Human and the
four other species. ` is the minimum number of genes in a syntenic block. Blocks is the number of
syntenic blocks. The Coverage is the proportion of the Human assembly covered by a syntenic block.
Scenario length is the length of a parsimonious scenario. Circumference is the size of the largest
simple cycle in a breakpoint graph. Sure 2-breaks is the proportion of a parsimonious scenarios that
is composed of sure 2-breaks. Time is real time required to run our algorithm for ωp-MCPS on
Intel® Xeon® Processor E5-2650 v3 (25M Cache, 2.30 GHz).

` Blocks Coverage Scenario length Circumference Sure 2-breaks Time
Chimpanzee

1 202 90% 116 16 33% <2s
2 100 90% 47 10 51% <2s
4 68 90% 26 6 73% <2s
8 50 89% 15 6 66% <2s

Gibbon
1 285 87% 195 80 24% <7s
2 202 86% 130 56 28% <3s
4 171 86% 105 60 32% <3s
8 139 83% 82 36 37% <3s

Mouse
1 659 83% 523 116 17% <3m
2 442 82% 366 94 15% <1m
4 335 80% 287 94 11% <1m
8 257 76% 224 72 9% <20s

Chicken
1 1697 75% 1429 210 12% <10m
2 978 73% 851 98 10% <2m
4 628 69% 558 82 7% <2m
8 341 60% 305 60 8% <15s

8 Conclusion and Future Work

Our recently introduced framework [35] deals with the ϕ-MCPS problem, which allows for
costs on gene extremities and their adjacencies, extends results for co-tailed genomes to more
general genome pairs. The ω-MCPS problem is a particular case of the ϕ-MCPS problem, as
ω-costs depend only on gene extremities. Previous work provided polynomial-time algorithms
for some particular ϕ-costs [39, 36, 14]. Finding a general polynomial-time algorithm for the
ϕ-MCPS problem, however, remains an open problem.

Our characterization of parsimonious scenarios into equivalence classes could prove useful
for tasks such as sampling weighted parsimonious scenarios. The problem of counting the
number of the parsimonious scenarios within an equivalence class remains open, as does the
problem of counting and sampling the ω-MCPS scenarios.

Our algorithm for ω-MCPS was shown to be efficient enough for species as distant as
Human and Chicken, and we briefly discussed possibly informative biological constraints and
cost functions. Mathematical modeling of these constraints and a choice of a particular cost
function, however, are left for future work.
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A Proofs

A.1 Lemma 15
I Lemma. For an embedding of a connected graph G = (V,E) with |V | edges incident to
the outer face and all the inner faces being quadrilaterals, the number of internal faces |Fint|
is |V |2 − 1.

Proof. Every internal face of G is bounded by four edges, G has |V | edges incident to the
outer face, and every edge of G is separating two faces. By counting edges we obtain the
equality 4|Fint| + |V | = 2|E|. Euler’s formula for planar graphs is |V | − |E| + |F | = 2,
thus |E| = |V | + |F | − 2 = |V | + |Fint| − 1. Combining these two equalities we obtain
4|Fint|+ |V | = 2|V |+ 2|Fint| − 2 and finally |Fint| = |V |

2 − 1. J

A.2 Corollary 17
I Corollary. Consider a circle C, a parsimonious scenario ρ for C, and an internal face f
of ΣS(C,ρ) bounded by the edges {u, v}, {v, s}, {s, q} and {q, u}, where {u, v} is a black edge
of C. Then ρ contains a 2-break

{
{u, v}, {q, s}

}
→

{
{u, q}, {v, s}

}
.

Proof. If {u, v} is among the edges of at least two different 2-breaks in ρ, then {u, v} is
incident to at least two different internal faces of ΣS(C,ρ) due to Proposition 16. However
{u, v} is a black edge of C, thus it is incident to a single internal face of ΣS(C,ρ), and that
face is f . This means that {u, v} is among the edges of a single 2-break τ in ρ.

Due to Proposition 16, the edges of τ are exactly the edges of f . This means that τ
is either

{
{u, v}, {q, s}

}
→

{
{u, q}, {v, s}

}
, or

{
{u, q}, {v, s}

}
→

{
{u, v}, {q, s}

}
. {u, v} is

not present in the terminal graph obtained from C after ρ is performed. This means that ρ
includes a 2-break replacing {u, v}. Combining these two observations we conclude that τ is{
{u, v}, {q, s}

}
→

{
{u, q}, {v, s}

}
. J

A.3 Lemma 18
I Lemma. For every circle C, a parsimonious scenario ρ for C, and an edge e of ΣS(C,ρ), ρ
can be partitioned into two (possibly empty) parsimonious scenarios, one for each sub-circle
delimited by e.

Proof. If C has two vertices, then the sub-circles in question are two copies of C, and
empty scenarios satisfy the statement. Suppose that it is true for any circle having at most
2k − 2 ≥ 2 vertices and take a circle with 2k vertices together with its parsimonious scenario
ρ and an edge e of ΣS(C,ρ).

Denote the two sub-circles delimited by e by C3 and C4. Take the first 2-break τ of ρ and
suppose that its vertices do not belong to the same sub-circle. In this case at least one of its
edges is incident to the vertices that do not belong to the same sub-circle. This edge crosses
e, which contradicts the planarity of ΣS(C,ρ). This means that the vertices of τ belong to
the same sub-circle. Without loss of generality we can suppose that it is C3. τ transforms C
into a union of two vertex-disjoint circles. Denote the one containing the endpoints of e by
C2 and the other one by C1. Due to Corollary 7, the rest of ρ can be partitioned into two
sub-sequences ρ1 and ρ2, that are respectively scenarios for C1 and C2.

The inductive hypothesis holds for the triplet C2, ρ2 and e, providing us with a partition
of ρ2 into two parsimonious scenarios for the sub-circles of C2 delimited by e. One of these
sub-circles is C4. Denote the other by C5 and denote the parsimonious scenarios obtained
for them by ρ4 and ρ5 respectively.
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By removing from ρ the 2-breaks in ρ4 and a 2-break τ , we obtain a sequence of 2-breaks
ρ′, that is a shuffle of the parsimonious scenarios ρ1 for C1 and ρ5 for C5. Due to Corollary 8,
ρ′ is a parsimonious scenario for the union of C1 and C5, which is the graph obtained from
C3 after τ is performed. Finally, by adding τ at the beginning of ρ′ we obtain a parsimonious
scenario for C3, which together with ρ4 satisfies the statement. J

A.4 Theorem 20

We first prove the following lemma.

I Lemma. For every circle C, a parsimonious scenario ρ for C, and a 2-break in ρ replacing
two black edges of C, the sequence of 2-breaks with this 2-break performed first and followed
by the rest of ρ is also a parsimonious scenario for C.

Proof. Take a circle C, its parsimonious scenario ρ and a 2-break τ in ρ replacing two black
edges. Due to Proposition 16, there exists a face in ΣS(C,ρ) bounded by the edges of τ . Using
Theorem 19 we obtain a partition of ρ into four scenarios for the sub-circles of C delimited by
the edges of τ and τ itself, however two of these scenarios are for the circles with 2 vertices,
thus of length 0. Denote the other two by ρ1 and ρ2. This means that ρ without τ is a shuffle
of two parsimonious scenarios for the vertex-disjoint circles. Using Corollary 8 we obtain
that ρ without τ is a parsimonious scenario for the union of these circles, that is obtained
from C after τ is performed. This means that moving τ to the beginning of ρ we obtain a
parsimonious scenario for C. J

I Theorem. For every circle C and its parsimonious scenarios ρ and µ, their scenario
graphs are equal if and only if these scenarios are equivalent.

Proof. If a circle C has two vertices, then its parsimonious scenarios are empty and the
statement is true. Suppose that the statement is true for every circle with at most 2k− 2 ≥ 2
vertices. Take a circle C with 2k vertices and two parsimonious scenarios ρ and µ for C.

First suppose that ρ and µ contain exactly the same 2-breaks but possibly in different
order. By construction, the edges of ΣS(C,ρ) are the edges of the 2-breaks in ρ, and these are
exactly the same as the edges of the 2-breaks in µ, meaning that ΣS(C,ρ) = ΣS(C,µ).

Now suppose that ΣS(C,ρ) = ΣS(C,µ). Take τ , the first 2-break of ρ. By construction, it
replaces two black edges of C and its edges bound a face in ΣS(C,ρ) due to Proposition 16.
ΣS(C,ρ) = ΣS(C,µ), thus the latter contains the same face that we denote by f . Due to
Corollary 17, µ contains a 2-break replacing the black edges bounding f , this means that
µ contains τ . Using the lemma proven above with a 2-break τ we get that the sequence of
2-breaks obtained by moving µ to the beginning of µ is a parsimonious scenario for C that
we denote by µ′. Using the first part of this proof we obtain that ΣS(C,µ′) is equal to ΣS(C,µ)
and thus ΣS(C,ρ).

Due to Corollary 7, τ transforms C into two vertex-disjoint circles C1 and C2. Denote the
subgraph of ΣS(C,ρ) induced by the vertices of C1 (respectively C2) by ΣS1 (respectively ΣS2).
Due to Corollary 8, the rest of ρ (respectively µ′) can be partitioned into two sub-sequences
ρ1, ρ2 (respectively µ′1, µ′2) that are scenarios for C1 and C2. By construction, ΣS(C,ρ1) = ΣS1

and ΣS(C,ρ2) = ΣS2 (respectively ΣS(C,µ′
1) = ΣS1 and ΣS(C,µ′

2) = ΣS2). Using the inductive
hypothesis we obtain that ρ1 and µ′1 contain exactly the same 2-breaks and so does ρ2 and
µ′2, which means that ρ and µ′ contain exactly the same 2-breaks. J
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A.5 Proposition 22
I Proposition. For every circle C and its quadrangulation ΣS there exists a parsimonious
scenario ρ such that ΣS(C,ρ) = ΣS.

Proof. If a circle has 2 vertices, then an empty scenario satisfies the statement. Suppose
that the statement is true for every circle having at most 2k − 2 ≥ 2 vertices and take a
circle C with 2k vertices together with its quadrangulation ΣS (see Figure 3 for an example).

Due to Lemma 15, ΣS has k − 1 internal face and k outer edges that are black in C. An
outer edge of C belongs to at most one internal face of ΣS , thus we obtain that ΣS has an
internal face f bounded by the edges among which there are at least two black edges of C.

Perform a 2-break on these black edges of C transforming it into a vertex-disjoint union
of two sub-circles C1 and C2. The subgraphs of ΣS induced by the vertices of C1 and C2 are
quadrangulations of C1 and C2 that we denote by ΣS1 and ΣS2 . They satisfy the inductive
hypothesis and provide us with parsimonious scenarios ρ1 and ρ2 for circles C1 and C2.
Combining them with the initial 2-break we obtain a parsimonious scenario ρ for C with
ΣS(C,ρ) = ΣS . J

A.6 Lemma 23
I Lemma. For a sub-circle C[i, j] of a circle C with i < j, its cost ω[i, j] is 0 if it has two
vertices, otherwise

ω[i, j] = minr,s
(
ω[i, r] + ω[r, s] + ω[s, j] + ω(τ)

)
for vertices i < r < s < j of a valid quadrilateral for C[i, j], where τ =

{
{i, r}, {s, j}

}
→{

{i, j}, {r, s}
}
if i is odd, and τ =

{
{i, j}, {r, s}

}
→

{
{i, r}, {j, s}

}
if i is even.

Proof. If j = i+ 1, then C[i, j] has two vertices, its parsimonious scenario is of length 0, and
thus of cost 0. We start by showing a lower bound on ω[i, j]. Take a scenario ρo of minimum
cost among the parsimonious scenarios for C[i, j], and a face f in ΣS(C[i,j],ρo) incident to
the edge {i, j}. Denote its other two vertices by r and s with r < s. By construction
i + r, r + s and s + j are all odd. Due to Theorem 19, ρo can be partitioned into four
parsimonious scenarios ρ1, ρ2, ρ3 and ρ4 for the sub-circles of C[i, j] delimited by the edges
bounding f plus a 2-break τ whose edges bound f . The sub-circles of C[i, j] in question
are respectively C[i, r], C[r, s], C[s, j] and a circle of size 2 containing the edge {i, j}. If i is
even, then {i, i+ 1} is gray and {i, j} is black by construction. Using Corollary 17 we obtain
that τ is

{
{i, j}, {r, s}

}
→

{
{i, r}, {j, s}

}
. Similarly τ is

{
{i, r}, {s, j}

}
→

{
{i, j}, {r, s}

}
if

i is odd. This establishes that ω(C) = ω(ρo) = ω(ρ1) + ω(ρ2) + ω(ρ3) + ω(ρ4) + ω(τ) ≥
ω[i, r] + ω[r, s] + ω[s, j] + 0 + ω(τ).

Now we show the upper bound on ω(C). Take i < r < s < j with odd i+ r, r + s, s+ j,
and minimum cost parsimonious scenarios ρ1, ρ2 and ρ3 for the sub-circles C[i, r], C[r, s] and
C[s, j]. If i is even, then {i, i + 1} is gray, thus {i, j} is black in C[i, j], and {r, s} is gray
in C[r, s]. This means that we can perform ρ2 on C[i, j], and then follow it by the 2-break
τ equal to

{
{i, j}, {r, s}

}
→

{
{i, r}, {j, s}

}
, followed by ρ1 and ρ3. This is a parsimonious

scenario for C[i, j] that we denote ρ, and ω[i, j] ≤ ω(ρ) = ω(ρ2) + ω(τ) + ω(ρ1) + ω(ρ3) =
ω[r, s] + ω(τ) + ω[i, r] + ω[s, j]. If i is odd, then similarly we obtain that {i, r} and {s, j}
are both black in C[i, r] and C[s, j] respectively, and that ρ1 followed by ρ3, a 2-break τ
equal to

{
{i, r}, {s, j}

}
→

{
{i, j}, {r, s}

}
and ρ2 is a parsimonious scenario for C[i, j] that

we denote by ρ. This leads to the inequality ω[i, j] ≤ ω(ρ) = ω(ρ1) + ω(ρ3) + ω(τ) + ω(ρ2) =
ω[i, r] + ω[s, j] + ω(τ) + ω[r, s]. J
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B Methods

B.1 Downloading and Preprocessing Orthologs
Protein coding Human (GRCh38.p12), Chimpanzee (Pan_tro_3.0), Gibbon (Nleu_3.0),
Mouse (GRCm38.p6) and Chicken (GRCg6a) genes were downloaded from Ensemble Release
96 using Biomart. Orthologous groups of protein coding genes between Human and the
rest of the species were downloaded from the same database. Ensemble provides orthologous
pairs with a confidence score that is either low or high. Low confidence pairs were filtered
out together with the orthologous pairs containing genes in unlocalized or unplaced scaffolds.
At this point we were left with 17319 orthologous pairs for Chimpanzee, 14923 for Gibbon,
16848 for Mouse, and 13024 for Chicken.

B.2 OrthoCluster: Identifying syntenic blocks
For the construction of syntenic blocks we chose to use OrthoCluster [45] due to its ease of use,
speed, and allowance for different parametric constraints. OrthoCluster takes the orthologous
groups as input and identifies the syntenic blocks. It handles many-to-many orthologs and
overlapping genes, thus no further filtering of the previously prepared orthologs was required.
OrthoCluster deals with various types of mismatches, however in this study we required the
genes in the syntenic blocks to share exactly the same order and strandedness, and contain no
mismatches. We processed these blocks by deleting the ones that were included in some other
blocks, and by merging those blocks that were consecutive in both genomes and either 1) had
the same order and strandedness, or 2) opposite order and strandedness in both genomes.
Table 1 contains the coverage of the blocks before merging, and the number of the blocks
after merging. The final blocks might have some overlaps due to the overlapping genes.

B.3 OrthoCluster Identifies Blocks of High Coverage Without
Performing a Whole Genome Alignment

Golden path length of the Human assembly GRCh38.p12 is around 3.1Gbp. For a set of
syntenic blocks, we divide the number of the nucleotides from Human included in at least
one of the blocks by this number to obtain the coverage of the blocks. The number of the
blocks and their coverage computed using OrthoCluster are comparable to those of the blocks
available on Ensemble Release 96 Compara database. These were computed using whole
genome alignments and their number of blocks and coverage are respectively 192 and 92%
for Chimpanzee, 277 and 90% for Gibbon, 363 and 88% for Mouse, 398 and 68% for Chicken.

WABI 2019

http://www.ensembl.org/biomart/martview/7ad94e9cfdfe8f19d28b7801c8aa6890
http://www.ensembl.org/biomart/martview/7ad94e9cfdfe8f19d28b7801c8aa6890
https://www.ensembl.org/info/genome/compara/Ortholog_qc_manual.html
http://Apr2019.archive.ensembl.org/Homo_sapiens/Info/Annotation
https://www.ensembl.org/info/genome/compara/analyses.html
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