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Approximating Maximum Uniquely Restricted

Matchings in Bipartite Graphs∗

Julien Baste† Dieter Rautenbach‡ Ignasi Sau�¶

Abstract

A matching in a graph is uniquely restricted if no other matching covers exactly the
same set of vertices. This notion was de�ned by Golumbic, Hirst, and Lewenstein
[Algorithmica, 2001] and studied in a number of articles. We provide approximation
algorithms for computing a uniquely restricted matching of maximum size in some
bipartite graphs, namely those excluding a C4 or with maximum degree at most
three. In particular, we achieve a ratio of 5/9 for subcubic bipartite graphs, im-
proving over a 1/2-approximation algorithm proposed by Mishra [Electron. Notes
Discrete Math, 2011].

Keywords: uniquely restricted matching; bipartite graph; approximation algo-
rithm; subcubic graph.

1 Introduction

Matchings in graphs are among the most fundamental and well-studied objects in combi-
natorial optimization [16,21]. While classical matchings lead to many e�ciently solvable
problems, more restricted types of matchings [20] are often intractable; induced match-
ings [1�3,5,6,9�12,17] being a prominent example. Here we study the so-called uniquely
restricted matchings, which were introduced by Golumbic, Hirst, and Lewenstein [8] and
studied in a number of papers [7,13�15,18,19]. We also consider the corresponding edge
coloring notion.

Before we explain our contribution and discuss related research, we collect some
terminology and notation (cf. e.g. [4] for unde�ned terms). We consider �nite, simple,
and undirected graphs. A matching in a graph G [16] is a set of pairwise non-adjacent
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edges of G. For a matching M , let V (M) be the set of vertices incident with an edge in
M . A matching M in a graph G is induced [5] if the subgraph G[V (M)] of G induced
by V (M) is 1-regular. Golumbic, Hirst, and Lewenstein [8] de�ne a matching M in a
graph G to be uniquely restricted if there is no matching M ′ in G with M ′ 6= M and
V (M ′) = V (M), that is, no other matching covers exactly the same set of vertices. It
is easy to see that a matching M in G is uniquely restricted if and only if there is no
M -alternating cycle in G, which is a cycle in G that alternates between edges in M and
edges not in M . Let the matching number ν(G), the strong matching number νs(G), and
the uniquely restricted matching number νur(G) of G be the maximum size of a matching,
an induced matching, and a uniquely restricted matching in G, respectively. Since every
induced matching is uniquely restricted, we obtain

νs(G) ≤ νur(G) ≤ ν(G)

for every graph G.
It is worth mentioning that, as discussed by Golumbic, Hirst, and Lewenstein [8],

maximum uniquely restricted matchings in bipartite graphs correspond to largest possi-
ble upper triangular submatrices that can be obtained by permuting rows and columns
of a given matrix. Upper triangular submatrices are interesting objects, since they allow
the associated systems of linear equations to be solved quickly; see [8] for more details.

Stockmeyer and Vazirani [20] showed that computing the strong matching number is
NP-hard. Their result was strengthened in many ways, and also restricted graph classes
where the strong matching number can be determined e�ciently were studied [1�3, 17].
Golumbic, Hirst, and Lewenstein [8] showed that it is NP-hard to determine νur(G) for
a given bipartite or split graph G. Mishra [18] strengthened this by showing that it

is not possible to approximate νur(G) within a factor of O(n
1
3
−ε) for any ε > 0, unless

NP=ZPP, even when restricted to bipartite, split, chordal or comparability graphs of order
n. Furthermore, he showed that νur(G) is APX-complete for subcubic bipartite graphs.

On the positive side, Golumbic, Hirst, and Lewenstein [8] described e�cient algo-
rithms that determine νur(G) for cacti, threshold graphs, and proper interval graphs.
Solving a problem from [8], Francis, Jacob, and Jana [7] described an e�cient algorithm
for νur(G) in interval graphs. Solving yet another problem from [8], Penso, Rauten-
bach, and Souza [19] showed that the graphs G with ν(G) = νur(G) can be recognized
in polynomial time. Complementing his hardness results, Mishra [18] proposed a 2-
approximation algorithm for cubic bipartite graphs.

In this article, we present approximation algorithms for νur(G) in some bipartite
graphs. Namely, improving on Mishra's approximation algorithm [18], we describe in
Section 3 a 5/9-approximation algorithm for computing νur(G) of a given bipartite sub-
cubic graph G. This algorithm requires some complicated preprocessing based on de-
tailed local analysis. In order to illustrate our general approach in a cleaner setting, we
�rst describe in Section 2 an approximation algorithm for C4-free bipartite graphs of
arbitrary maximum degree. We conclude with some open problems in Section 4.
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2 Approximation algorithms for C4-free bipartite graphs

Before we proceed to the 5/9-approximation algorithm for subcubic bipartite graphs in
Section 3, we �rst describe in this section an approximation algorithm for the C4-free
bipartite graphs with an arbitrary bound on the maximum degree. The proof of the
next lemma contains the main algorithmic ingredients. Note that the size of the smaller
partite set in a bipartite graph is always an upper bound on the uniquely restricted
matching number.

For an integer k, let [k] denote the set of positive integers between 1 and k. For a
graph G, let n(G) denote its number of vertices.

Lemma 1. Let ∆ ≥ 3 be an integer. If G is a connected C4-free bipartite graph of

maximum degree at most ∆ with partite sets A and B such that every vertex in A has

degree at least 2, and some vertex in B has degree less than ∆, then G has a uniquely

restricted matching M of size at least (∆−1)2+(∆−2)
(∆−1)3+(∆−2)

|A|. Furthermore, such a matching

can be found in polynomial time.

Proof: We give an algorithmic proof of the lower bound such that the running time
of the corresponding algorithm is polynomial in n(G), which immediately implies the
second part of the statement. Therefore, let G be as in the statement. Throughout the
execution of our algorithm, as illustrated in Figure 1, we maintain a pair (U,M) such
that

(a) U is a subset of V (G),

(b) M is a uniquely restricted matching with V (M) ⊆ U ,

(c) every vertex in B ∩ U has all its neighbors in A ∩ U ,

(d) every vertex in B \ U has a neighbor in A \ U ,

(e) if

s vertices in A ∩ U are incident with an edge in M ,

d vertices in A∩U are not incident with an edge in M but have a neighbor in B \U ,
and

f vertices in A ∩ U are neither incident with an edge in M nor have a neighbor in
B \ U , then

(∆− 1)2
(

(∆− 2)s− (d+ f)
)
≥ (∆− 2)f. (1)

Initially, let U and M be empty sets. Note that properties (a) to (e) hold.
As long as U is a proper subset of V (G), we iteratively replace the pair (U,M) with

a pair (U ′,M ′) such that U is a proper subset of U ′, M is a proper subset of M ′, and
properties (a) to (e) hold for (U ′,M ′). Let s′, d′, and f ′ denote the updated values
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Figure 1: Example for ∆ = 3 of the parameters de�ned in the proof of Lemma 1. The set
U is dashed, and the uniquely restricted matching M corresponds to the thicker edges.

considered in (e). Once U = V (G), we have s = |M |, d = 0, and f = |A| − |M |, and (1)
implies the stated lower bound on |M |.

We proceed to the description of the extension operations. Therefore, suppose that
U is a proper subset of V (G). Since G is connected, and some vertex in B has degree
less than ∆, there exists at least one vertex u in B \ U having less than ∆ neighbors in
A \ U , that is, if dŪ (u) = |NG(u) \ U |, then 1 ≤ dŪ (u) ≤ ∆ − 1, where the existence
of u and the �rst inequality follow from property (d). We choose u ∈ B \ U such that
dŪ (u) is as small as possible. Note that by assumption, u has a neighbor in A \ U and
dŪ (u) ≥ 1.

Case 1: dŪ (u) = 1.

Let v be the unique neighbor of u in A \ U . Let {u1, . . . , uk} be the set of all vertices u
in B \U with NG(u) \U = {v}, and note that 1 ≤ k ≤ ∆. Let U ′ = U ∪ {u1, . . . , uk, v}.
For some integer 0 ≤ ` ≤ k, we may assume that {u1, . . . , u`} is the set of those ui with
i ∈ [k] such that ui has a neighbor in A ∩ U , and no neighbor of ui in A ∩ U is incident
with M . Note that every vertex ui with i ∈ [k] \ [`] either has no neighbor in A ∩ U or
has some neighbor in A ∩ U that is incident with M .

First, suppose that ` ≥ 2. For each i ∈ [`], we �x wi ∈ A ∩ U to be a neighbor of
ui, and let M ′ = M ∪ {uiwi : i ∈ [`]}. Note that all these neighbors wi in A ∩ U are
distinct. Indeed, if two vertices ui and uj have a common neighbor w in A ∩ U , then
the set of vertices {v, ui, uj , w} would induce a C4 in G. Note also that M ′ is indeed a
uniquely restricted matching, as if there exists an edge uiwj with i, j ∈ [`] and i 6= j that
could potentially create an M ′-alternating cycle, then the set of vertices {v, ui, uj , wj}
would again induce a C4 in G. Clearly, replacing (U,M) with (U ′,M ′), we maintain
properties (a) to (d), and s′ = s + `. Let nd be the number of vertices in A ∩ U that
are not incident with an edge in M ′, have a neighbor in B \ U , but do not have a
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neighbor in B \ U ′; note that each such vertex has a neighbor in the set {u1, . . . , uk}.
As every vertex in {u1, . . . , uk} is neighbor of v and of a vertex incident with an edge
in M ′, it holds that nd ≤ k(∆ − 2) ≤ ∆(∆ − 2). If v has a neighbor in B \ U ′, then
d′ = d − nd + 1 and f ′ = f + nd, and, if v has no neighbor in B \ U ′, then d′ = d − nd
and f ′ = f + nd + 1. In both cases d′ + f ′ = d + f + 1 and f ′ ≤ f + nd + 1. Since
(∆−1)2

∆−2

(
(∆− 2)`− 1

)
≥ ∆(∆− 2) + 1 ≥ nd + 1, property (e) is maintained.

Next, suppose that 0 ≤ ` ≤ 1. LetM ′ arise fromM by adding the edge u1v. Clearly,
replacing (U,M) with (U ′,M ′), we maintain properties (a) to (d), and s′ = s + 1.
De�ning nd exactly as above, we obtain nd ≤ k(∆− 2) + ` ≤ ∆(∆− 2) + 1, d′ = d− nd,
and f ′ = f + nd. Since

(∆−1)2

∆−2 (∆− 2) ≥ ∆(∆− 2) + 1 ≥ nd, property (e) is maintained.

Case 2: 2 ≤ dŪ (u) ≤ ∆− 1.

Let {v1, . . . , vk} = NG(u) \U and let U ′ = U ∪{u, v1, . . . , vk}. Note that 2 ≤ k ≤ ∆− 1.
First, suppose that u has a neighbor v in A∩U , and that no neighbor of u in A∩U

is incident with M . Let M ′ arise from M by adding the edge uv. Clearly, replacing
(U,M) with (U ′,M ′), we maintain properties (a) to (c), and s′ = s + 1. Let us prove
that property (d) is also maintained. Since G has no C4 and k ≥ 2, no vertex in B \ U
that is distinct from u can have more than one neighbor among v1, . . . , vk. Since we are
in Case 2, every vertex in B \ U has more than one neighbor in A \ U , hence property
(d) remains true. Similarly as above, let nd be the number of vertices in A ∩U that are
not incident with an edge in M ′, have a neighbor in B \ U , but do not have a neighbor
in B \ U ′. Note that nd ≤ ∆ − k − 1, d′ = d + k − nd − 1, and f ′ = f + nd. Since
(∆−1)2

∆−2

(
(∆− 2)− (k − 1)

)
≥ ∆− k − 1 ≥ nd, property (e) is maintained.

Next, suppose that u has no neighbor in A ∩ U or some neighbor of u in A ∩ U is
incident withM . LetM ′ arise fromM by adding the edge uv1. Clearly, replacing (U,M)
with (U ′,M ′), we again maintain properties (a) to (d), and s′ = s + 1. Note that, in
the case where u has a neighbor in A ∩ U , v1 does not have neighbors in V (M) because
of property (c), which guarantees that M ′ is indeed a uniquely restricted matching.
De�ning nd exactly as above, we obtain nd ≤ ∆− k− 1. Indeed, if u has no neighbor in
A ∩ U , then nd = 0. On the other hand, if u has a neighbor in A ∩ U that is incident
with M , then nd ≤ ∆− k− 1. As k ≤ ∆− 1, in both cases it holds that nd ≤ ∆− k− 1.
Also, we get that d′ = d+k−nd + 1 and f ′ = f +nd, and the same calculation as above
implies that property (e) is maintained.

Since the considered cases exhaust all possibilities, and in each case we described an
extension that maintains the relevant properties, the proof is complete up to the running
time of the algorithm, which we proceed to analyze. One can easily check that each
extension operation takes time O(∆n), where n = n(G). As in each extension operation,
the size of U is incremented by at least one, it follows that the overall running time of
the algorithm is O(∆n2). �

With Lemma 1 at hand, we proceed to our �rst approximation algorithm.
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Theorem 1. Let ∆ ≥ 3 be an integer. For a given connected C4-free bipartite graph

G of maximum degree at most ∆, one can �nd in polynomial time a uniquely restricted

matching M of G of size at least (∆−1)2+(∆−2)
(∆−1)3+(∆−2)

νur(G).

Proof: Let α = (∆−1)2+(∆−2)
(∆−1)3+(∆−2)

and let G be the set of all C4-free bipartite graphs G of

maximum degree at most ∆ such that every component of G has a vertex of degree less
than ∆. First, we prove that, for every given graph G in G, one can �nd in polynomial
time a uniquely restricted matching M of size at least ανur(G). Therefore, let G be in
G.

If G has a vertex u of degree 1, and v is the unique neighbor of u, then let G′ =
G − {u, v}. Clearly, νur(G

′) = νur(G) − 1, and if M ′ is a uniquely restricted matching
of G′, then M ′ ∪ {uv} is a uniquely restricted matching of G. Note that G′ belongs to
G. Let G′′ be the graph obtained from G′ by removing every isolated vertex. Clearly,
νur(G

′′) = νur(G
′), if M ′′ is a uniquely restricted matching of G′′, then M ′′ is a uniquely

restricted matching of G′, and G′′ belongs to G.
Iteratively repeating these reductions, we e�ciently obtain a set M1 of edges of G as

well as a subgraph G2 of G such that G2 ∈ G, νur(G2) = νur(G) − |M1|, M1 ∪M2 is a
uniquely restricted matching of G for every uniquely restricted matching M2 of G2, and
either n(G2) = 0 or the minimum degree of G2, denoted δ(G2), is at least 2. Note that
if G has minimum degree at least 2, then we may choose M1 empty and G2 equal to
G. Now, by suitably choosing the bipartition of each component K of G2, and applying
Lemma 1 to K, one can determine in polynomial time a uniquely restricted matching
M2 of G2 with |M2| ≥ ανur(G2). Since the setM1∪M2 is a uniquely restricted matching
of G of size at least |M1| + ανur(G2) ≥ |M1| + α(νur(G) − |M1|) ≥ ανur(G), the proof
of our claim about G is complete.

Now, let G be a given connected C4-free bipartite graph of maximum degree at most
∆. If G is not ∆-regular, then G ∈ G, and the desired statement already follows. Hence,
we may assume that G is ∆-regular, which implies that its two partite sets A and B are of
the same order. By [19], we can e�ciently decide whether νur(G) = ν(G). Furthermore,
if νur(G) = ν(G), then, again by [19], we can e�ciently determine a maximum matching
that is uniquely restricted. Hence, we may assume that νur(G) < ν(G). This implies
that νur(G) < |A|, and, hence, there is some vertex u ∈ V (G) with νur(G−u) = νur(G).
Since G− u ∈ G for every vertex u of G, considering the n(G) induced subgraphs G− u
for u ∈ V (G), one can determine in polynomial time a uniquely restricted matching M
of G with |M | ≥ max{ανur(G − u) : u ∈ V (G)} = ανur(G). The desired statement
follows. �

3 A 5/9-approximation for subcubic bipartite graphs

In view of Theorem 1, it is natural to ask whether C4-freeness is an essential assumption
in order to obtain an approximation factor larger than 1/2. In this section we show that,
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at least for ∆ = 3, this assumption can de dropped. Namely, this section is devoted to
proving the following theorem.

Theorem 2. For a given connected subcubic bipartite graph G, one can �nd in polynomial

time a uniquely restricted matching of G of size at least 5
9νur(G).

In order to ease the presentation, in this section we will use �gures to describe some
of the �patterns� considered by the algorithms. More formally, given a graph G, a pattern
P is a subgraph of G in which the set of vertices that have neighbors in V (G) \ V (P ) is
�xed.

In all these �gures, the partition of the corresponding bipartite subcubic graph into
two sets A and B is represented by using squares and circles, respectively. The half-edges
specify which vertices in a pattern have neighbors outside of it.

The following lemma is crucial in order to prove Theorem 2; it plays a role similar
to the one played by Lemma 1 for proving Theorem 1. More precisely, we prove in
Lemma 2 that we can achieve the desired approximation ratio provided that the input
graph satis�es some simple conditions and, more importantly, contains none of the six
patterns depicted in Figure 2. The proof of Lemma 2 is quite technical, as several cases
need to be distinguished. The analysis of these cases naturally leads to considering a
number of other patterns, illustrated in Figures 3-10. With Lemma 2 at hand, the proof
of Theorem 1 is not di�cult. Namely, we apply exhaustively to the input graph a series
of basic reduction rules to guarantee that the conditions of Lemma 2 are ful�lled, while
keeping control on the e�ect of these reduction rules on the parameter νur.

Lemma 2. If G is a connected subcubic bipartite graph with partite sets A and B such

that

(1) G does not have any of the patterns R.1, R.2, R.3, R.4, R.5, or R.6 depicted in

Figure 2,

(2) G does not contain two vertices with the same neighborhood,

(3) each vertex of G has degree at least 2, and

(4) at least one vertex in B has degree at most 2,

then a uniquely restricted matching M of G of size at least 5
9νur(G) can be found in

polynomial time.

Proof: If n(G) ≤ 10, then we solve the problem optimally by brute force (we will see that
the largest pattern without neighbors outside of it considered in the proof has 10 vertices).
Therefore, we assume henceforth that G contains at least 11 vertices. In the following,
we look for a uniquely restricted matching M of size at least 5

9 |A|. As |A| ≥ νur(G), this
implies the desired result. We de�ne two types of C4, namely C1

4 and C2
4 , as follows.

A C1
4 is a subgraph of G isomorphic to a C4 such that if V (C1

4 ) ∩ A = {a1, a2}, then
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⇓

(i) Pattern R.1.
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⇓

(ii) Pattern R.2.
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y

e1 e2

⇓

(iii) Pattern R.3.

xy

⇓

(iv) Pattern R.4.

x

y

⇓

(v) Pattern R.5.

x

y

z

⇓

(vi) Pattern R.6.

Figure 2: The six forbidden patterns of Lemma 2.

dG(a1) = 3 and dG(a2) = 2. A C2
4 is a subgraph of G isomorphic to a C4 such that if

V (C2
4 ) ∩ A = {a1, a2}, then dG(a1) = dG(a2) = 3. Note that because of condition (2),

there is no subgraph G′ of G isomorphic to C4 such that if V (G′) ∩ A = {a1, a2}, then
dG(a1) = dG(a2) = 2, as it implies that a1 and a2 have the same neighborhood.

Similarly to the proof of Lemma 1, throughout the execution of our algorithm we
maintain a triple (U,M, γ) that respects the following properties:

(a) U ⊆ V (G),

(b) M is a uniquely restricted matching of G such that V (M) ⊆ U ,

(c) γ : U ∩A→ {>,`,⊥},

(d) for every v ∈ A ∩ U , γ(v) = > if and only if v ∈ V (M) and γ(v) =` only if that v
has at least one neighbor in B \ U ,
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(e) there is no edge between vertices in U ∩B and vertices in A \ U ,

(f) every vertex in B \ U has at least one neighbor in A \ U ,

(g) if s = |{v ∈ A : γ(v) = >}|, d = |{v ∈ A : γ(v) =`}|, and f = |{v ∈ A : γ(v) = ⊥}|,
then

4 (s− (d+ f)) ≥ f, and (2)

(h) for each C1
4 in G \U , that we name G′, , there is no vertex v in NG(V (G′))∩U ∩A

such that γ(v) =`.

We initialize the algorithm with U = ∅, M = ∅, and γ : ∅ → {>,`,⊥} being equal
to the empty function. Note that properties (a) to (h) are satis�ed.

In the �rst part of the algorithm, we focus on removing the C4's from G \ U . For
this we �rst take care the C1

4 's in G \ U , and then we deal with the C2
4 's.

As long as G \ U is not empty, we consider the �rst of the following cases such that
the corresponding condition is ful�lled, where dŪ (u) = |NG(u) \ U |:

• Case 1: there exists u ∈ B \ U such that dŪ (u) = 1.

• Case 2: there exists G′, a C1
4 in G \ U .

• Case 3: there exists G′, a C2
4 in G \ U .

• Case 4: there exists u ∈ B \ U such that dŪ (u) = 2.

Note that, by property (e) and the connectivity of G, we know that, as long as G \U
is not the empty graph, at least one of these four cases should apply. We study each
case and show that for each of them, we can �nd a new triple (U ′,M ′, γ′) starting from
(U,M, γ) such that U is a proper subset of U ′, M is a proper subset of M ′, γ is the
restriction of γ′ to U , and properties (a) to (h) hold for (U ′,M ′, γ′), where s′, d′, and f ′

denote the updated values considered in (g). Once U = V (G), we have s = |M |, d = 0,
and f = |A| − |M |, and (2) implies that |M | ≥ 5

9 |A|.
In order to prove that such a triple can indeed be found in polynomial time, we

distinguish four cases.
In the following, by resolving a pattern P we mean that from a triple (U,M, γ) that

respects properties (a) to (h) such that U ∩ V (P ) = ∅, we exhibit a triple (U ′,M ′, γ′)
that also respects properties (a) to (h) and such that U ′ = U ∪ V (P ).

Case 1: there exists u ∈ B \ U such that dŪ (u) = 1.

Assume that dŪ (u) = 1 and let v be the only neighbor of u in A \ U . Let {ui : i ∈ [k]}
be the set of all vertices u in B \ U with NG(u) \ U = {v}. Note that 1 ≤ k ≤ 3. Let
U ′ = U ∪ {v} ∪ {ui : i ∈ [k]}. By construction of G, we know that every vertex ui,
i ∈ [k], is of degree at least 2 in G, so it has at least one neighbor in A ∩ U . For every
i ∈ [k], we de�ne Wi = NG(ui) ∩ U . Note that for i, j ∈ [k] with i 6= j, Wi and Wj
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can intersect. Let nd be the number |{w ∈
⋃
i∈[k]Wi : γ(w) =`}|. Note that for each

ui, i ∈ [k], v ∈ NG(ui) and v 6∈ U . This implies that for each i ∈ [k], |Wi| ≤ 2, and so,
nd ≤ 6.

First, assume that nd ≤ 4. Let M ′ arise from M by adding the edge u1v. Let γ′

be obtained from γ where γ′(v) = >, and for each w ∈
⋃
i∈[k]Wi, such that γ(w) =`,

then γ′(w) = ⊥. Clearly, replacing (U,M, γ) with (U ′,M ′, γ′), we maintain properties
(a) to (f). By construction of γ′, we have that s′ = s+ 1, d′ = d− nd, and f ′ = f + nd.
As nd ≤ 4, property (g) is maintained. Note that γ′−1(`) ⊆ γ−1(`). This implies that
property (h) is maintained.

Assume now that nd ≥ 5. This implies that k = 3, and two sets of {Wi : i ∈ [k]}, say
W1 and W2, are such that {w ∈W1 ∪W2 : γ(w) 6=`} = ∅ and |W1| = |W2| = 2. Because
of condition (2), we know that we can �nd w1 ∈ W1 \W2 and w2 ∈ W2 \W1. Let M ′

arise from M by adding the edges u1w1 and u2w2. Let γ′ be obtained from γ where
γ′(v) = ⊥, for each w ∈ (

⋃
i∈[k]Wi) \ {w1, w2}, such that γ(w) =`, then γ′(w) = ⊥ and

γ′(w1) = γ′(w2) = >. Note thatM ′ is a uniquely restricted matching. Clearly, replacing
(U,M, γ) with (U ′,M ′, γ′), we maintain properties (a) to (f). Then by construction of
γ′ we obtain that s′ = s + 2, d′ = d − nd, and f ′ = f + nd − 2 + 1. We obtain that
s′ − (d′ + f ′) = s − (d + f) + 3. As, nd ≤ 6, property (g) is maintained. Note that
γ′−1(`) ⊆ γ−1(`). This implies that property (h) is maintained.

Case 2: there exists a C1
4 , that we name G′, in G \ U .

We assume in this case that for every u ∈ B \ U , dŪ (u) ≥ 2. Let V (G′) ∩ A = {a1, a2}
such that dG(a1) = 3 and V (G′) ∩ B = {b1, b2}. For this case, when we say that we
de�ne M ′ and γ′ by updating the values of M and γ according to a �gure, it means that
we add to M every red edge of the �gure and for every v of A that is depicted in the
�gure, then γ′(v) = > if v is the endpoint of a red edge, and γ′(v) = ⊥ otherwise.

First, assume that NG(b1) \ U = NG(b2) \ U = {a1, a2}. If the only vertex of
NG(a1)\V (G′) is inside another C4, then we are in the situation depicted in Figure 3(ii)
and we de�ne U ′ to be the union of U and the vertices of the two C4's, and we de�ne
M ′ and γ′ by updating the values of M and γ according to Figure 3(ii). Otherwise, we
are in the situation depicted in Figure 3(i), we de�ne U ′ to be U ∪ V (G′), and we de�ne
M ′ and γ′ by updating the values of M and γ according to Figure 3(i). In both cases,
one can see that properties (a) to (h) are maintained.

Secondly, assume that there exists a3 ∈ A\U such that a3 ∈ NG(b2) and a3 6∈ NG(b1).
If there exists b3 with neighbors only in U ∪ V (G) ∪ {a3}, then we de�ne U ′ to be the
union of U and {a1, a2, a3, b1, b2, b3}, and we de�ne M ′ and γ′ by updating the values
of M and γ according to Figure 4(ii). Otherwise, we are in the situation depicted in
Figure 4(i), we de�ne U ′ to be U ∪ V (G′) ∪ {a3}, and we de�ne M ′ and γ′ by updating
the values of M and γ according to Figure 4(i). In both cases we can see that properties
(a) to (h) are maintained.
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(i) Not attached to a C4. (ii) Attached to a C4.

Figure 3: First case of C1
4 .

(i) If b3 does not exist. (ii) If b3 exists.

Figure 4: Second case of C1
4 .

Third, assume that there exists a3 and a4 inA\U such that a3 ∈ NG(b2), a3 6∈ NG(b1),
a4 ∈ NG(b1), and a4 6∈ NG(b2). This case is the most involved one, as many subcases have
to be considered. Namely, we need to take care that there is no vertex in B \U ′ of degree
0 in G − U ′ and to make sure that property (h) is maintained. In order to reduce the
number of subcases, we sometimes do not take into consideration some vertex u of B that
became of degree 0 in G−U after the update of U ′ in the cases where property (g) is still
maintained with the value of s′′, f ′′, and d′′ such that d′′ = d′ − 2 and f ′′ = f ′ + 2. This
excludes the case where u is connected to {v1, v2, v3} such that γ′(vi) =` for every i ∈ [3]
and then we can safely de�ne U ′′ = U ′ ∪ {u}, M ′′ = M ′ ∪ {{u, v1}}, and γ′′(v) = γ′(v)
for every v ∈ (A ∩ U ′) \ {v1, v2, v3}, γ′′(v1) = >, and γ′′(v2) = γ′′(v3) = ⊥. The same
applies to the case where u is connected to {v1, v2, v3} such that there exists i ∈ [3] such
that γ′(vi) 6=`. In this case, we only add u to U ′ without adding edges to M ′, but for
every i ∈ [3] such that γ′(vi) =`, then γ′(vi) = ⊥. This last condition is necessary in
order to make sure that property (d) is maintained. In both cases, we will ignore these
vertices of B in the analysis, but we need to keep in mind that we need to add them
each time one of these cases appears. We also sometime forget the third neighbor of a
vertex of A whenever its existence does not change how to resolve the pattern.

Let K = {a1, a2, a3, a4, b1, b2}. As there are at most �ve edges between K and
V (G)\ (U ∪K), at most two vertices of B can become of degree 0. We depict in Figure 5
every possible way these vertices can be connected to K together with the possible extra
edge from K to V (G) \ (U ∪K). One can check that there is no other way to connect
at most 2 vertices of B with at least two neighbors in K to Pattern (i). First note that
Patterns (ii), (iii), and (x) have no neighbor outside of the pattern and contain less than
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Pattern (i).

Pattern (iv). Pattern (v).

Pattern (ii).

Pattern (iii).

Pattern (vi). Pattern (vii). Pattern (viii).

Pattern (ix). Pattern (x). Pattern (xi).

Pattern (xii). Pattern (xiii).

Figure 5: Third case of C1
4 .
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Figure 6: Fourth case of C1
4 .

10 vertices, so we have already resolved these patterns. Note also that Patterns (iv), (v),
(vi), and (ix) correspond to patterns of condition (1) and so are not in G. Moreover,
Patterns (xi), (xii), and (xiii) do not need to have vertices labeled ` in order to de�ne
the triple (U ′,M ′, γ′) that incorporates the corresponding pattern to the part already
treated and that respects properties (a) to (h). Therefore, there are only three remaining
patterns to resolve, namely (i), (vii), and (viii). Note that in these three cases, there is
at most one extra vertex of B.

In the following, we focus our attention on Pattern (i) but the same arguments apply
to Patterns (vii) and (viii). As discussed above, we need to take care of property (h). If
the pattern has no neighbor inside a C4, then we can extend the triple (U,M, γ) where
the vertices of A of this pattern that will not be labeled > are labeled `. Note that
in this case, properties (a) to (h) are maintained. Assume that there is a C4 such that
exactly one vertex of this C4 is a neighbor of a vertex of K. This mean that this new
C4 as at least one vertex in B that is connected to K and so this vertex is of degree 3.
Then we are in one of the cases depicted in Figure 6 (either the new C4 is a C1

4 or a C2
4 ,

and we can extend the triple (U,M, γ). Note that in Figure 6, we connected the new C4

with the vertex on top of Pattern (i) but the same argument works if itis connected to
the vertices on the left or the right. Assume now that it is not the case and there is a
C4 with two vertices of this C4 that have a neighbor in K. Then we are in one of the
cases depicted in Figure 7 corresponding to the way to select two vertices up to three.
For Pattern (xviii), it cannot exist because of condition (1). For Pattern (xvi), we can
extend the triple (U,M, γ) according to the �gure. For Pattern (xvii), we assume that
for both C4's of this pattern, we cannot have either Pattern (xvi) or any of the patterns
of Fig 6. Otherwise, we start by solving one of these patterns. This implies that we can
extend the triple (U,M, γ) where the vertices of A of the pattern that will not be labeled
> are labeled `, and still respect property (h).

Case 3: there exists a C2
4 , that we name G′, in G \ U .

We assume in this case that for every u ∈ B \ U , dŪ (u) ≥ 1 and there is no C1
4 in

G − U . In particular, this implies that Case 2 will not occur anymore, and therefore,
in the following property (h) will always be maintained. Thus, now we only focus on
properties (a) to (g). Let V (G′) ∩A = {a1, a2} and V (G′) ∩B = {b1, b2}. For this case,
when we say that we de�ne M ′ and γ′ by updating the values of M and γ according to
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Pattern (xvi).

Pattern (xvii). Pattern (xviii).

Figure 7: Fifth case of C1
4 .

a �gure, it means that we add to M every red edge of the �gure and for every v of A
that is depicted in the �gure, then γ′(v) = > if v is either the endpoint of a red edge or
v ∈ U and γ(v) = >, otherwise either v has a neighbor outside of the pattern depicted
in the �gure, and thus γ′(v) =`, or it does not and thus γ′(v) = ⊥.

First, assume that NG(b1) = NG(b2) = {a1, a2}. In this case, we need to distinguish
between the labels of the vertices of (NG(b1) ∪NG(b2)) ∩U . There are four possibilities
depicted in Figure 8. We de�ne U ′ to be the union of U and the vertices of G′, and we
de�ne M ′ and γ′ by updating the values of M and γ according to Figure 8. One can
check that, in each case, properties (a) to (g) are maintained.

Secondly, assume that there exists a3 ∈ A\U such that a3 ∈ NG(b2) and a3 6∈ NG(b1).
Then we are in the case depicted in Figure 9. We de�ne U ′ to be the union of U and the
vertices of G′, and we de�ne M ′ and γ′ by updating the values of M and γ according to
Figure 9. One can check that properties (a) to (g) are maintained.

Figure 9: Second case of C2
4 .
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U

V (G) \ U

> >

(i) Connected

to > and >.

> `

(ii) Connected

to > and `.

` `

(iii) Connected

to ` and `.

`

(iv) Both connected

to the same `.

Figure 8: First cases of C2
4 . The vertices of A∩U labeled ⊥ are treated in the same way

than vertices labeled `. If both are connected to the same vertex labeled >, the case
depicted in sub�gure (i) applies.

Thirdly, assume that there exist a3 and a4 in A \ U such that a3 ∈ NG(b2), a3 6∈
NG(b1), a4 ∈ NG(b1), and a4 6∈ NG(b2). As in Case 2, this situation is a bit more
complicated to handle, but now we do not need to take care of property (h), which
simpli�es the case analysis compared to Case 2. Again, we shall ignore the vertices of B
that became of degree 0 after the removal of the new U ′ when the situation is favorable
to us, i.e., in exactly the same situations as in Case 2, and thus it does not interfere
with the fact that the new triple (U ′,M ′, γ′) respects property (g). We also sometimes
forget the third neighbor of a vertex of A when its existence does not change how to
resolve the pattern. Using the fact that, by condition (2), two vertices cannot have the
same neighborhood, it follows that the possible patterns are those depicted in Figure 10.
As in Case 2, these patterns corresponds to every way to connect at most 2 vertices of
B with at least two neighbors in K to Pattern (i). As Pattern (ii) is not connected to
the rest of the graph and has less than 10 neighbors, it has already been treated by the
algorithm. Note that Pattern (iii) cannot exist because of condition (1). For all other
patterns, namely Pattern (i) and Patterns (iv) to (ix), we de�ne U ′ to be the union of U
and the vertices of the given pattern, and we de�ne M ′ and γ′ by updating the values of
M and γ according to Figure 9. One can check that properties (a) to (g) are maintained.

Case 4: there exists u ∈ B \ U such that dŪ (u) = 2.

We assume in this case that for every u ∈ B \ U , dŪ (u) ≥ 2, and that there is no C4 in
G− U .

Let u ∈ B \ U such that dŪ (u) = 2. Let {v1, v2} = NG(u) \ U and W = NG(u) ∩ U ,
and U ′ = U ∪ {u, v1, v2}. Note that both v1 and v2 have at least one neighbor that is
not in U . Note also that |W | ≤ 1.

Assume �rst that W = ∅ or W = {w} and γ(w) 6=`. LetM ′ arise fromM by adding
the edge uv1. Let γ′ be obtained from γ where γ′(v1) = > and γ′(v2) =`. Clearly,
replacing (U,M, γ) with (U ′,M ′, γ′), properties (a) to (f) are maintained. We obtain
that s′ = s+ 1, d′ = d+ 1, and f ′ = f . These inequalities directly imply that property
(g) is maintained.
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Pattern (i). Pattern (ii). Pattern (iii).

Pattern (iv).Pattern (v). Pattern (vi).

Pattern (vii). Pattern (viii). Pattern (ix).

Figure 10: Third case of C2
4 .

Assume now that W = {w} and γ(w) =`. Let M ′ arise from M by adding the
edge uw. Let γ′ be obtained from γ where γ′(v1) = γ′(v2) =` and γ′(w) = >. Clearly,
replacing (U,M, γ) with (U ′,M ′, γ′), properties (a) to (f) are maintained. We obtain
anew that s′ = s + 1, d′ = d + 1, and f ′ = f . These inequalities imply again that
property (g) is maintained.

Since the considered cases exhaust all possibilities, and in each case we described an
extension that maintains the relevant properties, the proof is complete up to the running
time of the algorithm, which we proceed to analyze. One can easily check whether an
extension operation can be realized in time O(n), where n = n(G). Indeed, we consider a
constant number of patterns, and in each of them we �x a speci�c vertex. Then, for each
vertex in V (G) \U , we can check whether this vertex corresponds to a speci�c vertex of
one of the patterns in constant time, by exploring the neighborhood at distance at most
p− 1 from this vertex, where p = 11 is the size of the largest pattern (cf. Figure 6). As
in each extension operation the size of U is incremented by at least one, it follows that
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the overall running time of the algorithm is O(n2). �

Equipped with Lemma 2, we are now ready to prove Theorem 2.

Proof of Theorem 2: Again, we give an algorithmic proof such that the running time
of the corresponding algorithm is polynomial in n(G). Let α = 5

9 and let G be the set
of all bipartite graphs G of maximum degree at most 3 such that every component of G
has a vertex of degree at most 2. First, we prove that, for every given graph G in G, one
can �nd in polynomial time a uniquely restricted matching M of size at least ανur(G).
Therefore, let G be in G.

In order to be able to apply Lemma 2, we apply some reductions. Namely, as long
as at least one of the following conditions is ful�lled in G, we apply the corresponding
reduction, which is described and analyzed below:

• Condition (1): G contains one of the patterns R.1, R.2, R.3, R.4, R.5, or R.6
depicted in Figure 2.

• Condition (2): There exist two vertices in G with the same neighborhood.

• Condition (3): There exists a vertex u in G of degree 1.

• Condition (4): There exists a vertex u in G of degree 0.

Reduction (1). First, if there is in G a subgraph P isomorphic to the pattern R.1 or
the pattern R.2 depicted in Figure 2(i) and Figure 2(ii), respectively, such that only the
vertex x has a neighbor outside of P in G, then we de�ne G′ to be the graph obtained
from G by removing every vertex of P except vertex x as depicted in Figure 2(i) and
Figure 2(ii). Then, if there is in G a subgraph P isomorphic to the pattern R.3 or the
pattern R.4 depicted in Figure 2(iii) and Figure 2(iv), respectively, such that only the
vertices x and y have a neighbor outside of P in G, then we de�ne G′ to be the graph
obtained from G by removing every vertex of P except vertices x and y as depicted in
Figure 2(iii) ad Figure 2(iv). Finally, if there is in G a subgraph P isomorphic to the
pattern R.5 or the pattern R.6 depicted in Figure 2(v) and Figure 2(vi), respectively,
such that only the vertices x, y, and z have a neighbor outside of P in G, then we de�ne
G′ to be the graph obtained from G by removing every vertex of P except vertices x, y,
and z as depicted in Figure 2(v) and Figure 2(vi).

LetM∗ be the set of red edges depicted in the corresponding �gures. Then νur(G
′) =

νur(G) − |M∗|. Indeed, in each case, we can exhaustively check that we cannot select
more edges inside the pattern P , and in each con�guration we provide, in the �gures, a
solution that leaves vertex x (and vertices y and z, if they exist) free to be taken from
outside of P . Moreover, the choice of the red edges is such that they cannot be inside
any alternating cycle, whatever the edges we select outside of P . If M ′ is a uniquely
restricted matching of G′, then M ′ ∪M∗ is a uniquely restricted matching of G.
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Reduction (2). Assume that v and v′ are two vertices having exactly the same neigh-
borhood in G. We de�ne G′ = G − {v′}. Indeed, v and v′ cannot be inside the same
uniquely restricted matching, as otherwise there would exist an alternating cycle. This
implies that νur(G

′) = νur(G). Hence, we can safely remove v′ from G. If M ′ is a
uniquely restricted matching of G′, then M ′ is a uniquely restricted matching of G.

Reduction (3). If G has a vertex u of degree 1, and v is the neighbor of u, then
let G′ = G − {u, v}. Clearly, νur(G

′) = νur(G) − 1, and if M ′ is a uniquely restricted
matching of G′, then M ′ ∪ {uv} is a uniquely restricted matching of G.

Reduction (4). If G has a vertex u of degree 0, then let G′ = G − {u}. Clearly,
νur(G

′) = νur(G), and if M ′ is a uniquely restricted matching of G′, then M ′ is a
uniquely restricted matching of G.

In each of the four reductions de�ned above, note that the graph G′ belongs to G.
Similarly to in the proof of Lemma 2, it can be checked whether a reduction can be
realized in time O(n), where n = n(G).

By iteratively repeating these reductions, we eventually obtain a set M1 of edges of
G as well as a subgraph G2 of G such that G2 ∈ G, G2 does not contain a subgraph P
isomorphic to one of the patterns R.1, R.2, R.3, R.4, R.5, or R.6 depicted in Figure 2,
G2 does not contain two vertices with the same neighborhood, νur(G2) = νur(G)−|M1|,
M1∪M2 is a uniquely restricted matching of G for every uniquely restricted matchingM2

of G2, and either n(G2) = 0 or δ(G2) ≥ 2. Now, by suitably choosing the bipartition of
each component K of G2, and applying Lemma 2 to K, one can determine in polynomial
time a uniquely restricted matching M2 of G2 with |M2| ≥ ανur(G2). Since the set
M1 ∪ M2 is a uniquely restricted matching of G of size at least |M1| + ανur(G2) ≥
|M1| + α(νur(G) − |M1|) ≥ ανur(G), the proof of our claim about G is complete. Note
that the overall running time of the algorithm for graphs in G is O(n2), since each
reduction strictly decreases the size of the graph, and the algorithm of Lemma 2 also
runs in time O(n2).

Now, let G be a given connected bipartite graph G of maximum degree at most 3.
If G is not 3-regular, then G ∈ G, and the desired statement already follows. Hence, we
may assume that G is 3-regular, which implies that its two partite sets A and B are of
the same order. By [19], we can e�ciently decide whether νur(G) = ν(G). Furthermore,
if νur(G) = ν(G), then, again by [19], we can e�ciently determine a maximum matching
that is uniquely restricted. Hence, we may assume that νur(G) < ν(G). This implies that
νur(G) < |A|, and, hence, there is some vertex u in V (G) such that νur(G−u) = νur(G).
Since G− u ∈ G for every vertex u of G, considering the n(G) induced subgraphs G− u
for u ∈ V (G), one can determine in polynomial time a uniquely restricted matchingM of
G with |M | ≥ max{ανur(G− u) : u ∈ V (G)} = ανur(G). Thus, we obtain an algorithm
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that �nds the desired uniquely restricted matching. Note that since we make O(n) calls
to the algorithm for graphs in G, the overall running time is O(n3). �

4 Concluding remarks

Our results motivate several open problems. First of all, we believe that Theorem 2
extends to larger maximum degrees, that is, the conclusion of Theorem 1 should hold
without the assumption of C4-freeness. We also believe that better approximation factors
are possible, and that approximation lower bounds in terms of the maximum degree
could be proved. Finally, one could study the approximability of the uniquely restricted
matching number in other classes of graphs.

Acknowledgement. We would like to thank the anonymous reviewer for insightful remarks
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