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Abstract. In the last years, kernelization with structural parameters has been an
active area of research within the �eld of parameterized complexity. As a relevant
example, Gajarský et al. [ESA 2013] proved that every graph problem satisfying
a property called �nite integer index admits a linear kernel on graphs of bounded
expansion and an almost linear kernel on nowhere dense graphs, parameterized by
the size of a c-treedepth modulator, which is a vertex set whose removal results in
a graph of treedepth at most c, where c ≥ 1 is a �xed integer. The authors left as
further research to investigate this parameter on general graphs, and in particular
to �nd problems that, while admitting polynomial kernels on sparse graphs, behave
di�erently on general graphs.
In this article we answer this question by �nding two very natural such problems:
we prove that Vertex Cover admits a polynomial kernel on general graphs for
any integer c ≥ 1, and thatDominating Set does not for any integer c ≥ 2 even on
degenerate graphs, unless NP ⊆ coNP/poly. For the positive result, we build on the
techniques of Jansen and Bodlaender [STACS 2011], and for the negative result we
use a polynomial parameter transformation for c ≥ 3 and an or-cross-composition
for c = 2. As existing results imply that Dominating Set admits a polynomial
kernel on degenerate graphs for c = 1, our result provides a dichotomy about the
existence of polynomial kernels for Dominating Set on degenerate graphs with
this parameter.

Keywords: parameterized complexity; polynomial kernels; structural parameters;
treedepth; treewidth, sparse graphs.

1 Introduction

Motivation. There is a whole area of parameterized algorithms and kernelization inves-
tigating the complexity ecology (see for example [29]), where the objective is to consider
a structural parameter measuring how �complex� is the input, rather than the size of the
solution. For instance, parameterizing a problem by the treewidth of its input graph has
been a great success for FPT algorithms, triggered by Courcelle's theorem [7] stating that
any problem expressible in MSO logic is FPT parameterized by treewidth. However, the
situation is not as good for kernelization, as many problems do not admit polynomial
kernels when parameterized by treewidth unless NP ⊆ coNP/poly [3].

Of fundamental importance within structural parameters are parameters measuring
the so-called �distance from triviality� of the input graphs, like the size of a vertex cover
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(distance to an independent set) or of a feedback vertex set (distance to a forest). Unlike
treewidth, these parameters may lead to both positive and negative results for polynomial
kernelization. An elegant way to generalize these parameters is to consider a parameter
allowing to quantify the triviality of the resulting instance, measured in terms of its
treewidth. More precisely, for a positive integer c, a c-treewidth modulator of a graph G is
a set of vertices X such that the treewidth of G−X is at most c. Note that for c = 0 (resp.
c = 1), a c-treewidth modulator corresponds to a vertex cover (resp. feedback vertex set).

Treewidth modulators have been extensively studied in kernelization, especially on
classes of sparse graphs, where they have been at the heart of the recent developments
of meta-theorems for obtaining linear and polynomial kernels on graphs on surfaces [4],
minor-free graphs [17], and topological-minor-free graphs [21, 24], all based in a generic
technique known as protrusion replacement. However, as observed in [19, 24], if one tries
to move further in the families of sparse graphs by considering, for instance, graphs of
bounded expansion, for several natural problems such as Treewidth-t Vertex Dele-
tion (minimizing the number of vertices to be removed to get a graph of treewidth at
most t), parameterizing by a treewidth modulator is as hard as on general graphs.

This observation led Gajarský et al. [19] to consider another type of modulators,
namely c-treedepth modulators (de�ned analogously to c-treewidth modulators), where
treedepth is a graph invariant � which we de�ne in Section 2 � that plays a crucial
structural role on graphs of bounded expansion and nowhere dense graphs [27]. Gajarský
et al. [19] proved that any graph problem satisfying a property called �nite integer index
admits a linear kernel on graphs of bounded expansion and an almost linear kernel on
nowhere dense graphs when parameterized by the size of a c-treedepth modulator. Shortly
afterwards this result was obtained, the authors asked [1] to investigate this parameter
on general graphs, namely to �nd natural problems that admit and that do not admit
polynomial kernels parameterized by the size of a c-treedepth modulator. More precisely,
are there natural problems Π1 and Π2 �tting into the framework of [19] such that Π1/c-
tdmod admits a polynomial kernel on general graphs, but Π2/c-tdmod does not?3

Our results. In this article we answer the above question by proving that Vertex
Cover and Dominating Set are such problems Π1 and Π2, respectively. Let us now
elaborate a bit more on our results, the techniques we use to prove them, and how do they
compare to previous work in the area (see the preliminaries of Section 2 for any unde�ned
terminology).

Note �rst that both VC/c-tdmod and DS/c-tdmod (where DS stands for Dominating
Set) are FPT on general graphs, as they are FPT by treewidth [7], which is a smaller
parameter than c-tdmod, as for any graph G and any integer c ≥ 0, it holds that tw(G) ≤
td(G)−1 ≤ c-tdmod(G)+c−1. Thus, asking for polynomial kernels is a pertinent question.

In Section 3 we prove that VC/c-tdmod admits a polynomial kernel on general graphs.
Our approach is based on the techniques introduced by Jansen and Bodlaender [22] to
prove that VC/1-twmod (or equivalently, IS/FVS) admits a polynomial kernel. As in [22],
we in fact provide a polynomial kernel for IS/c-tdmod, which is easily seen to be equivalent
to VC/c-tdmod. More precisely, we use three reduction rules inspired from the rules given
in [22], and we present a recursive algorithm that, starting from a c-treedepth modulator,
constructs an appropriate (c − 1)-treedepth modulator and calls itself inductively. The

kernel obtained in this manner has x2O(c2)

vertices, where x is the size of the c-treedepth
modulator. This result completes the following panorama of structural parameterization

3 As de�ned in Section 2, �/c-tdmod� means �parameterized by the size of a c-treedepth modu-
lator�.
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for Vertex Cover, which has been a real testbed for structural parameterizations in the
last years:

• VC/1-twmod (or equivalently, VC/FVS) admits a polynomial kernel [22].
• VC/c-twmod for c ≥ 2 does not admit a polynomial kernel unless NP ⊆ coNP/poly [9].
• VC/2-degmod (distance to a graph of maximum degree 2) and VC/c-CVD (distance
to a disjoint collection of cliques of size at most c) admit a polynomial kernel [26].
Note that our result generalizes the latter kernel, as a disjoint collection of cliques of
size at most c is a particular case of a graph having treedepth at most c.
• VC/pfm (distance to a pseudoforest) admits a polynomial kernel [18].

In Section 4 we turn to negative results for Dominating Set. We provide a character-
ization, according to the value of c, of the existence of polynomial kernels for DS/c-tdmod
on degenerate graphs. Indeed, using the results of Philip et al. [30] it is almost imme-
diate to prove that DS/1-tdmod (or equivalently, DS/VC) admits a polynomial kernel
on degenerate graphs. For c ≥ 3, we rule out the existence of polynomial kernels for
DS/c-tdmod on 2-degenerate graphs by a simple polynomial parameter transformation
from DS/1-tdmod on general graphs, which does not admit polynomial kernels unless
NP ⊆ coNP/poly [12]. The remaining case, namely DS/2-tdmod, turns out to be more
interesting, and we rule out the existence of polynomial kernels on 4-degenerate graphs
by providing an or-cross-composition from 3-Sat. This dichotomy for the existence of
polynomial kernels for DS/c-tdmod on degenerate graphs is to be compared with the
dichotomy for VC/c-twmod on general graphs discussed above [9, 22].

As mentioned before, it is commonly admitted that almost no natural problem admits
a polynomial kernel parameterized by tw, or even with td. However, to the best of our
knowledge the only published negative results are those in [3], where the authors prove
that IS/tw and DS/tw do not admit a polynomial kernel unless NP ⊆ coNP/poly. As
this result only holds for general graphs, for the sake of completeness we complete it in
Section 5, by showing that a large majority of the problems considered in [19] having an
almost linear kernel parameterized by c-tdmod on nowhere dense graphs do not admit
polynomial kernels parameterized by td, even on planar graphs of bounded maximum
degree.

2 Preliminaries

Graphs. Unless explicitly mentioned, all graphs considered here are simple and undi-
rected, and we refer the reader to [11] for any unde�ned notation. Given a graph G =
(V,E) and X ⊆ V , we denote NX(v) = N(v) ∩X, where N(v) = {u ∈ V | {u, v} ∈ E}.
We denote by α(G) the size of a maximum independent set of G. For any function f
de�ned on any induced subgraph of a given graph G, given a subset of vertices V ′ of
G, we denote f(V ′) = f(G[V ′]) (for example, α(V ′) = α(G[V ′])). For any integer n, we
denote [n] = {i ∈ N, 1 ≤ i ≤ n}.

For the following de�nitions related to treedepth, bounded expansion, and nowhere
dense graph classes, we refer the reader to [27] for more details, and we only recall here
some basic notations and facts. The treedepth of a graphG (denoted td(G)) is the minimum
height of a rooted forest F (called a treedepth decomposition) such that G is a subgraph
of the closure of F , where the closure of a rooted tree is the graph obtained by adding an
edge between any vertex and all its ancestors, and the height of a rooted tree is the number
of vertices in a longest path from the root to a leaf. Let c ≥ 1 be an integer. A c-treedepth
modulator is a subset of vertices X ⊆ V such that td(G[V \X]) ≤ c, and we denote by
c-tdmod(G) the size of a smallest c-treedepth modulator of G. A c-treewidth modulator is
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de�ned in the same way. Recall that as these parameters are greater than their associated
measure (i.e., tw(G) ≤ c-twmod(G) + c and tw(G) ≤ td(G) ≤ c-tdmod(G) + c, where
tw(G) denotes the treewidth of G) the negative results for kernelization by treewidth and
treedepth do not immediately apply, but the positive FPT results do.

Concerning graph classes, we recall that in the sparse graph hierarchy, graphs of
bounded expansion (BE) and nowhere dense graphs (ND) are related to classic sparse
families as follows (see [27] for the de�nitions): planar graphs ⊆ minor-free graphs ⊆
BE ⊆ ND. Note also that the class of graphs of bounded degeneracy is a natural super-
class of BE (intuitively, BE also requires the shallow minors to be degenerate), and is
incomparable with ND.

We refer the reader to Appendix A for the de�nition and acronyms of problems con-
sidered in the paper, like IS for the independent set problem.

Parameterized complexity. We refer the reader to [8, 14, 16, 28] for more details on
parameterized complexity and kernelization, and we recall here only some basic de�nitions,
with special emphasis on tools for polynomial kernelization. A parameterized problem is a
language L ⊆ Σ∗ ×N, for some �nite alphabet Σ. For an instance I = (x, k) ∈ Σ∗ ×N, k
is called the parameter. Given a classical (non-parameterized) decision problem Lc ⊆ Σ∗
and a function κ : Σ∗ → N, we denote by Lc/κ = {(x, κ(x)} | x ∈ Lc} the associated
parameterized problem. For example, IS/c-tdmod denotes the independent Set problem
parameterized by the size of a c-treedepth modulator.

A parameterized problem is �xed-parameter tractable (FPT) if there exists an algorithm
A, a computable function f , and a constant c such that given an instance I = (x, k), A
(called an FPT algorithm) correctly decides whether I ∈ L in time bounded by f(k) · |I|c.
Given a computable function g, a kernelization algorithm (or simply a kernel) for a pa-
rameterized problem L of size g is an algorithm A that given any instance I = (x, k) of
L, runs in polynomial time and returns an equivalent instance I ′ = (x′, k′) (i.e., I ′ ∈ L
if and only if I ∈ L) with |I ′|+ k′ ≤ g(k). It is well-known that the existence of an FPT

algorithm is equivalent to the existence of a kernel (whose size may be exponential or
larger), implying that problems admitting a polynomial kernel form a natural subclass of
FPT.

Some tools for (ruling out) polynomial kernelization. Among the wide literature
on polynomial kernelization, we only recall here the two following tools used in this paper:
compositions (used to prove that a parameterized problem does not admit a polynomial
kernel unless NP ⊆ coNP/poly), and polynomial parameter transformations from L1 to
L2, denoted by L1 ≤ppt L2 (used to prove that a polynomial kernel for L2 implies a
polynomial kernel for L1).

De�nition 1 ([3]). An or-composition algorithm for a parameterized problem L ⊆ Σ∗×
N is an algorithm that

• receives as input a sequence ((x1, k), . . . , (xt, k)), with (xi, k) ∈ Σ∗ × N for each 1 ≤
i ≤ t,
• uses time polynomial in

∑t
i=1 |xi|+ k, and

• outputs (y, k′) ∈ Σ∗ × N such that
1. (y, k) ∈ L if and only if (xi, k) ∈ L for some 1 ≤ i ≤ t.
2. k′ is polynomially bounded by a function of k.

We can similarly de�ne an and-composition algorithm.

A parameterized problem admitting a or-composition (resp. and-composition) is called
an or-compositional (resp. and-compositional) problem. We �rst need the notion of poly-
nomial equivalence relation, de�ned as an equivalence relation R on Σ∗ such that testing
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whether two strings x, y are equivalent can be done in time polynomial in |x| + |y|, and
such that R restricted to the strings of size at most n has at most p(n) equivalence classes,
for some polynomial p.

De�nition 2 ([5]). Let L ⊆ Σ∗ be a (classical) problem and Q ⊆ Σ∗ × N be a param-
eterized problem. We say that L or-cross-composes (resp. and-cross-composes) into Q
if there exists a polynomial equivalence relation R and an algorithm A, called the cross-
composition, satisfying the following conditions. The algorithm A takes as input a sequence
of strings x1, . . . , xt ∈ Σ∗ that are equivalent with respect to R, runs in time polynomial
in
∑t
i=1 |xi|, and outputs one instance (y, k) ∈ Σ∗ × N such that:

• k ≤ p(maxti=1 |xi|+ log(t)) for some polynomial p(·), and
• (y, k) ∈ Q if and only if there exists at least one index i such that xi ∈ L (resp. if for
every i ∈ [t], xi ∈ L).

Compositions are a great tool to get negative results for kernelization.

Theorem 1 ([8, 14]). Let L be an or-compositional or an and-compositional parame-
terized problem whose derived classical problem is NP-complete. Then, L does not admit
a polynomial kernel unless NP ⊆ coNP/poly.

A polynomial compression of a parameterized language Q ⊆ Σ∗ × N into a language
R ⊆ Σ∗ is an algorithm that takes as input an instance (x, k) ∈ Σ∗ × N, works in time
polynomial in |x|+ k, and returns a string y such that |y| ≤ p(k) for some polynomial p,
and y ∈ R if and only if (x, k) ∈ Q.

Theorem 2 ([8, 14]). Assume that an NP-hard language L cross-composes into a pa-
rameterized language Q. Then Q does not admit a polynomial compression unless NP ⊆
coNP/poly.

Note that as a polynomial kernel is also a polynomial compression, the previous theorem
also rules out the existence of a polynomial kernel.

De�nition 3 ([6]). Let P and Q be parameterized problems. We say that P is polynomial
time and parameter reducible to Q, written P ≤ppt Q, if there exist a polynomial time
computable function f : Σ∗ × N → Σ∗ × N and a polynomial p, such that for all x ∈ Σ∗
and k ∈ N, if f(x, k) = (x′, k′), then the following hold:

• (x, k) ∈ P , if and only if (x′, k′) ∈ Q, and
• k′ ≤ p(k).

We call f a polynomial time and parameter transformation from P to Q (PPT for short).

The following theorem can be used to obtain either positive or negative results.

Theorem 3 ([6]). Let P and Q be parameterized problems, and suppose that Pc and Qc
are the derived classical problems. Suppose that Qc is NP-complete, and that Pc ∈ NP.
Suppose that P ≤ppt Q. If Q has a polynomial kernel, then P has a polynomial kernel.

3 A polynomial kernel for VC/c-tdmod on general graphs

In this section we prove that for any positive integer c, VC/c-tdmod admits a polynomial
kernel on general graphs. Recall that this was only known for VC/1-tdmod and VC/2-
tdmod, as for c = 1 this corresponds to the standard parameterization and we can use the
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linear kernel of [2], and for c = 2 we have 1-twmod ≤ 2-tdmod (as a 1-twmod corresponds
to the distance to a forest, while 2-tdmod corresponds to the distance to a star forest),
and thus we can use the polynomial kernel of [22] for VC/1-twmod. We also recall that
we cannot expect to extend our result to VC/c-twmod for any c ≥ 2 [9].

As VC/c-tdmod and IS/c-tdmod are equivalent for this parameterization (because
any n-vertex graph has vertex cover of size at most k if and only if it has an independent
set of size at least n − k), we provide the result for IS/c-tdmod. More speci�cally, in
Subsection 3.1 we provide a polynomial kernel for a-c-tdmod-IS, an annotated version
of our problem de�ned below, and in Subsection 3.2 we derive a polynomial kernel for
IS/c-tdmod.

3.1 A polynomial kernel for a-c-tdmod-IS/(|X| + |H|)

We will �nd a polynomial kernel for the following annotated version of IS on hypergraphs.
Working with hypergraphs is useful because we will use a reduction rule identifying a
subset X ′ of the modulator that cannot be entirely contained in a solution; this will be
modeled by adding a hyperedge on the vertex set X ′.

Annotated c-treedepth modulator Independent Set (a-c-tdmod-IS)

Instance: (G,X, k) where
• G = (V,E,H) is a hypergraph structured as follows: V = X ]R,
E = EX,R ] ER,R is a set of edges where edges in EA,B have one
endpoint in A and the other in B, and H ≤ 2X is a set of
hyperedges where each H ∈ H is entirely contained in X.
• X is a c-treedepth modulator (as G[V \X] is not a hypergraph,
its treedepth is correctly de�ned and we have td(V \X) ≤ c).
• k is a positive integer.

Question: Decide whether α(G) ≥ k (an independent set in a hypergraph is a
subset of vertices that does not contain any hyperedge, corresponding
here to a subset S ⊆ V such that for every h ∈ E ∪H, h * S).

Throughout this subsection I = (G,X, k) denotes the input of a-c-tdmod-IS with G =
(V,E,H) and V = X ]R. Note that G[X] is a hypergraph and that G[R] is a graph, and
that the parameter we consider here is |X|+|H|. For anyX ′ ⊆ X and R′ ⊆ R, observe that
the notation NR′(X ′) is not ambiguous and denotes {v ∈ R′ | ∃x ∈ X ′ with {x, v} ∈ E}.

We use the following de�nition that was introduced in [22] for VC/1-twmod.

De�nition 4 ( [22]). Given X ′ ⊆ X and R′ ⊆ R, let confR′(X ′) = α(R′) − α(R′ \
NR′(X ′)) be the con�icts induced by X ′ on R′.

Intuitively, confR′(X ′) measures the loss in the size of a maximum independent set of
R′ due to X ′. We extend the previous de�nition in the following way: for any R′ ⊆ R
and any Y ′ ⊆ R′, let confR′(Y ′) = α(R′) − α(R′ \ Y ′). Note that confR′(X ′) describes
the impact of having X ′ in the independent set, while confR′(Y ′) describes the impact of
forbidding Y ′ in the independent set. We can see that confR′(Y ′) = 0 is equivalent to the
existence of an independent set S∗ ⊆ R′ such that |S∗| = α(R′) and S∗ ∩ Y ′ = ∅.
Lemma 1. Let R′ ⊆ R be a connected component of R. If confR′(Y ′) > 0, there exists
Ȳ ′ ⊆ Y ′ such that confR′(Ȳ ′) > 0 and |Ȳ ′| ≤ f(c) with f(c) = 2c.

Proof: As it holds that td(R′) ≤ c, let us consider a treedepth decomposition of R′ with
root r and t ≥ 1 subtrees rooted at the children of t, where Ai, i ∈ [t] is the vertex set of
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subtree i. We can partition Y ′ =
⋃
i∈[t+1] Y

′
i with Y ′i ⊆ Ai for i ∈ [t], Y ′t+1 ⊆ {r}, where

the Y ′i 's are possibly empty. We will prove the lemma by induction on c. Observe that∑
i∈[t] α(Ai) ≤ α(R′) ≤ 1 +

∑
i∈[t] α(Ai), and thus we distinguish two cases according to

the value of α(R′).

b1 b3

v2

c1 ci0 c3 c4

a2a1v1

b2

a4a3

b4

(b)

v2a2a1v1

b2b1

c1 c2

a1

v1 c1

b2

a2

c2 v2

A2

b1

A1

(a)

Fig. 1. (a) Example of a graph G[R′] (left) with an associated treedepth decomposition
(right) as used in Lemma 1, with Y ′ = {c1, c2}. This case corresponds to one of the
subcases of Case 2, as α(R′) = α(A1) + α(A2) = 4, confA1(Y ′1) > 0, confA2(Y ′2) = 0.
Moreover, p2 and p′2 are true, while p3 is false (but p′3 is true). (b) Example for t = 2 of
the construction of Lemma 2, where the circled vertices belong to S.

Case 1: α(R′) = 1 +
∑
i∈[t] α(Ai). In this case every maximum independent set S∗ of R′

contains r. Hence for every i ∈ [t], S∗ ∩Ai is a maximum independent set in Ai \NAi(r),
and thus α(Ai \NAi

(r)) = α(Ai). Indeed, if we had α(Ai \NAi
(r)) < α(Ai) for some i,

then |S∗| would be strictly smaller than 1 +
∑
i∈[t] α(Ai).

If r ∈ Y ′ (i.e., if Y ′t+1 6= ∅) then we can take Ȳ ′ = {r} (as every optimal solution of
R′ must contain r we get α(R′ \ {r}) < α(R′), and |Ȳ ′| = 1 ≤ 2c), and thus we suppose
henceforth that Y ′t+1 = ∅.

We claim that there exists i0 ∈ [t] such that confAi0
\NAi0

(r)(Y
′
i0

) > 0. Indeed, otherwise

we could de�ne for every i ∈ [t] an independent set Si ⊆ Ai \NAi(r) with |Si| = α(Ai \
NAi(r)) = α(Ai) and Si ∩ Y ′i = ∅. Thus, S∗ = {r} ∪i∈[t] Si would be an independent
set of size α(R′), and as Y ′t+1 = ∅ we would have S∗ ∩ Y ′ = ∅, a contradiction to the
hypothesis that confR′(Y ′) > 0. Thus, there exists i0 ∈ [t] such that confAi0

\NAi0
(r)(Y

′
i0

) >

0, and as td(Ai0 \ NAi0
(r)) < c, by induction hypothesis there exists Ȳ ′i0 ⊆ Y ′i0 such

that confAi0\NAi0
(r)(Ȳ

′
i0

) > 0 and |Ȳ ′i0 | ≤ 2c−1. Let us verify that Ȳ ′ = Ȳ ′i0 satis�es

confR′(Ȳ ′) > 0. Let S∗ be an independent set of R′ with S∗ ∩ Ȳ ′ = ∅. If r /∈ S∗ then
clearly |S∗| < α(R′). Otherwise, |S∗| = (

∑
i∈[t] |S∗∩(Ai\NAi

(r))|)+1 ≤ α(Ai0\NAi0
(r))−

1 + (
∑
i∈[t],i6=i0 α(Ai \NAi(r))) + 1 < α(R′).

Case 2: α(R′) =
∑
i∈[t] α(Ai). In this case there exists i0 ∈ [t] such that confAi0

(Y ′i0) > 0.

Indeed, otherwise we could de�ne for every i ∈ [t] an independent set Si ⊆ Ai with
|Si| = α(Ai) and Si ∩Y ′i = ∅, and the existence of S∗ = ∪i∈[t]Si would be a contradiction
to the hypothesis that confR′(Y ′) > 0. Thus, by the induction hypothesis there exists
Ȳ ′i0 ⊆ Y ′i0 such that confAi0

(Ȳ ′i0) > 0 and |Ȳ ′i0 | ≤ 2c−1.

If r ∈ Y ′ (i.e., if Y ′t+1 6= ∅) then we can take Ȳ ′ = Ȳ ′i0 ∪ {r}. Let us verify that
confR′(Ȳ ′) > 0. Let S∗ be an independent set of R′ with S∗ ∩ Ȳ ′ = ∅. As S∗ cannot
contain r we have |S∗| = ∑i∈[t] |S∗ ∩Ai| < α(Ai0) +

∑
i∈[t],i6=i0 |S∗ ∩Ai| = α(R′). Thus,
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we suppose from now on
Property p1 : Y ′t+1 = ∅.

Note that in this case (when p1 is true) we cannot simply set Ȳ ′ = Ȳ ′i0 , as shown in

the example depicted in Fig. 1. Indeed, in this example we would have Ȳ ′ = Ȳ ′i0 = {c1},
however confR′({c1}) = 0 as S∗ = {b1, v1, c2, v2} veri�es |S∗| = α(R′) and S∗ ∩ {c1} = ∅.
Properties related to α. Let us prove that we can always assume the following

Property p2 : for every i 6= i0, α(Ai \NAi
(r)) = α(Ai).

Indeed, if p2 is not true, then there exists i1 6= i0, i1 ∈ [t] such that α(Ai1 \NAi1
(r)) <

α(Ai1), and we set Ȳ ′ = Ȳ ′i0 . Let S
∗ be an independent set of R′ with S∗ ∩ Ȳ ′ = ∅. If

r /∈ S∗ then as previously |S∗| < α(R′), otherwise we get |S∗| ≤ α(Ai0) − 1 + α(Ai1) −
1 + (

∑
i∈[t],i6=i0,i6=i1 α(Ai)) + 1 < α(R′). Thus, we now assume p2. Let us now prove the

following
Property p′2 : α(Ai0 ∪ {r}) = α(Ai0).

By contradiction, suppose that there exists an independent set S∗1 of Ai0∪{r} containing r
such that |S∗1 | = α(Ai0) + 1. According to p2, for every i 6= i0 there exists an independent
set Si of Ai \NAi(r) of size α(Ai), and thus α(R′) >

∑
i∈[t] α(Ai), a contradiction. Thus,

we now assume p′2.

Properties related to confAi(Y
′
i ). Let us prove than we can assume the following

Property p3 : for every i 6= i0, confAi\NAi
(r)(Y

′
i ) = 0.

Indeed, if p3 is not true we can get the desired result as follows. Let i1 6= i0, i1 ∈ [t] such
that confAi1

\NAi1
(r)(Y

′
i1

) > 0. We use the same arguments as in the previous paragraph

and de�ne Ȳ ′ = Ȳ ′i0 ∪ Ȳ ′i1 . Note that |Ȳ ′| ≤ |Ȳ ′i0 | + |Ȳ ′i1 | ≤ 2c. Using the same notation,
if r /∈ S∗ then |S∗| = (

∑
i∈[t] |S∗ ∩ Ai|) ≤ α(Ai0) − 1 + (

∑
i∈[t],i6=i0 α(Ai)) < α(R′),

and otherwise |S∗| = (
∑
i∈[t] |S∗ ∩ (Ai \ NAi(r))|) + 1 ≤ α(Ai0) − 1 + α(Ai1) − 1 +

(
∑
i∈[t],i6=i0,i6=i1 α(Ai))+1 < α(R′). Thus, we now assume p3. Note that p2 and p3 imply

Property p′3 : for every i 6= i0, confAi
(Y ′i ) = 0.

Case 2a: There does not exist a maximum independent set S∗ of R′ such that r ∈ S∗.
In this case, we set Ȳ ′ = Ȳ ′i0 . Let us prove that confR′(Ȳ ′) > 0. Let S∗ be a maximum
independent set of R′ with S∗ ∩ Ȳ ′ = ∅. As r /∈ S∗, we get |S∗| =

∑
i∈[t] |S∗ ∩ Ai| ≤

α(Ai0)− 1 +
∑
i∈[t],i6=i0 α(Ai) < α(R′).

Case 2b: There exists a maximum independent set S∗ of R′ such that r ∈ S∗. This
implies that α(Ai0 \ NAi0

(r)) = α(Ai0) − 1. Let us prove that confAi0
\NAi0

(r)(Y
′
i0

) > 0.

If it was not the case, there would exist an independent set S∗i0 of Ai0 \ NAi0
(r) of size

α(Ai0 \ NAi0
(r)) = α(Ai0) − 1 such that S∗i0 ∩ Y ′i0 = ∅. By p3, there would exist, for

every i 6= i0, an independent set S∗i of Ai \ NAi
(r) of size α(Ai \ NAi

(r)) = α(Ai) (by
p2) such that S∗i ∩ Y ′i = ∅. Thus, S∗ = {r} ∪ (

⋃
i∈[t] S

∗
i ) would be an independent set

of size α(R′) such that S∗ ∩ Y ′ = ∅ (recall that by p1, r /∈ Y ′), a contradiction. Thus,
we know that both confAi0

\NAi0
(r)(Y

′
i0

) > 0 and confAi0
(Y ′i0) > 0 (which was estab-

lished at the beginning of Case 2). Using twice the induction hypothesis we get that

there exists Ȳ ′i0
1 ⊆ Y ′i0 such that confAi0\NAi0

(r)(Ȳ
′
i0

1
) > 0 and there exists Ȳ ′i0

2 ⊆ Y ′i0

such that confAi0
(Ȳ ′i0

2
) > 0, with both |Ȳ ′i0

1| and |Ȳ ′i0
2| bounded by 2c−1. Thus, we
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set Ȳ ′ = Ȳ ′i0
1 ∪ Ȳ ′i0

2
. Let us verify that confR′(Ȳ ′) > 0. Let S∗ be an independent

set of R′ with S∗ ∩ Ȳ ′ = ∅. If r ∈ S∗, then |S∗| =
∑
i∈[t] |S∗ ∩ (Ai \ NAi

(r))| + 1 =

α(Ai0 \NAi0
(r))− 1 +

∑
i∈[t],i6=i0 α(Ai) + 1 = α(Ai0)− 2 +

∑
i∈[t],i6=i0 α(Ai) + 1 < α(R′).

Otherwise, |S∗| = ∑i∈[t] |S∗ ∩Ai| = α(Ai0)− 1 +
∑
i∈[t],i6=i0 α(Ai) < α(R′). �

A �rst lower bound on the function f of Lemma 1 can be obtained by considering a
clique R′ on c vertices (hence, with td(R′) = c) and Y ′ = R′, as every Ȳ ′ ( Y ′ satis�es
confR′(Ȳ ′) = 0. However, as shown in Lemma 2 below, we can even obtain an exponential
lower bound, showing that the function f(c) = 2c of Lemma 1 is almost tight.

Lemma 2. There exists a constant λ such that for every c ≥ λ there exists a graph
G = (R,E) and Y ⊆ R such that td(G) = c, |Y | ≥ 2c−3, confR(Y ) > 0, and for every
Ȳ ( Y , confR(Ȳ ) = 0.

Proof: Given an integer t, let G = (R,E) with R =
⋃
i∈[2t]{ai, bi, ci} ∪ {v1, v2} and

E =
⋃
i∈[2t]{{ai, bi}, {ci, ai}, {ci, bi}}∪

⋃
i∈[t]{b2i−1, b2i}∪

⋃
i∈[t−1]{a2i, a2i+1}∪{v1, a1}∪

{a2t, v2} (G is a path on 2t+ 2 vertices); see Fig. 1(a) for an example for t = 1. We would
like to point out that R corresponds to the edge gadget of [9], except that we removed
some edges (namely, {a2i−1, a2i}) to lower its treedepth by a factor 2. Let Y = C.

We have α(R) = 2t + 2, and α(R \ Y ) = α(R) − 1 < α(R). Let Ȳ ( Y , and let
i0 such that ci0 /∈ Ȳ . By symmetry, we can suppose that i0 is even with i0 = 2i′0. Let
S = {v1, v2} ∪

⋃
i∈[i′0−1]{b2i−1, a2i} ∪ {b2i′0−1, c2i′0} ∪

⋃
i∈[i′0+1,t]{a2i−1, b2i}; see Fig. 1(b)

for an example for t = 2. As S is an independent set of size α(R) with S ∩ Ȳ = ∅, we get
that confR(Ȳ ) = 0.

Observe also that td(R) ≤ log(t) + 3. Indeed, the treedepth of the initial path P2t+2

on 2t + 2 vertices is at most dlog(2t + 3)e ≤ log(t) + 2, for t large enough. Then,
td(R) ≤ td(P2t+2) + 1 as for every i ∈ [2t], we can add to the treedepth decomposi-
tion of P2t+2 a vertex ci as a new leaf attached to the lowermost vertex of {ai, bi} in the
decomposition. �

Observation 1 Lemma 1 was proven in [22] when R′ is a forest and |Ȳ ′| ≤ 2. Even
if we already know that IS/2-twmod does not admit a polynomial kernel unless NP ⊆
coNP/poly [9], it remains interesting to observe that, in particular, this lemma becomes
false for 2-twmod, as the graph of Lemma 2 has treewidth 2. This points out one crucial
di�erence between c-treewidth and c-treedepth modulators.

Let us now start the description of the kernel for a-c-tdmod-IS/(|X|+ |H|). Given an
input (G,X, k) of a-c-tdmod-IS, we de�ne the following three rules. Note that these rules
and de�nitions (and the associated safeness proofs) correspond to Rules 1, 2, and 3 of [22],
except that we now bound the sizes of the subsets by a function f(c) instead of by 2.

De�nition 5. Given an input (G,X, k) of a-c-tdmod-IS (with td(G[R]) ≤ c where R =
V \ X), the chunks of the input are de�ned by X = {X ′ ⊆ X | there is no H ∈
H such that H ⊆ X ′, and 0 < |X ′| ≤ f(c)}, where f(c) = 2c.

Intuitively, the chunks correspond to all possible small traces of an independent set of G
in X. We are now ready to de�ne the �rst two rules.

Reduction Rule 1: If there exists u ∈ X such that confR({u}) > |X|, remove u from
the graph.

Reduction Rule 2: If there exists X ′ ∈ X such that confR(X ′) > |X|, add X ′ to H.
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Lemma 3. Rule 1 and Rule 2 are safe: if I = (G,X, k) is the original input of a-c-tdmod-
IS and I1 = (G1, X1, k) is the input after the application of Rule 1 or Rule 2, then I and
I1 are equivalent.

Proof: Let us only prove the safeness of Rule 2, as Rule 1 corresponds to Rule 2 using
X ′ = {u}. Indeed, adding hyperedge {u} is equivalent to removing u, as by de�nition
no independent set could contain u anymore. Let us prove that α(G) ≥ k implies that
α(G1) ≥ k. Let S be an independent set of G of size at least k. If X ′ * S then S is also
an independent set of G1 of size k. Otherwise, let S1 be an independent set of R of size
α(R). Observe that k ≤ |S| = |S ∩X| + |S ∩ R| < |X| + (α(R) − |X|) = |S1| (the strict
inequality holds as confR(X ′) > |X|), and we get the desired result. �

Reduction Rule 3: If R contains a connected component R′ such that for every X ′ ∈ X ,
confR′(X ′) = 0, delete R′ from the graph and decrease k by α(R′).

To prove that Rule 3 is safe we need the following lemma. Recall that we say that
X ′ ⊆ X is an independent set if and only if there is no H ∈ H such that H ⊆ X ′.

Lemma 4. Let I = (G,X, k) be an instance of a-c-tdmod-IS. Let R′ be a connected
component of R. If there exists an independent set X ′ ⊆ X such that confR′(X ′) > 0,
then there exists X̄ ′ ∈ X such that confR′(X̄ ′) > 0.

Proof: Let Y ′ = NR′(X ′). As confR′(X ′) > 0, confR′(Y ′) > 0. By Lemma 1, there exists
Ȳ ′ ⊆ Y ′ such that confR′(Ȳ ′) > 0 and |Ȳ ′| ≤ f(c). For every y′ ∈ Ȳ ′, there exists a vertex
g(y′) ∈ X ′ such that {g(y′), y′} ∈ E, and thus we de�ne X̄ ′ = ∪y′∈Ȳ ′g(y′). As X̄ ′ ⊆ X ′,
X̄ ′ is still an independent set, and |X̄ ′| ≤ |Ȳ ′| ≤ f(c), we get that X̄ ′ ∈ X . �

Lemma 5. Rule 3 is safe: if I = (G,X, k) is the original input of a-c-tdmod-IS and
I ′ = (G′, X ′, k′) is the input after the application of Rule 3, then I and I ′ are equivalent.

Proof: α(G) ≥ k ⇒ α(G′) ≥ k′ = k − α(R′) is straightforward, as if S is an independent
set of G of size at least k then S \R′ is an independent set of G′ of size at least k−α(R′).

α(G) ≥ k ⇐ α(G′) ≥ k′ = k−α(R′): Let S′ be an independent set of G′ of size at least
k′. As Rule 3 applied, we know that for every X1 ⊆ X , confR′(X1) = 0. Using the contra-
positive of Lemma 4, it follows that for every independent set X1 ⊆ X, confR′(X1) = 0.
In particular we get that XS = S′ ∩ X veri�es confR′(XS) = 0. Thus, there exists an
independent set SR′ of G[R′] of size α(R′) and such that NR′(XS) ∩ SR′ = ∅, and thus
S′ ∪ SR′ is an independent set of G of size at least k. �

Lemma 6. Let I = (G,X, k) be an instance of a-c-tdmod-IS, and let s be the number of
connected components of R = V \X. If none of Rule 1, Rule 2 and Rule 3 can be applied,
then s = O(|X|f(c)+2), where f is the function of Lemma 1.

Proof: First, as Rule 1 and Rule 2 cannot be applied, we have σ =
∑
X′∈X confR(X ′) ≤∑f(c)

i=1

(|X|
i

)
|X| = O(|X|f(c)+2). On the other side, as Rule 3 cannot be applied, for every

connected component R′ ⊆ R there exists X ′ ∈ X such that confR′(X ′) > 0, and thus we
have σ ≥ s, implying the desired result. �

We are now ready to present in Algorithm 1 our polynomial kernel for a-c-tdmod-IS.
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Algorithm 1: A polynomial kernel for a-c-tdmod-IS/(|X|+ |H|).
Input: (I, c), where I = (G,X, k) and X is a c-treedepth modulator of G.

if c = 0 then
return X.

else
Apply Rule 1 exhaustively.

/* this rule suppresses vertices of X */

Apply Rule 2 exhaustively.
/* this rule adds hyperedges of size at most f(c) to H */

De�ne the set X of chunks.
Apply Rule 3 exhaustively.

/* this rule suppresses some connected components */

/* of R and decreases k accordingly */

Let I3 = (G3, X3, k3) be the obtained instance, where G3 = (V3, E3) and R3 = V3 \X3.

For every connected component R′ ⊆ R3, compute an optimal treedepth
decomposition of R′ with root rR′ .

Let Xr = ∪R′⊆R3,R′ connected{rR′} be the set of roots.
Let I ′ = (G′ = (V3, E

′,H′), X ′, k3) be de�ned as follows:
X ′ = X3 ∪Xr,
Z = {e ∈ E3 | e ∩Xr 6= ∅ and e ∩X3 6= ∅},
E′ = E3 \ Z,
H′ = H3 ∪ Z.
/* I ′ corresponds to I3 where we added Xr to the modulator, removed */

/* edges Z from E3, and added them as hyperedges of X ′ */
/* Note that X ′ is now a (c− 1)-treedepth modulator */

return A(I ′, c− 1).

Theorem 4. For every �xed integer c ≥ 0, Algorithm 1 is a polynomial kernel for a-c-
tdmod-IS/(|X|+ |H|). More precisely, for every input I = (G,X, k) (with G = (V,E,H),
R = V \ X) where X is a c-treedepth modulator, Algorithm 1 produces an equivalent

instance Ĩ = (G̃, X̃, k̃) (with G̃ = (Ṽ , Ẽ, H̃), R̃ = Ṽ \ X̃) where |X̃| = O(|X|2(c+1)(c+2)/2

),

|H̃| = |H|+O(|X|2(c+1)(c+2)/2

), and R̃ = ∅.

Proof: Observe �rst that Algorithm 1 is polynomial for �xed c. Indeed, computing
confR′(X ′) is polynomial (as tw(R′) ≤ td(R′) and it is well-known that IS/tw is FPT [7])
and there are at most O(|X|c) applications of Rules 1 and 2, and O(s|X|c) applications
of Rule 3. Moreover, an optimal treedepth decomposition of each connected component
can be computed in FPT time parameterized by c, using [27] or [31]. Let us prove the
result by induction on c. The result is trivially true for c = 0. Let us suppose that the
result holds for c− 1 and prove it for c. Observe that X ′ is now a (c− 1)-treedepth mod-
ulator, and thus we can apply the induction hypothesis on A(I ′, c− 1). For every ` ∈ [3],
let I` = (G`, X`, k`) with G` = (V`, E`,H`) and R` = V` \ X` denote the instance after
exhaustive application of Rule `, respectively.

Equivalence of the output. By Lemma 3 and Lemma 5, we know that Rules 1, 2, and 3
are safe, and thus that I and I3 are equivalent. Note that I3 is equivalent to I ′ as the
underlying input is the same (except that some vertices were added to the modulator).
As using induction hypothesis A(I ′, c− 1) outputs an instance Ĩ equivalent to I ′, we get
the desired result.
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Size of the output. We have

• |X1| ≤ |X|, |H1| = |H|.
• |X2| = |X1|, |H2| ≤ |H1|+ |X1|f(c).
• |X3| = |X2|, |H3| = |H2|. By Lemma 6, s, the number of connected components of
R3, veri�es s = O(|X3|f(c)+2).
• |X ′| ≤ |X3|+ s, and |H′| ≤ |H3|+ s|X3|.

Thus we get |X ′| = O(|X|f(c)+2) = O(|X|2c+1

) and |H′| = |H| + O(|X|f(c)+3). Us-

ing induction hypothesis we get that |X̃| = O(|X ′|2c(c+1)/2

) = O(|X|2(c+1)(c+2)/2

), and

that |H̃| = |H′| + O(|X ′|2c(c+1)/2

) = |H| + O(|X|2c+3) + O(|X|2(c+1)(c+2)/2

) = |H| +

O(|X|2(c+1)(c+2)/2

), as claimed. �

3.2 Deducing a polynomial kernel for IS/c-tdmod

Observe �rst that we can suppose that the modulator is given in the input, i.e., that
IS/c-tdmod ≤ppt c-tdmod-IS/|X| (≤ppt is de�ned in De�nition 3). Indeed, given an input
(G, x, k) of IS/c-tdmod (where x denotes the size of a c-treedepth modulator), using the
2c-approximation algorithm of [19] for computing a c-treedepth modulator, wet get in
polynomial time a set X such that |X| ≤ 2c · x and td(R) ≤ c, where R = V \X.

Observe also that IS/|X| ≤ppt a-c-tdmod-IS/(|X| + |H|) using the same set X and
with |H| ≤ |X|2. Now, as usual when using bikernels, we could claim that as IS is Karp
NP-hard and as a-c-tdmod-IS is in NP, there exists a polynomial reduction from a-c-
tdmod-IS, implying the existence of a polynomial kernel for IS/c-tdmod. However, let us
make such a reduction explicit to provide an explicit bound on the size of the kernel.

Lemma 7. Let I = (G, k) with G = (X,H) be an instance of a-c-tdmod-IS as produced
by Theorem 4 (as R = ∅ the set of vertices is reduced to X, and H is a set of hyperedges
on X). We can build in polynomial time an equivalent instance I ′ = (G′, k′) of IS with
G′ = (V ′, E′) where |V ′| ≤ O(|X| · |H|).

Proof: Let n = |X|, X = {vi | i ∈ [n]} and m = |H|. We refer the reader to Fig. 2 for
an example of the construction of G′. For every i ∈ [n], we add to G′ the vertex gadget
constituted of V ′i = {yai , ybi , zi} and edges {zi, yai } and {zi, ybi , }. Taking vertices yai and
ybi in a solution for I ′ will correspond to taking vi in the corresponding solution of I. For
every H ∈ H, we add to G′ the edge gadget W ′H =

⋃
`∈[|H|]W

′`
H , where each W ′`H is an

independent set of size n, and we add edges to make G[W ′H ] a complete |H|-partite graph
with

(|H|
2

)
n2 edges. Finally, for every H ∈ H, H = {vH`

| ` ∈ [|H|]} and ` ∈ [|H|], we add
edges to make G[W ′`H ∪ {yaH`

, ybH`
}] a complete bipartite graph with 2n edges. Thus, the

`-th �column� of W ′H corresponds to the `-th vertex of H. This completes the description
of G′. Let k′ = n+ k + nm.
α(G) ≥ k ⇒ α(G′) ≥ k′: Without loss of generality let S = {vi | i ∈ [k]} be an
independent set of G. For every H = {vH`

| ` ∈ [|H|]} there exists ` such that vH`
/∈ S.

We de�ne S′ =
⋃
i∈[k]{yai , ybi } ∪

⋃
i∈[n]\[k]{zi} ∪

⋃
H∈HW

′H`

H .

α(G) ≥ k ⇐ α(G′) ≥ k′: Let S′ be an independent set of G′ of size at least k′. We can
always assume that for every H ∈ H and ` ∈ [|H|], if W ′`H ∩ S′ 6= ∅ then W ′`H ⊆ S′ (as
all vertices of W ′`H have the same neighborhood, we can safely add W ′`H). Note that there
cannot exist H ∈ H such that W ′H ∩S′ = ∅. Indeed, otherwise |S′| ≤ n(m− 1) + 2n < k′.

Thus, for every H = {vH`
| ` ∈ [|H|]} there exists (a unique) `H ∈ [|H|] such that

W ′`HH ⊆ S′. As there remain n + k vertices to take in the V ′i 's, and as yai and ybi have
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z1

ya1 yb1

z3

ya3 yb3 yb4ya4

z4

W ′
H

n

Fig. 2. Example of the construction of G′ for n = 5, m = 1, and H = {1, 3, 4}.

the same neighborhood, we get that, without loss of generality, for every i ∈ [k] we have
{yai , ybi } ⊆ S′, and for every i ∈ [n]\ [k] we have zi ∈ S′. Thus, we de�ne S = {vi | i ∈ [k]}.
Let us verify that S is an independent set. Let H ∈ H. As W ′`HH ⊆ S′ and S′ is an in-

dependent set, we deduce that there are no edges in G′ between W ′`HH and any of the
{yai , ybi } for i ∈ [k], implying that vH`H

/∈ S, and therefore S is indeed an independent
set. �

Putting pieces together we get the main theorem of this section, whose proof is now
immediate.

Theorem 5. For every integer c ≥ 1, IS/c-tdmod (or equivalently, VC/c-tdmod) admits

a polynomial kernel on general graphs with O
(
x2

1
2
(c+1)(c+2)+1

)
vertices, where x is the size

of a c-treedepth modulator.

4 Excluding polynomial kernels for DS/c-tdmod on degenerate
graphs

Given a graph G, we de�ne Gc-sub as the graph obtained from G by subdividing each edge
c times. In other words, we add a set Xe = {x`e | ` ∈ [c]} of c vertices of degree 2 for every
edge e ∈ E of G.

Observation 2 For every c ≥ 0 and every k ≥ 0, G has a dominating set of size k if
and only if G3c-sub has a dominating set of size k +mc, where m is the number of edges
of G.

Proof: Indeed, if S is a dominating set of G of size k, then we construct a dominating
set of G3c-sub of size k +mc by taking S and the following vertices. For every e = {u, v}
with u ∈ S and v /∈ S we take {x3`

e | 1 ≤ ` ≤ c} (we add to the dominating set every third
vertex in the set Xe starting from u). Otherwise (if both or none of {u, v} belong to S)
we take {x3`+2

e | 0 ≤ ` ≤ c − 1}. The other direction is also true, as every solution must
include at least c vertices in each Xe, and every solution can be modi�ed so that it does
not include more than c vertices in each Xe. Thus, the k vertices of a solution of G3c-sub

corresponding to original vertices of G form a dominating set of G. �

Let us start with the following proposition, which follows from existing negative results
for Dominating Set parameterized by the size of a vertex cover [12].
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Proposition 1. DS/c-tdmod does not admit a polynomial kernel on 2-degenerate graphs
for every c ≥ 3, unless NP ⊆ coNP/poly.

Proof: Let us prove that DS/VC ≤ppt DSCdege
/3-tdmod, where Cdege is the class of

2-degenerate graphs. As DS/VC (and even DS/k+VC) does not admit a polynomial
kernel unless NP ⊆ coNP/poly [12], we will get the desired result using Theorem 3. Let
(G, k) be an instance of DS/VC with G = (V,E) and m = |E|. We de�ne G′ = G3-sub,
and let V ′ be the set of vertices of G′. By Observation 2, G has a dominating set of size
k if and only if G′ has a dominating set of size k + m. Moreover, it is clear that G′ is
2-degenerate. Finally, every vertex cover X of G is a 3-treedepth modulator of G′. Indeed,
in G′[V ′ \X], to each edge e ∈ E entirely contained in X corresponds in G′[V ′ \X] an
isolated P3, and to each v ∈ V \X corresponds in G′[V ′ \X] a spider (that is, a tree with
only one vertex of degree more than two) rooted at v of height 4 with x ≥ 1 leaves. Thus,
G′[V ′ \X] is a disjoint collection of P3's and spiders of height 4, both having treedepth
at most 3. As 3-tdmod (G′) ≤ vc(G) (the size of a minimum vertex cover of G), this is a
PPT reduction and we get the desired result. We can get the same result for DSCdege

/c-
tdmod for c ≥ 4 by subdividing 3f(c) times each edge of G, for an appropriate function f .�

Observation 3 DS/1-tdmod (or equivalently DS/VC) admits a polynomial kernel on
degenerate graphs. Indeed, given an instance (G, k) of DS/VC, we compute in polynomial
time a 2-approximate vertex cover X of G. If |X| ≤ k then we output a trivial Yes-
instance, otherwise VC(G) ≥ k

2 and we can apply the polynomial kernel for DS/k on
degenerate graphs of Philip et al. [30].

Thus, by Proposition 1 and Observation 3, the only remaining case for degenerate
graphs is DS/2-tdmod. We would like to point out that the composition of [12] for
DS/(k+VC) on general graphs cannot be easily adapted to DS/2-tdmod on degener-
ate graphs, as for example subdividing each edge also leads to a result for DS/3-tdmod.
Thus, we treat the case DS/2-tdmod on degenerate graphs using an ad-hoc reduction.

Theorem 6. DS/2-tdmod does not admit a polynomial kernel on 4-degenerate graphs
unless NP ⊆ coNP/poly.

Proof: We prove this result by using an or-cross-composition from 3-Sat (see De�ni-
tion 2). We consider t instances of 3-Sat, where for every i ∈ [t], instance Ii hasmi clauses
{Cij | j ∈ [mi]} and ni variables Xi = {xi` | ` ∈ [ni]}, each clause containing 3 variables.
We can choose the equivalence relation of De�nition 2 such that for every i ∈ [t], we have
mi = m and ni = n.

Let us now construct a graph G = (V,E) as follows; see Fig. 3 for an illustration.
We start by adding to V the set of vertices X =

⋃
`∈[n]{x`, x̄`} (and thus |X | = 2n) and

Ci = {ci` | ` ∈ [m]} for every i ∈ [t]. Let C =
⋃
i∈[t] C

i. For every i ∈ [t], ` ∈ [n], j ∈ [m],

we set {x`, cij} ∈ Ei (resp. {x̄`, cij} ∈ Ei) if and only if Cij contains xi` (resp. x̄i`). We

add to E the set
⋃
i∈[t]E

i. Then, we add to V the set A = {a` | ` ∈ [n]}, and create n

triangles by adding to E edges {x`, x̄`}, {a`, x`}, and {a`, x̄`} for every ` ∈ [n]. Finally,
we add to V the set Y = {yi | i ∈ [t]}, R = {ri | i ∈ [t]}, and a vertex α. Then, for every
i ∈ [t], we add to E edges {ri, ci`} for every ` ∈ [m], edges {ri, yi}, and edges {yi, α}. This
concludes the construction of G. To summarize, G has 3n+ t(m+ 2) + 1 vertices (vertices
are partitioned into V = (X ∪A)∪ (C ∪Y ∪R)∪{α}) and, in particular, for every i ∈ [t],
G[{ri} ∪ Ci ∪ yi] is a star, and G[{α} ∪ Y ] is also a star.

The or-equivalence. Let us prove that there exists i ∈ [t] such that Ii is satis�able if and
only if G has a dominating set of size at most k = n + t. Suppose �rst, without loss of
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Fig. 3. Example of the or-cross-composition of Theorem 6.

generality, that I1 is satis�able, and let SX ⊆ X be the set of n literals corresponding to
this assignment (thus for every ` ∈ [n] we have |SX ∩ {x`, x̄`}| = 1). Let S = SX ∪ y1 ∪
(R \ {r1}). We have |S| = n+ t, and S is a dominating set of G as

• X ∪A is dominated by SX ,

• C1 is dominated by SX as it corresponds to an assignment satisfying I1, and for every
i ∈ [t], i ≥ 2, Ci is dominated by ri,

• y1 ∈ S, and for every i ∈ [t], i ≥ 2, yi is dominated by ri,

• r1 is dominated by y1, and for every i ∈ [t], r ≥ 2, ri ∈ S, and
• α is dominated by y1.

For the other direction, let S = S1 ∪ S2, with S1 = S ∩ (X ∪ A), be a dominating set
of G of size at most k = n + t. Without loss of generality, we can always suppose that
S1 ⊆ X , as if a` ∈ S we can always remove a` from S and add (arbitrarily) x` or x̄`.

Let us �rst prove that |S1| = n. Observe �rst that |S1| ≥ n as dominating A requires
at least n vertices. Suppose now by contradiction that |S1| > n. Then, there would remain
at most t− 1 vertices to dominate R, which is not possible. Note that we even have that
for every ` ∈ [n], |S1 ∩ {x`, x̄`}| = 1, as every a` must be dominated and |S2| = t.

Let us now analyze S2 (recall that, by de�nition, S2 ⊆ (C ∪Y ∪R)∪{α}). We cannot
have that for every i ∈ [t], |S2 ∩ (Ci ∪ ri)| ≥ 1, as otherwise there would be no remaining
vertex to dominate α. Thus, there exists i0 such that |S2 ∩ (Ci0 ∪ ri0)| = 0. This implies
that Ci0 is dominated by S1. As for every ` ∈ [n], |S1 ∩ {x`, x̄`}| = 1, S1 corresponds
to a valid truth assignment that satis�es all the Ci`'s, ` ∈ [m], and the instance Ii0 is
satis�able.

Size of the parameter. Let M = X ∪ A ∪ {α}. As G[V \M ] contains t disjoint stars, we
have that 2-tdmod (G) ≤ |M | ≤ poly(n), as required.

Degeneracy. Let us prove that G is 4-degenerate. Observe that every vertex in C has
degree at most 4 (three neighbors in X and one in R). Thus, every ordering of V (G) of
the form (C,R, Y, α,X , A) (with arbitrary order within each set) is a 4-elimination order
of G, that is, the vertices of G can be removed according to this ordering so that the
current �rst vertex has at most 4 neighbors in the current graph. �
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5 Excluding polynomial kernels parameterizing by tw or td

Our objective in this section is to show that the meta-result of Gajarsk�y et al. [19] cannot
be improved by replacing c-tdmod with td, even when restricting ourselves to planar graphs
of bounded maximum degree.

When proving lower bounds on the size of kernel for a parameter κ such that κ(
⋃
Gi) ≤

poly(max(κ(Gi))) (such as tw or td), compositions are generally simple, as taking the
union of the input graphs preserves the parameter as required (which is obviously not
true, for example, when parameterizing by the size of a solution). However, there is a
problem occurring when proving that if the large union graph is a Yes-instance, then
every (or there exists, depending if we are designing an and- or or-composition) instance
is a Yes-instance, as the sizes of the solutions in the di�erent Gi's are not necessarily
balanced. This explains why in [3] and in this work we introduce bounded versions of
decision problems, where we already know that either a small solution exists, or there is
no larger solution.

Let us now explain in detail how Bodlaender et al. [3] prove that several problems
(including IS and DS) do not admit a polynomial kernel parameterized by tw unless
NP ⊆ coNP/poly. To that end, they �rst de�ne a re�nement problem, where the input of
the classical problem is augmented with a witness I (corresponding to a subset of vertices
or edges), and the question is to decide whether there exists a solution of size |I|+ 1 (or
|I| − 1 for a minimization problem). For example, in the IS-ref problem, given a graph
G and an independent set I, the question is to decide whether G has an independent set
of size |I|+ 1. Then, they show that

1. IS-ref is Karp NP-hard (by a Karp reduction from IS that simply adds k − 1 inde-
pendent vertices connected to all the old vertices),

2. IS-ref/tw is or-compositional,
3. IS-ref/tw does not admit a polynomial kernel unless NP ⊆ coNP/poly (which is a

direct consequence of the two previous points using Theorem 1), and
4. IS/tw does not admit a polynomial kernel unless NP ⊆ coNP/poly (by simply ob-

serving that IS-ref/tw ≤ppt IS/tw and using Theorem 3).

A drawback of this approach is that we lose planarity in Step 1. To obtain the same
results for planar graphs, we propose the following modi�cation of the previous approach,
where we replace the positive witness by an upper bound (or a lower bound, for mini-
mization problems), and use an and-composition instead.

In the following, ΠC will denote any NP optimization graph problem where input
graphs belong to a graph class C and, and Πdec

C its associated decision problem (given
G ∈ C and k, we have to decide whether opt(G) ≥ k for a maximization problem, or
opt(G) ≤ k for a minimization one).

De�nition 6 (Decision problem with negative witness). Given a maximization

(resp. minimization) problem ΠC , we de�ne Πsup
C (resp Π inf

C ) as follows:

Input: An instance (G, k) of Πdec
C such that opt(G) ≤ k (resp. opt(G) ≥ k).

Question: Decide whether opt(G) = k.

De�nition 7. We say that an optimization problem is additive if for every two graphs
G1 and G2, opt(G1 ∪G2) = opt(G1) + opt(G2).

Observe that many classical optimization problems are additive, like IS or DS.

Proposition 2. Let C be a graph class stable under disjoint union and let ΠC be an
additive optimization problem. Then Πsup

C /td and Π inf
C /td are and-compositional.
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Proof: Let us only prove the result for Πsup
C , as the proof is similar for Π inf

C . Let t be an
integer and let, for i ≤ t, ((Gi, ki), td) be an instance ofΠsup

C , where td(Gi) = td. Let G′ be

the disjoint union of the Gi's and let k
′ =

∑t
i=1 ki. We have td(G′) ≤ max(td(Gi)). As C is

stable under disjoint union, to verify that (G′, k′) is an instance of Πsup
C it only remains to

prove that opt(G′) ≤ k′. However, as Π is additive, we have opt(G′) =
∑

1≤i≤t opt(Gi) ≤
k′.

It remains to verify that opt(G′) = k′ ⇔ ∀i, opt(Gi) = ki. ⇐: is straightforward by
the additivity of Π. ⇒: Let us suppose that

∑
1≤i≤t opt(Gi) = k′, and let ` ≤ t. Again,

as for every i we have opt(Gi) ≤ ki, we deduce opt(G`) ≥ k`, and thus opt(G`) = k`. �

According to Theorem 1, we get the following results. Note that as Πsup
C ≤ppt Π

dec
C ,

we use Theorem 3 and also state the result for Πdec
C in the next theorem.

Theorem 7. Let C be a graph class stable under disjoint union.

• For any additive maximization problem Π such that Πsup
C is Karp NP-hard, Πsup

C /td
(and thus Πdec

C /td) does not admit a polynomial kernel unless NP ⊆ coNP/poly.
• For any additive minimization problem Π such that Π inf

C is Karp NP-hard, Π inf
C /td

(and thus Πdec
C /td) does not admit a polynomial kernel unless NP ⊆ coNP/poly.

According to the previous theorem, it turns out that to exclude a kernel by treedepth
we only have to prove that the �negative witness� version of a decision problem is Karp
NP-hard, which is usually almost already given by classical reductions.

Proposition 3. ISsupC is Karp NP-hard, where C is the class of planar graphs of maxi-
mum degree at most 4.

Proof: It is su�cient to observe that the reduction from planar 3-Sat(5) (where each
variable appears in at most 5 clauses) to planar IS provided in [25] is in fact a reduction
to planar ISsup. For the sake of completeness let us recall this reduction.

An instance of planar 3-Sat(5) is described by a set C of m clauses ci and a set X of n
variables xj , where each ci contains exactly three literals (where a literal is of the form xj
or x̄j). We can clearly assume that each variable appears both positively and negatively.
Consider the incidence graph (which is planar) G = (V,E) that has V = C ∪X and has
an edge from a variable to a clause if the variable or its negation appear in the clause. We
de�ne G′ by replacing each ci with a triangle Tci (each vertex of the triangle is associated
with a literal of the clause) and each xj with a cycle on 4 vertices Cxj

= {v1
xj
, v1
x̄j
, v2
xj
, v2
x̄j
}

with edges {vtxj
, vt

′

x̄j
| t, t′ ∈ {1, 2}}. Then, we add edges between Tci and Cxj

in the
following way. If Tci contains a vertex v corresponding to x` (resp. x̄`), we add exactly
one of the two edges {v, vtx̄`

} (resp. {v, vtx`
}) where t ∈ {1, 2}, by choosing t such that G′

remains planar and of maximum degree 4. Indeed, as each variable appears in at most
5 clauses and appears both positively and negatively, it is always possible to embed the
Cxj

's such that the at most 5 edges of the form {v1, v2} with v1 in a clause triangle and
v2 ∈ Cxj

do not cross when connecting to Cxj
, while avoiding to connect more than 2

edges to the same vertex in Cxj .
Observe that G′ can be partitioned into m triangles and n C4's, implying α(G′) ≤

m + 2n. As α(G′) = m + 2n if and only if the original instance of planar 3-Sat(5) is
satis�able, we get the desired result. �

Note that it could be tempting to directly conclude that ISsup is NP-hard on planar
graphs using the classical Turing reduction from IS on planar graphs (i.e., starting with an
instance of ISsup with k = n, and decreasing k while the oracle for ISsup answers `No').
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However, this would only prove that ISsup is Turing NP-hard on planar graphs, which
is not su�cient to use Theorem 1 that requires Karp NP-hardness, even if this detail is
generally not mentioned in the statement.

As IS is an additive problem, we immediately deduce the following corollary.

Corollary 1. IS/td does not admit a polynomial kernel on planar graphs of maximum
degree at most 4 unless NP ⊆ coNP/poly.

To propagate the previous result to almost all problems covered by the meta-result
of Gajarsk�y et al. [19], we will use Theorem 3 on folklore reductions and verify that
the treedepth is polynomially preserved. To avoid tedious enumeration of problems, we
restrict our attention to problems mentioned in Corollary 2 below. Note that for problems
like Longest path and Treewidth where opt(G1 ∪ G2) = max(opt(G1), opt(G2)), we
also get that a polynomial kernel is unlikely to exist on planar graphs, as taking the union
of input graphs provides a trivial or-composition.

Corollary 2. The following problems do not admit a polynomial kernel when parameter-
ized by td or tw on planar graphs of bounded maximum degree unless NP ⊆ coNP/poly:
VC, FVS, OCT, DS, r-DS, Chordal Vertex Deletion, Induced Matching.

Proof: We split the proof into several problems.

FVS, OCT, DS. For these three problems we use the same folkore reduction. Given an
input (G, k) of VC, we de�ne G′ by adding for each edge {u, v} of G a vertex xuv, and
two edges {xuv, u} and {xuv, v}. It is straightforward to verify that G admits a vertex
cover of size at most k if and only if G′ admits a FVS (or OCT, or DS) of size at most k.
As td(G′) ≤ td(G) + 1 (in the treedepth decomposition of G, for each vertex u in G we
add degree of u new leaves attached to u), this is a PPT reduction.

Chordal vertex deletion.We use almost the same reduction as above: given an input
(G, k) of VC, we de�ne G′ by adding for each edge {u, v} of G two vertices x1

uv, x
2
uv, and

edges {u, x1
uv}, {x1

uv, x
2
uv}, {x2

uv, v}.
r-DS. Given an input (G, k) of DS, we de�ne G′ by adding a pendant Pr attached to each
vertex of G, and we set k′ = k. As r is constant, the treedepth is polynomially preserved.

Induced Matching. Given an input (G, k) of IS, we de�ne G′ by adding a pendant
vertex to each vertex of G, and we set k′ = k. �

Note that Corollary 2 does not apply for C1, de�ned as the class of connected planar
graphs of bounded maximum degree, as C1 is obviously not stable under disjoint union.
However, there are two ways to get the same result for all problems of Corollary 2 for C1,
using the following observations.

If a problem Π is solvable on planar graphs in time O∗(ctd) for some constant c (which
is often the case [10, 13, 32]), we can show using an ad-hoc argument (i.e., depending on
the problem) that ΠC/td≤ppt ΠC1/td. Let us illustrate this for IS. Given an instance
(G, k) of ISC/td having k1 ≤ k connected components Xi, let vi ∈ Xi be a vertex on the
outer face of Xi. For every i we add two vertices ai, bi and edges {ai, bi}, {bi, vi} so that
any optimal solution takes ai and not bi, and we connect all the bi's by creating a path.
We get a graph G′, and we set k′ = k + k1 so that (G, k) and (G′, k′) are equivalent.
G′ is still planar of bounded maximum degree and td(G′) ≤ td(G)dlog2(k1 + 1)e) (as
td(Pk1) ≤ dlog2(k1 + 1)e). If log2(k1) ≤ td(G) then this is PPT reduction. Otherwise, we
can solve the original input in polynomial time and also get the reduction.

Alternatively, it is generally possible to directly cross-compose from Π inf
C1 (or Πsup

C1 ) to
ΠC1/td using again an ad-hoc argument to connect the graph. Given the t instances {Gi}
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of Π inf
C1 , we de�ne G′ by adding a dummy vertex vi on the outer face of Gi and connecting

the vi's by creating a path. If the dummy vertices are added such that G′ is a yes-instance
if and only if all the Gi's are yes-instances, we have an and-cross-composition, as again
td(G′) ≤ max(td(Gi))dlog2(k1 + 1)e), and this log factor is allowed in the parameter of a
cross-composition.

6 Concluding remarks and further research

In this article we studied the existence of polynomial kernels for problems parameterized
by the size of a c-treedepth modulator, on graphs that are not necessarily sparse. On
the positive side, we proved that Vertex Cover (or equivalently, Independent Set)
parameterized by the size x of a c-treedepth modulator admits a polynomial kernel on

general graphs with x2O(c2)

vertices, for every c ≥ 1. A natural direction is to improve
the size of this kernel. Since Vertex Cover parameterized by the distance to a disjoint
collection of cliques of size at most c does not admit a kernel with O(xc−ε) vertices unless
NP ⊆ coNP/poly [26], and since a clique of size c has treedepth c, the same lower bound
applies to our parameterization; in particular, this rules out the existence of a uniform

kernel. However, there is still a large gap between both bounds, hence there should be
some room for improvement.

On the negative side, we proved that Dominating Set parameterized by the size of
a c-treedepth modulator does not admit a polynomial kernel on 4-degenerate graphs for
any c ≥ 2. As Dominating Set with this parameterization admits a polynomial kernel
on nowhere dense graphs [19], it follows that sparse graphs constitute the border for
the existence of polynomial kernels for Dominating Set. This leads us to the following
natural question: are there smaller parameters for which Dominating Set still admits
polynomial kernels on sparse graphs? Since considering as parameter the treedepth of the
input graph does not allow for polynomial kernels (see Section 5), we may consider as
parameter the size x of a vertex set whose removal results in a graph of treedepth at
most b(x), for a function b that is not necessarily constant. We prove in Appendix B that
Dominating Set does not admit polynomial kernels on graphs of bounded expansion
for b(x) = Ω(log x), unless NP ⊆ coNP/poly. On the other hand, by combining the
approach of Garnero et al. [21] to obtain explicit kernels via dynamic programming with
the techniques of Gajarsk�y et al. [19] on graphs of bounded expansion, it can be shown �
we omit the details here � that Dominating Set admits a polynomial kernel for b(x) =
O(log log log x) on graphs of bounded expansion whose expansion function f is not too
�large�4, namely f(d) = 2O(d). While this result is somehow anecdotal, we think that it
may be the starting point for a systematic study of this topic.

We leave as an open question the existence of polynomial kernels on general graphs
for other natural problems parameterized by the size of a treedepth modulator, such as
Feedback Vertex Set (already studied by Jansen et al. [23] under several parameter-
izations) or Odd Cycle Transversal. In the spirit of the recent meta-kernelization
results on sparse graphs [4,17,19,21,24], it would be interesting to �nd generic conditions
for a problem to admit polynomial kernels on general graphs with this parameter. To the
best of our knowledge, the only meta-kernelization results with structural parameters on
general graphs are the work of Ganian et al. [20], where the parameter is the minimum
number of parts Vi's required in a vertex partition such that every Vi is a module (for
every v ∈ V \ Vi, either all or no vertex of Vi is adjacent to v) and G[Vi] has bounded

4 That is, the function F that bounds the grad with rank d of the graphs in the family, see [27].
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rankwidth5, and the further extension provided by Eiben et al. [15], which also subsumes
the meta-kernelization framework of Gajarsk�y et al. [19].

Finally, it is worth studying whether the 2c-approximation algorithm of [19] for com-
puting a c-treedepth modulator can be improved (maybe, using the algorithm of Reidl et
al. [31] for computing treedepth), or whether a lower bound can be proved.

Acknowledgement. We would like to thank the anonymous reviewers for helpful comments
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References

1. Open problem session of the Workshop on Kernelization (WorKer), Warsaw, Poland, 2013.
Summary available at http://worker2013.mimuw.edu.pl/slides/worker-opl.pdf.

2. F. N. Abu-Khzam, M. R. Fellows, M. A. Langston, and W. H. Suters. Crown structures for
vertex cover kernelization. Theory of Computing Systems, 41(3):411�430, 2007.

3. H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without
polynomial kernels. Journal of Computer and System Sciences, 75(8):423�434, 2009.

4. H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D. M. Thilikos.
(Meta) Kernelization. In Proc. of the 50th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 629�638. IEEE Computer Society, 2009.

5. H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Kernelization lower bounds by cross-
composition. SIAM Journal on Discrete Mathematics, 28(1):277�305, 2014.

6. H. L. Bodlaender, S. Thomassé, and A. Yeo. Analysis of data reduction: Transformations
give evidence for non-existence of polynomial kernels. Technical report, Citeseer, 2008.

7. B. Courcelle. The monadic second-order theory of graphs I: recognisable sets of �nite graphs.
Information and Computation, 85(12-75):663, 1990.

8. M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

9. M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. On the hardness of
losing width. Theory of Computing Systems, 54(1):73�82, 2014.

10. M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij, and J. O. Woj-
taszczyk. Solving Connectivity Problems Parameterized by Treewidth in Single Exponential
Time. In Proc. of the 52nd Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 150�159. IEEE Computer Society, 2011.

11. R. Diestel. Graph Theory. Graduate Texts in Mathematics, 2005.
12. M. Dom, D. Lokshtanov, and S. Saurabh. Kernelization lower bounds through colors and

ids. ACM Transactions on Algorithms, 11(2):13, 2014.
13. F. Dorn, E. Penninkx, H. L. Bodlaender, and F. V. Fomin. E�cient Exact Algorithms on

Planar Graphs: Exploiting Sphere Cut Decompositions. Algorithmica, 58(3):790�810, 2010.
14. R. G. Downey and M. R. Fellows. Fundamentals of parameterized complexity. Springer, 2013.
15. E. Eiben, R. Ganian, and S. Szeider. Meta-kernelization using well-structured modulators.

In Proc. of the 10th International Symposium on Parameterized and Exact Computation
(IPEC), volume 43 of LIPIcs, pages 114�126, 2015.

16. J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer
Science. Springer, 2006.

17. F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Bidimensionality and kernels.
In Proc. of the 21st ACM-SIAM Symp. on Disc. Algorithms (SODA), pages 503�510, 2010.

18. F. V. Fomin and T. J. F. Strømme. Vertex cover structural parameterization revisited.
CoRR, abs/1603.00770, 2016.

5 Note that our kernel for VC/c-tdmod is not covered by the meta-result of [20]. Indeed, given a
c-treedepth modulator X = {vi | i ∈ [|X|]}, we could de�ne a partition of V (G) with Vi = {vi}
for i ∈ [|X|] and V|X|+1 = V (G)\X. The number of parts is polynomial in |X|, each satisfying
the rankwidth condition: rw(V|X|+1) ≤ tw(V|X|+1) + 1 ≤ td(V|X|+1) + 1 ≤ c + 1. However,
V|X|+1 is not a module in general.



How much does a treedepth modulator help to obtain polynomial kernels? 21

19. J. Gajarský, P. Hlinený, J. Obdrzálek, S. Ordyniak, F. Reidl, P. Rossmanith, F. S. Villaamil,
and S. Sikdar. Kernelization using structural parameters on sparse graph classes. Journal of
Computer and System Sciences, 84:219�242, 2017.

20. R. Ganian, F. Slivovsky, and S. Szeider. Meta-kernelization with structural parameters.
Journal of Computer and System Sciences, 82(2):333�346, 2016.

21. V. Garnero, C. Paul, I. Sau, and D. M. Thilikos. Explicit linear kernels via dynamic pro-
gramming. SIAM Journal on Discrete Mathematics, 29(4):1864�1894, 2015.

22. B. Jansen and H. Bodlaender. Vertex cover kernelization revisited: Upper and lower bounds
for a re�ned parameter. In Proc. of the 28th Symposium on Theoretical Aspects of Computer
Science (STACS), volume 9 of LIPIcs, pages 177�188, 2011.

23. B. M. Jansen, V. Raman, and M. Vatshelle. Parameter ecology for feedback vertex set.
Tsinghua Science and Technology, 19(4):387�409, 2014.

24. E. J. Kim, A. Langer, C. Paul, F. Reidl, P. Rossmanith, I. Sau, and S. Sikdar. Linear
kernels and single-exponential algorithms via protrusion decompositions. ACM Transactions
on Algorithms, 12(2):21, 2016.

25. D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing, 11(2):329�
343, 1982.

26. D. Majumdar, V. Raman, and S. Saurabh. Kernels for structural parameterizations of vertex
cover - case of small degree modulators. In Proc. of the 10th International Symposium on
Parameterized and Exact Computation (IPEC), volume 43 of LIPIcs, pages 331�342, 2015.

27. J. Nesetril and P. Ossona De Mendez. Sparsity: Graphs, Structures, and Algorithms. Algo-
rithms and Combinatorics. Springer, 2012.

28. R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
29. R. Niedermeier. Re�ections on multivariate algorithmics and problem parameterization.

In Proc. of the 27th International Symposium on Theoretical Aspects of Computer Science
(STACS), volume 5 of LIPIcs, pages 17�32, 2010.

30. G. Philip, V. Raman, and S. Sikdar. Solving dominating set in larger classes of graphs: FPT
algorithms and polynomial kernels. In Proc. of the 17th Annual European Symposium on
Algorithms (ESA), volume 5757 of LNCS, pages 694�705, 2009.

31. F. Reidl, P. Rossmanith, F. S. Villaamil, and S. Sikdar. A faster parameterized algorithm
for treedepth. In Proc. of the 41st International Colloquium on Automata, Languages, and
Programming (ICALP), volume 8572 of Lecture Notes in Computer Science, pages 931�942,
2014.

32. J. Rué, I. Sau, and D. M. Thilikos. Dynamic programming for graphs on surfaces. ACM
Transactions on Algorithms, 10(2):8, 2014.



22 Marin Bougeret and Ignasi Sau

A List of problems considered in this article

Independent Set (IS)

Instance: (G, k) with G = (V,E) a graph and k an integer.
Question: Decide whether α(G) ≥ k,

i.e., if ∃S ⊆ V such that ∀e ∈ E, e * S and |S| ≥ k.

c-treedepth modulator Independent Set (c-tdmod-IS)

Instance: (G,X, k) with G = (V,E) a graph, X a c-treedepth modulator, k ∈ N.
Question: Decide whether α(G) ≥ k.

Annotated c-treedepth modulator Independent Set (a-c-tdmod-IS)

Instance: (G,X, k) where
• G = (V,E,H) is a hypergraph structured as follows: V = X ]R,
E = EX,R ] ER,R is a set of edges where edges in EA,B have one
endpoint in A and the other in B, and H ≤ 2X is a set of
hyperedges where each H ∈ H is entirely contained in X.
• X is a c-treedepth modulator (as G[V \X] is not a hypergraph,
its treedepth is correctly de�ned and we have td(V \X) ≤ c).
• k is a positive integer.

Question: Decide whether α(G) ≥ k (an independent set in a hypergraph is a
subset of vertices that does not contain any hyperedge, corresponding
here to a subset S ⊆ V such that for every h ∈ E ∪H, h * S).

Vertex Cover (VC)

Instance: (G, k) with G = (V,E) a graph and k an integer
Question: decide whether G has a vertex cover of size at most k, i.e., if

there exists S ⊆ V such that ∀e ∈ E, e ∩ S 6= ∅ and |S| ≤ k.

Feedback Vertex Set (FVS)

Instance: (G, k) with G = (V,E) a graph and k an integer.
Question: Decide whether G has a feedback vertex set of size at most k, i.e., if

there exists S ⊆ V such that G[V \ S] is a forest and |S| ≤ k

Dominating Set (DS)

Instance: (G, k) with G = (V,E) a graph and k an integer.
Question: Decide whether G has a dominating set of size at most k, i.e., if there

exists S ⊆ V such that ∀u ∈ V \ S,∃v ∈ S | {u, v} ∈ E and |S| ≤ k.

Red Blue Dominating Set (RBDS)

Instance: (U,W,E, k) where (U,W,E) is a bipartite graph and k is an integer.
Question: Decide whether there exists S ⊆W such that N(S) = U and |S| ≤ k.



How much does a treedepth modulator help to obtain polynomial kernels? 23

B Stronger negative results for Dominating Set

In this section we rule out the existence of polynomial kernels for Dominating Set on
graphs of bounded expansion for a parameter that is smaller than the size of a c-treedepth
modulator. Let b : N → R be a function. A b-treedepth modulator of a graph G = (V,E)
is a subset of vertices X ⊆ V such that td(G[V \ X]) ≤ b(|X|), and we denote by b-
tdmod(G) the size of a smallest b-treedepth modulator of G. Note that, in the particular
case where the function b is constantly equal to a positive integer c, b-treedepth modulators
correspond exactly to c-treedepth modulators. In the following proposition we show that
DS does not admit polynomial kernels on graphs of bounded expansion parameterized by
the size of a b-treedepth modulator with b(x) = Ω(log x).

Proposition 4. DS/ log-tdmod does not admit a polynomial kernel on graphs of bounded
expansion unless NP ⊆ coNP/poly.

Proof: As in the proof of Proposition 1, it is su�cient to prove that RBDS/U ≤ppt

DSCBE
/ log-tdmod, as RBDS/U (and even RBDS/(k+U)) does not admit a polynomial

kernel unless NP ⊆ coNP/poly [12]. Let (G = (U,W,E), k) be an instance of RBDS/U
with u = |U |, w = |W |, and m = |E|. Let G′ = G3u-sub ∪ G̃, where G̃ is a square grid
on (3u + 1)4 vertices plus a vertex α connected to all vertices of this grid. G has a RB-
dominating set of size k if and only if G′ has a dominating set of size k + um+ 1 (as we
also have to take α in the solutions of G′). Let X = U ∪ Ṽ where Ṽ is the vertex set of G̃.
Note that G′[V ′ \X] is a disjoint collection of spiders Sv (one rooted at each v ∈ W ) of
height 3u+ 1. As td(Sv) ≤ 1 + td(P3u) ≤ 2 + log(3u+ 1) ≤ 2 log(3u+ 1) = O(log |X|) and
td(G′) ≥ td(G̃) ≥ (3u + 1)2, we get that X is a log-treedepth modulator of G′, and that
log-tdmod (G′) ≤ |X| ≤ poly(|U |). To summarize, we added a large grid to arti�cially
increase the treedepth of G′. Moreover, observe that we could not reduce directly from
DS/VC as before, as we need a lower bound depending on VC of the form 1

poly(u) . Let

us �nally verify that G′ has bounded expansion. As G̃ is an apex graph, it has bounded
expansion (as, for instance, planar graphs are well-known to have bounded expansion,
and the addition of an apex vertex preserves this property), and thus it remains to verify
that G3u-sub has bounded expansion. Let K = K3u-sub

u,w . As G3u-sub ⊆ K as a subgraph, it
is su�cient to prove that K veri�es the condition of bounded expansion.

To that end, we will prove that ∇̃r(K) ≤ r + 2, where ∇̃r(G) denotes the density of
a depth-r topological minor using the notation of [27]. Let H be a depth-r topological
minor of K. If r < 3u, then H is clearly 2-degenerate. If r ≥ 3u, observe that every vertex
of K that was originally in W has degree at most u, and every subdivision vertex (i.e., a
vertex which is not already a vertex of Ku,w) has degree 2. As in a topological minor
a vertex cannot have a higher degree than in the original graph, and K is bipartite, we
conclude that H is u-degenerate. Hence, taking into account both cases, we have that
∇̃r(K) ≤ r + 2. This proves that the class {K3u-sub

u,w : u,w ∈ N} has bounded expansion.
Thus, this is a PPT reduction and we get the desired result. �


