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Abstract

Originally proved in 1986 by Robertson and Seymour, the Grid Theorem is one of the most important
tools in the field of structural graph theory, finding numerous applications in the design of algorithms for
undirected graphs. An analogous version of the Grid Theorem isn directed graphs was conjectured by
Johnson et al. in 2001, and proved recently by Kawarabayashi and Kreutzer in 2015. Namely, they showed
that there is a function f(k) such that every directed graph of directed tree-width at least f(k) contains a
cylindrical grid of size k as a butterfly minor. Moreover, they claim that their proof can be turned into an
XP algorithm, with parameter k, that either constructs a decomposition of the appropriate width, or finds
the claimed large cylindrical grid as a butterfly minor. In this article, we adapt some of the steps of the
proof of Kawarabayashi and Kreutzer and we improve the XP algorithm into an FPT algorithm.
The first step of the proof is an XP algorithm by Johnson et al. in 2001 that decides whether a directed
graph D has directed tree-width at most 3k − 2 or admits a haven of order k. It is worth mentioning
that a skecth of an FPT algorithm for this problem appears in Chapter 9 of the book ”Classes of Directed
Graphs”, from 2018, with an approximation factor of 5k + 2. Our first contribution is to adapt the proof
from Johnson et al. to find either an arboreal decomposition of width at most 3k− 2 or a haven of order k
in a directed graph D in FPT time, by making use of important separators. We then follow the roadmap of
the proof by Kawarabayashi and Kreutzer by locally improving the complexity at some steps, in particular
concerning the problem of finding hitting sets for brambles of large order.

Keywords: Directed graphs, directed tree-width, grid theorem, FPT algorithms.

1 Introduction

Width parameters can be seen as an estimation of how close a given graph is to a

typical structure. For example, the tree-width of a graph, a parameter of particular
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interest in the literature, measures how tightly the graph can be approximated by

a tree. A tree decomposition of a graph with bounded tree-width shows how one

can place the vertices of the original graph into “bags” of bounded size which, in

turn, can be arranged as the vertices of some tree in a way that the intersections

pairs of adjacent bags in the tree are separators in the original graph. Thus, a tree

decomposition exposes a form of global connectivity measure for graphs: as only a

bounded number of vertices can be placed in each bag, many small separators of

the graph can be identified through the decomposition.

A number of hard problems can be efficiently solved in graphs of bounded tree-

width, either by making use of classical algorithmic techniques like dynamic pro-

gramming, or by making use of Courcelle’s Theorem [10]. Applications of algorithms

based on tree decompositions range from frequency allocation problems to the trav-

eling salesman problem [9,20]. The tree-width of graphs was first introduced in [2],

then again in [16] and finally reintroduced in [26]. For a survey on the subject, we

refer the reader to [3].

Given the enormous success achieved by applications based on width parameters

on undirected graphs, it is no surprise that there is interest into finding analogous

definitions for directed graphs. An analogous measure for tree-width in the directed

case is given in [17]. The directed tree-width of a directed graph measures its dis-

tance to being a DAG, and an arboreal decomposition of a directed graph exposes a

(strong) connectivity measure of the original graph. An intuition for the similarities

between the undirected and directed cases can be found in [25].

It is natural to ask what can be said of a graph with large tree-width. One of

the most relevant results in structural graph theory states that graphs with large

tree-width contain large grid minors. More precisely, the Grid Theorem [26] states

that there is a function f : N → N such that every graph of tree-width at least f(k)

contains a k × k-grid as a minor. A polynomial function has been recently given

in [7].

It is worth mentioning that, sometimes, large tree-width (and therefore, the

existence of a large grid minor) implies that we are actually working with a posi-

tive instance of a particular problem. One such case is the longest path prob-

lem. In [12], it is given a framework that generates fixed-parameter algorithms for

many such problems, known as bidimensional problems. This list includes Vertex

Cover, Feedback Vertex Set, Minimum Maximal Matching, Dominating

Set, Edge Dominating Set, and many others. This seminal work is known as

Bidimensionality.

As another example of application of the Grid Theorem, consider the k-Disjoint

Paths problem. It is solved in polynomial time on general graphs through the

following approach [27]. If the input graph has bounded tree-width, the problem

is solved directly through standard dynamic programming techniques. If not, then

by the Grid Theorem, the graph contains a large grid. Now, one can show that

if a solution to the instance uses a vertex which is “very deep” into the grid, this

solution can be re-routed to avoid such vertex. Until the graph satisfies a set of

properties (which, in this case, includes having small tree-width), the existence of
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an irrelevant vertex, that is, a vertex that when removed does not change the answer

to the problem, can be verified. This leads to an iterative algorithm, reducing the

problem to a smaller instance, until it satisfies conditions for the tractability of the

problem. This irrelevant vertex technique was widely used in a number of different

problems (cf. [15, 19], for example).

For the directed case, an analogous result to the Grid Theorem was conjectured

by Johnson et al. [17] and recently proved by Kawarabayashi and Kreutzer [18].

Namely, it is shown in [18] that there is a function f : N → N such that every

directed graph of directed tree-width at least f(k) contains a cylindrical grid of

order k as a butterfly minor 3 . All the definitions of the objects mentioned in the

introduction can be found in Section 2.

The proof of the Directed Grid Theorem given in [18] is constructive. They

start from a result of [17] that, in XP time, given a directed graph D and an

integer parameter k, outputs either an arboreal decomposition of D of width at

most 3k−2 or a haven H of order k. From here, in [18], they obtain a bramble B of

order �k/2�from H. Using B, they give a constructive proof that there is a path P

containing a well-linked set A of size roughly
√

k/2. In particular, the construction

of P cannot easily be adapted into an XP algorithm as an exhaustive description

of the bramble is used and there is no guarantee that a bramble of order k has

size bounded by a function of k. From P and A, the remainder of the proof of the

Directed Grid Theorem [18] runs in FPT time, with parameter k.

The main contribution of this paper is an FPT algorithm that, given D and k,

either produces an arboreal decomposition of width at most 3k − 2 or outputs a

path P containing a well-linked set A of size precisely
√
k. Our algorithm strongly

follows the ideas of [17, 18]. In Theorem 2.9, we give an FPT algorithm that, given

a directed graph D and parameter k, outputs either an arboreal decomposition

of D of width at most 3k − 2 or a haven H of order k. We acknowledge that a

similar result is mentioned in [1, Theorem 9.4.4], but with an approximation factor

of 5k + 10 and containing only an incomplete sketch of the proof. In Section 4, we

show how to obtain a compact definition of a bramble B of order k from H. This

compact definition is used to avoid an enumeration of the bramble elements. In

Lemma 4.9 we use B to find a path P containing a well-linked set A of order
√
k in

FPT time. We make use of the FPT algorithm given in [14], that solves a variation

of the Multicut problem for directed graphs. A roadmap of the aforementioned

algorithm is given in Figure 1. We mark by a dashed arc the steps of [18] which are

already FPT and do not need to be adapted.

All others arcs represent steps that we adapt in this paper.

2 Formal definitions and preliminaries

In this section we give the relevant definitions for this paper and mention some

known results and relations about the objects defined below. The contents of this

section are mostly based on [17].

3 The full version of [18] is available at https://arxiv.org/abs/1411.5681.
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Fig. 1. Sketch of the algorithm used in the proof of the Directed Grid Theorem [18].

2.1 Parameterized complexity

We refer the reader to [11,13] for basic background on parameterized complexity, and

we recall here only some basic definitions. A parameterized problem is a language

L ⊆ Σ∗ × N. For an instance I = (x, k) ∈ Σ∗ × N, k is called the parameter.

A parameterized problem is fixed-parameter tractable (FPT) if there exists an

algorithm A, a computable function f , and a constant c such that given an instance

I = (x, k), A (called an FPT algorithm) correctly decides whether I ∈ L in time

bounded by f(k) · |I|c. For instance, the Vertex Cover problem parameterized

by the size of the solution is FPT.

A parameterized problem is in XP if there exists an algorithm A and two com-

putable functions f and g such that given an instance I = (x, k), A (called an XP
algorithm) correctly decides whether I ∈ L in time bounded by f(k) · |I|g(k). For

instance, the Clique problem parameterized by the size of the solution is in XP.

Within parameterized problems, the classW[1] may be seen as the parameterized

equivalent to the class NP of classical decision problems. Without entering into

details (see [11,13] for the formal definitions), a parameterized problem being W[1]-

hard can be seen as a strong evidence that this problem is not FPT. The canonical

example of W[1]-hard problem is Clique parameterized by the size of the solution.

2.2 Arboreal decompositions and obstructions

We refer the reader to [4] for basic background on graph theory, and recall here

only some basic definitions. All paths mentioned below, unless stated otherwise,

are considered to be directed. For a graph G = (V,E), directed or not, and a set

X ⊆ V (G), we write G \X for the graph resulting from the deletion of X from G.

By an arborescence R, we mean an orientation of a tree with root r in such a way

that all edges are pointing away from r. If a vertex v of R has out-degree zero, we

say that v is a leaf of R. We now define guarded sets and arboreal decompositions

of directed graphs. From here on, we refer to oriented edges only, unless stated

otherwise. D will always stand for a directed graph, and G for an undirected graph.

Definition 2.1 [Z-guarded sets] Let Z be a subset of V (D) and S ⊆ V (D) \ Z.
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We say that S is Z-guarded if there is no directed walk in D \Z with first and last

vertices in S that uses a vertex of D \ (Z ∪ S).

If a set S is Z-guarded, we may also say that Z is a guard for S. We remark that

in [17], the authors use the terminology Z-normal sets instead of Z-guarded sets.

Let R be an arborescence, r ∈ V (R), e ∈ E(R) and r′ be the head of e. We say

that r > e if r = r′ or r > r′. We also say that e ∼ r if r is the head or the tail of

e. The tree-width of directed graphs is defined as follows.

Definition 2.2 [Arboreal decomposition and directed tree-width] An arboreal de-

composition of a directed graph D is a triple (R,X ,W) where R is an arborescence,

X = {Xe : e ∈ E(R)}, W = {Wr : r ∈ V (R)}, and X ,W are collections of sets of

vertices of D (called bags) such that

(D1) W is a partition of V (D) into nonempty sets; and

(D2) if e ∈ E(R), then
⋃
{Wr : r ∈ V (R), r > e} is Xe-guarded.

For a vertex r ∈ V (R), we refer to the width of r as |Wr∪ (
⋃

e∼r Xe)|. The width
of (R,X ,W) is the least integer k such that, for all r ∈ V (R), width(r) ≤ k + 1.

The directed tree-width of D, denoted by dtw(D), is the least integer k such that D

has an arboreal decomposition of width k.

Definition 2.3 [Nice arboreal decompositions.] We say that an arboreal decom-

position (R,X ,W) of a directed graph D is nice if

(i) for every e ∈ E(R) with head r, Wr induces a strong component of D \ Xe;

and

(ii) if r ∈ V (R) and r1, . . . , r� are the out-neighbors of r in R, then

⎛
⎝ ⋃

1≤i≤�
Wri

⎞
⎠ ∩

(⋃
e∼r

Xe

)
= ∅.

We now define some blocking structures for large directed tree-width.

Definition 2.4 [Well-linked sets] Let D be a directed graph and A ⊆ V (D). We

say that A is well-linked if, for all X,Y ⊆ A with |X| = |Y | = k, there are k

vertex-disjoint paths from X to Y in D.

Notice that one can always assume that X ∪ Y = A. We can always include in X

and in Y all vertices of A there were not originally in X or in Y , as each vertex in

X ∩ Y is a directed path from X to Y .

Definition 2.5 [Havens in directed graphs] Let D be a directed graph. A haven

of order k in D is a function β assigning to every set Z ⊆ V (D), with |Z| ≤ k − 1,

the vertex set of a strong component of D \ Z in such way that if Z ′ ⊆ Z ⊆ V (D)

then β(Z) ⊆ β(Z ′). The haven number of D is the maximum k such that D admits

a haven of order k.
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There is a direct correlation between the haven number and the tree-width of

undirected graphs. A haven in an undirected graph is defined similarly. The function

β retains all its properties, but mapping sets of at most k−1 vertices to components

of the graph resulting from the deletion of those vertices.

Theorem 2.6 [28] Let G be a graph and k ≥ 0 an integer. Then G has a haven

of order k if and only if its tree-width is at least k − 1.

For directed graphs, only one implication of the previous result is known to be true.

Theorem 2.7 [17] Let D be a directed graph and k a non-negative integer. If D

has a haven of order k, then dtw(D) ≥ k − 1.

For the reverse direction of Theorem 2.7, only an approximate version is known.

Theorem 2.8 [17] Let D be a directed graph and k a positive integer. Then either

dtw(D) ≤ 3k − 2 or D admits a haven of order k.

The proof of Theorem 2.8 given in [17] yields an XP algorithm that decides

whether a directed graph D admits a haven of order k or produces an arboreal

decomposition of D of width at most 3k − 2. Furthermore, although not explicitly

mentioned in the article, this algorithm actually produces a nice (as in Defini-

tion 2.3) arboreal decomposition for D and can be used as a procedure that, given

a directed graph D′ such that dtw(D′) ≤ k− 2, generates a nice arboreal decompo-

sition for D′ of width at most 3k − 2. In Section 3, by making use of a variation of

the Multicut [5, 8] problem, we provide an FPT algorithm with the same output.

Theorem 2.9 (First main contribution) Let D be a directed graph and k a

non-negative integer. There is an FPT algorithm, with parameter k, that decides

whether D admits a haven of order k or produces an arboreal decomposition of D

of width at most 3k − 2.

The proof of the Directed Grid Theorem [18] starts by deciding whether a di-

rected graph has bounded directed tree-width. Theorem 2.9 is the first step for the

proof of Corollary 2.13.

Next, we define a structure which will be useful to find highly connected sub-

graphs in directed graphs of large directed tree-width.

Definition 2.10 [Brambles in directed graphs] A bramble B = {B1, . . . , B�} in a

directed graph D is a family of strongly connected subgraphs of D such that if

{B,B′} ⊆ B then B ∩ B′ �= ∅ or there are edges in D from B to B′ and from B′

to B. A hitting set of a bramble B is a set C ⊆ V (D) such that C ∩ B �= ∅ for all

B ∈ B. The order ord(B) of a bramble B is the minimum size of set that hits B.
The bramble number of a directed graph D, denoted by bn(D), is the the maximum

k such that D admits a bramble of order k.

Brambles of high order are also key to the original proof of the Directed Grid

Theorem. In Section 4, we show how to obtain, from a path P intersecting all
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elements of a bramble of order (k + 1)(�k/2 + 1), a well-linked set A of size k such

that A ⊆ V (P ). From this point forward, the proof of Corollary 2.13 follows the

proof contained in [18].

We now formally define cylindrical grids and formally enunciate our second main

contribution. We refer the reader to [18] for the formal definitions of butterfly

contractions and butterfly minors.

Definition 2.11 [Cylindrical grid] A cylindrical grid of order k is a directed graph

Dk consisting of k pairwise disjoint cycles C1, . . . , Ck and set of 2k pairwise disjoint

paths P1, . . . , P2k such that

(i) V (Pi)∩V (Cj)| = 1, for i ∈ {1, . . . , 2k} and j ∈ {1, . . . , k}, and both extremities

of Pi are in V (C1) ∪ V (Ck);

(ii) the paths P1, . . . , P2k appear on each Cj in this order; and

(iii) for odd i the cycles C1, . . . , Ck occur on Pi in this order, and for even i they

occur in reverse order Ck, . . . , C1, for i ∈ {1, . . . , 2k}.

Theorem 2.12 (Second main contribution) Let g(k) = (k + 1)(�k/2�+ 1)− 1

and B be a bramble of order g(k) in a directed graph D. There is an FPT algorithm,

with parameter k, that finds a path P that is a hitting set of B and contains a

well-linked set A of order k.

As a Corollary we get the following.

Corollary 2.13 Let k be a non-negative integer and D be a directed graph. There

is an FPT algorithm, with parameter k, that either

(i) produces an arboreal decomposition of width at most f(k) for D; or

(ii) finds a cylindrical grid of order k as a butterfly minor of D.

3 FPT algorithm for arboreal decompositions

The algorithm for arboreal decompositions given in [17] starts with a trivial decom-

position ({r}, ∅, {Wr}) whose underlying arborescence contains only one vertex r.

Thus, Wr = V (G). Each iteration splits the vertices contained in an excessively

large leaf of the current decomposition, if one exists, into a set of new leaves, while

guaranteeing that the width of the non-leaf vertices remains bounded from above

by a function of k. At any given iteration, the algorithm has to efficiently answer

the following question:

Problem P

Input: A directed graph D and a set T ⊆ V (D) with |T | ≤ 2k − 1.

Parameters: k and r.

Question: Is there a set Z ⊆ V (D) with at most r vertices such that every

strong component C of D \ Z satisfies |V (C) ∩ T | < k?
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Problem P can be naively solved by checking all
(
n
r

)
sets Z size r in V (D) and

enumerating the strong components of D \ Z. Thus, it is in XP. In fact, this is the

only step of the algorithm given in [17] which is done in XP time. In this section

we show that it is also FPT , thus proving Theorem 2.9.

Theorem 3.1 Problem P is FPT .

Theorem 3.1, together with [17, Theorem 3.3], implies the existence of an FPT
algorithm that returns a haven of order k on a directed graphD with dtw(D) > 3k−2

as required in the first step of the proof of Corollary 2.13.

We make use of the following claim, also taken from [17]. We include a short

proof for completeness.

Claim 3.2 Let D be a graph and T ⊆ V (D) with |T | ≤ 2k − 1. If (D,T, k, k − 1)

is a negative instance for P, then D admits a haven of order k.

We refer the reader to [8, 21, 22, 24] for the formal definitions of multicuts and

multiway cuts in the undirected and directed cases, and related results. We formally

define only the variation of directed multicuts known as linear cuts [14]. In the

Linear Edge Cut problem, we are given a graph D, a collection {T1, . . . , T�} of

subsets of V (D) and we want to find a minimum set of edges Z such that there is

no path from Ti to Tj in D′ = (V,E − Z) whenever j > i. This problem is FPT
when parameterized by the size of the solution.

Theorem 3.3 [14] The Linear Edge Cut problem is FPT when parameterized

by the size r of the solution, and can be solved in time O(4r · r · n4).

The vertex version is defined as follows.

Linear Vertex Cut

Input: A directed graph D and a collection of terminal sets T , with

T = {T1, T2, . . . T�}, where Ti ⊆ V (D) for i ∈ {1, . . . , �}.
Parameter: r.

Question: Is there a set of vertices Z ⊆ V (D) with |Z| ≤ r such that there

are no paths in D \ Z from Ti to Tj , for 1 ≤ i < j ≤ �?

In this section, we show how to reduce the Linear Vertex Cut problem to the

Linear Edge Cut problem. Thus by Theorem 3.3 we get an FPT algorithm for

the Linear Vertex Cut problem.

Corollary 3.4 There is an FPT algorithm for the Linear Vertex Cut problem

parameterized by the size r of the solution and running in time O(4r · r · n4).

Next, we show that any solution to an instance of P is also a solution for a

related instance of the Linear Vertex Cut problem.

Lemma 3.5 Let (D,T, k, r) be an instance of P. Then Z is a solution for

(D,T, k, r) if and only if there is a partition T of T − Z into sets T1, T2, . . . , T�
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such that |Ti| ≤ k − 1, for i ∈ {1, . . . , �}, and Z is a solution for the instance

(D, T , r) of the Linear Vertex Cut problem.

The FPT algorithm for problem P follows from Lemma 3.5 and Corollary 3.4.

The running time is heavily tied to the number of partitions T that can be generated

from a given set T of an instance (D,T, k, r) of P. This value is bounded by the

k-th ordered Bell number [6]. The k-th ordered Bell number counts the number of

ordered partitions of a set of size k and is of the form 2O(k log k).

Lemma 3.6 Problem P is in FPT and can be solved in time 2O(k log k) · nO(1).

We are now ready to state the main result of this section. We remark that the

proof follows [17, Theorem 3.3] except that we replace the XP procedure of the proof

by our FPT algorithm.

Theorem 3.7 Let D be a directed graph and k a non-negative integer. There is

an FPT algorithm, with parameter k, that either concludes that D admits a haven

of order k or produces a nice arboreal decomposition of D of width at most 3k − 2.

Furthermore, if the algorithm concludes there is a haven of order k, then it outputs

a set T ⊆ V (D) with |T | = 2k − 1 such that (D,T, k, k − 1) is a negative instance

of P. Furthermore, the algorithm runs in time 2O(k log k) · nO(1).

In the next section we provide the second, and last, step that needs to be changed

in the proof contained in [18].

4 Finding a well-linked system of paths

It is known that, from any haven of order k+1 in a directed graph D, one can find a

bramble of order k/2 in D [23, Lemma 6.4.20]. This procedure generates a bramble

B′ by enumerating all sets β(Z) for all sets Z of size at most k/2, and we can verify

whether a given set X is a hitting set of B′ by going through all its elements. In

Section 3 we provided and FPT algorithm, with parameter k, that either generates

an arboreal decomposition of width bounded by a function of k or outputs a set T

of size at most 2k − 1 such that (D,T, k, k − 1) is a negative instance of problem

P. In this section, we use T to identify a bramble B of high order that is better

than B′ in the following sense: with only a compact description of B, we can use

the methods described in Section 3 to compute a hitting set of B in FPT time with

parameter k. In what follows, we define a special type of bramble that can be used

to achieve this compact description and prove some properties of its hitting sets.

Definition 4.1 Let D be a directed graph and T be a subset of V (D) such that

|T | ≤ 2k − 1. A T -bramble of D is a bramble B such that B = {B ⊆ D |
B is induced, strongly connected, and |V (B) ∩ T | ≥ k}.

For the remaining of this section, and unless stated otherwise, let (D,T, k, k−1)

be a negative instance of P and BT be a T -bramble of D. First we show that

ord(BT ) = k.
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Claim 4.2 BT is a bramble of order k in D.

Notice that, as |T | ≤ 2k−1, any two elements of BT intersect, and that any B′ ⊆ BT

is a bramble of order at most k. The next lemma is also needed to show the main

result of this section.

Lemma 4.3 [18] Let B be a bramble of a directed graph D. In polynomial time,

one can always find a path P in D such that V (P ) is a hitting set of B.

We want to adapt the next lemma so that its statement can be verified in FPT
time. This is precisely the second step needed to achieve an FPT algorithm for the

Directed Grid Theorem.

Lemma 4.4 [18] Let D be a digraph, B be a bramble of order k(k + 2), and P =

P (B) be a path intersecting every B ∈ B. Then there is a set A ⊆ V (P ) of size k

which is well-linked.

To do that, we need to show how to split B into smaller brambles of order at least

�k/2� which are intersected by subpaths of P (B). We can grow a subpath of P ′ of P
iteratively while checking, on each iteration, if the set of elements of B intersecting

V (P ′) is a bramble of adequate order. This can be done by enumerating all elements

of the given bramble, which is not a procedure we can afford when aiming at an

FPT algorithm. To do this more efficiently, we make use of some properties given

by our very particular choice of the bramble BT .

Definition 4.5 Let X ⊆ V (D) and B be a bramble of D. We define B(X) as

the elements of B intersecting X. Similarly, we define B̄(X) as the elements of B
disjoint from X. Formally, B(X) = {B ∈ B | V (B) ∩X �= ∅} and B̄(X) = {B ∈ B |
V (B) ∩X = ∅}.

Notice that B(X) and B̄(X) are brambles, as both are subsets of a bramble B.
Additionally, B(X) is disjoint from B̄(X) and the union of a hitting set for the

former with a hitting set for the latter is a hitting set for B. From this remark, we

have that

ord(B(X)) + ord(B̄(X)) ≥ ord(B)
and, although it may be hard to compute the order of B(X), we can estimate its

order by knowing the order of its “complement bramble” B̄(X).

Consider now the brambles BT , BT (X) and B̄T (X). The following claims show

that hitting sets for B̄T (X) are exactly solutions for the instance (D\X,T −X, k, k)

of P and, by Lemma 3.6, can be found in FPT time.

Claim 4.6 Let X,Z ⊆ V (D). There is a B ∈ B̄T (X) such that V (B) ∩ Z = ∅
if and only if D \ (Z ∪ X) contains a strongly connected component C such that

|V (C) ∩ (T −X)| ≥ k.

The contrapositive of Claim 4.6 characterizes hitting sets of B̄T (X).

Claim 4.7 Let X,Z ⊆ V (D). Z is a hitting set of B̄T (X) if and only if every

strong component of D \ (X ∪ Z) contains at most k − 1 vertices of T −X.
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Therefore we can decide if ord(B̄T (X)) ≤ r by solving the instance (D\X,T−X, k, r)

of P. The following result is a direct consequence of Lemma 3.6 and Claim 4.7.

Corollary 4.8 For any X ⊆ V (D), there is an FPT algorithm, running in time

2O(k log k) · nO(1), that decides whether ord(B̄T (X)) ≤ r or if ord(B̄T (X)) ≥ r + 1.

Finally, we follow the original proof from [18, Lemma 4.4], but choosing the

subpaths of P in FPT time.

Lemma 4.9 Let D be a directed graph, g(k) = (k + 1)(�k/2� + 1) − 1, T ⊆ V (D)

with |T | = 2g(k) − 1 and assume that (D,T, g(k), g(k) − 1) is a negative instance

of P. Let BT be a T -bramble of order g(k) of D and P be a path intersecting every

element of BT . Then there is a set A ⊆ V (P ) of order k which is well-linked.

Furthermore A can be found in FPT time with parameter k.

The last lemma shows how to find a large well-linked set in a directed graph D

of large directed tree-width. By following the remaining of the proof of the Directed

Grid Theorem [18], which yields FPT algorithms for all the remaining steps, we can

validate Corollary 2.13.
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