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Abstract

Given a simple graph G, a weight function w : E(G)→ N \ {0}, and an orientation
D of G, we de�ne µ−(D) = maxv∈V (G) w

−
D(v), where w−D(v) =

∑
u∈N−

D
(v)
w(uv). We

say that D is a weighted proper orientation of G if w−D(u) 6= w−D(v) whenever u and
v are adjacent. We introduce the parameter weighted proper orientation number of
G, denoted by −→χ (G,w), which is the minimum, over all weighted proper orientations
D of G, of µ−(D). When all the weights are equal to 1, this parameter is equal
to the proper orientation number of G, which has been object of recent studies and
whose determination is NP-hard in general, but polynomial-time solvable on trees.
Here, we prove that the equivalent decision problem of the weighted proper orientation
number (i.e., −→χ (G,w) ≤ k?) is (weakly) NP-complete on trees but can be solved by
a pseudo-polynomial time algorithm whose running time depends on k. Furthermore,
we present a dynamic programming algorithm to determine whether a general graph
G on n vertices and treewidth at most tw satis�es −→χ (G,w) ≤ k, running in time

O(2tw
2

· k3tw · tw · n), and we complement this result by showing that the problem is
W[1]-hard on general graphs parameterized by the treewidth of G, even if the weights
are polynomial in n.

Keywords: proper orientation number; weighted proper orientation number; mini-
mum maximum indegree; trees; treewidth; parameterized complexity; W[1]-hardness.

1 Introduction

Let G = (V,E) be a simple graph. We refer the reader to [9] for the usual de�nitions and
terminology in graph theory. In this paper, we denote by (G,w) an edge-weighted graph G,
where w : E(G)→ N \ {0}. For an edge e = uv of G, we write w(e) or w(uv), indistinctly,
to denote its weight. In a digraph D, the notation −→uv means an arc with tail u and head
v. An orientation D of G is a digraph obtained from G by replacing each edge uv of G by
exactly one of the arcs −→uv or −→vu. For a vertex v, N−D (v) (resp. N+

D (v)) is the set of the

∗Research supported by French grants DEMOGRAPH (ANR-16-CE40-0028) and ESIGMA (ANR-17-
CE23-0010), and by CNPq-Brazil Universal projects 459466/2014-3, 310234/2015-8, and 401519/2016-3.
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neighbors w of v such that −→wv (resp. −→vw) is an arc of D. The indegree (resp. outdegree)
of v, denoted by d−(v) (resp. d+(v)), is the cardinality of N−D (v) (resp. N+

D (v)). Observe
that N(v) = N−D (v)∪N+

D (v) for any orientation D of G. The inweight (resp. outweight) of
v, denoted by w−(v) (resp. w+(v)), is the value

∑
u∈N−D (v) w(uv) (resp.

∑
u∈N+

D(v) w(uv)).

Whenever it is clear from the context, the subscript D will be omitted. We denote by µ−(D)
the maximum inweight of D over all vertices of G, that is, µ−(D) = maxv∈V (G) w

−(v).
A proper coloring of G is a function f : V (G) → N such that f(u) 6= f(v) for every

uv ∈ E(G). Given an edge-weighted graph (G,w), a weighted proper orientation of G is an
orientation D of G such that w−(u) 6= w−(v) for every uv ∈ E(G) (i.e., the inweights of the
vertices de�ne a proper coloring of G). We de�ne −→χ (G,w) as the minimum of µ−(D) over
all weighted proper orientations D of G. Note that if w(e) = 1 for every edge e ∈ E(G),
then the parameter −→χ (G,w) is equal to the proper orientation number of G, denoted by
−→χ (G) and recently studied in a series of articles [1, 4, 5, 16].

This latter parameter was introduced by Ahadi and Dehghan [1] in 2013. They observed
that this parameter is well-de�ned for any graph G, since one can always obtain a proper
orientation D with µ−(D) ≤ ∆(G), where ∆(G) is the maximum degree of G. They also
proved that deciding whether a graph G has proper orientation number equal to 2 is NP-
complete even if G is a planar graph. Other complexity results were obtained by Araújo
et al. [4]. They proved that the problem of determining the proper orientation number
of a graph remains NP-hard for subclasses of planar graphs that are also bipartite and of
bounded degree. In the same paper, they proved that the proper orientation number of any
tree is at most 4; Knox et al. [16] provided a shorter proof of the same result. In another
paper, Araújo et al. [5] proved that the proper orientation number of cacti is at most 7, and
that this bound is tight.

All the above negative results also apply to the Weighted Proper Orientation

number problem, whose corresponding decision problem is formally de�ned as follows:

Weighted Proper Orientation

Input: An edge-weighted graph (G,w) and a positive integer k.
Output: Is −→χ (G,w) ≤ k?

Let us now discuss our motivation to introduce the weighted version of the proper
orientation number. It is claimed in [4], without a proof, that �one can observe that, for
�xed integers t and k, determining whether −→χ (G) ≤ k in a graph G of treewidth at most
t can be done in polynomial time using a standard dynamic programming approach�. This
implies, in particular, that one can determine the proper orientation number of a tree in
polynomial time.

Even if one may think that most problems are easily solvable on trees, there are scarce
but relevant counterexamples: Araújo et al. [6] showed that the Weighted Coloring

problem on n-vertex trees cannot be solved in time 2o(log
2 n) unless the Exponential Time

Hypothesis of Impagliazzo et al. [13] fails. It is remarkable that this bound is tight, in

the sense that the problem can be solved in time 2O(log2 n). Further hardness results for
Weighted Coloring on trees and forests under the viewpoint of parameterized complexity
were recently given by Araújo et al. [3].

It turns out that Weighted Proper Orientation constitutes another example of a
coloring problem that is hard on trees: we prove that the problem is NP-complete on trees,
by a reduction from the Subset Sum problem. Since Subset Sum is a well-known example
of weakly NP-complete problem that can be solved in pseudo-polynomial time [12], a natural
question is whether the Weighted Proper Orientation problem on trees exhibits the
same behavior. Our main technical contribution is a positive answer to this question.
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Interestingly, our pseudo-polynomial algorithm uses as a black box a subroutine to solve
an appropriately de�ned Subset Sum instance. Another ingredient of this algorithm is a
combinatorial lemma stating that there always exists a weighted proper orientation D of
a tree T such that d−D(u) ≤ 4, for every u ∈ V (T ); this generalizes the result of Araújo et
al. [4] and Knox et al. [16] for the unweighted version.

After focusing on trees, we explore the complexity of Weighted Proper Orientation

on the more general class of graphs of bounded treewidth. We �rst present a dynamic
programming algorithm to determine whether an n-vertex edge-weighted graph (G,w) with

treewidth at most tw satis�es −→χ (G,w) ≤ k, running in time O(2tw
2 · k3tw · tw · n). In

particular, when all weights are equal to 1, this algorithm �nds in polynomial time the proper
orientation number of graphs of bounded treewidth; as mentioned before, such algorithm
had been claimed to exist in [4].

Back to the weighted version, from the viewpoint of parameterized complexity [10, 11],
the running time of our algorithm shows that the problem is in XP parameterized by the
treewidth of the input graph. Hence, the natural question is whether it is FPT. We answer
this question in the negative by showing that the term kO(tw) is essentially unavoidable, in
the sense that, under the assumption that FPT 6= W[1], there is no algorithm running in time
f(tw)·(k·n)O(1) for any computable function f . We prove this via a parameterized reduction
from the Minimum Maximum Indegree problem, known to be W[1]-hard parameterized
by the treewidth of the input graph [19], and which is de�ned as follows1:

Minimum Maximum Indegree

Input: An edge-weighted graph (G,w) and a positive integer k.
Output: Is there an orientation D of G such that µ−(D) ≤ k?

The above problem has been recently studied in the literature [7,18,19], and its similarity
toWeighted Proper Orientation can be considered as a further motivation to study the
latter problem. It is worth pointing out that in ourW[1]-hardness reduction the edge-weights
are polynomial in the size of the graph, implying that the pseudo-polynomial algorithm that
we presented for trees cannot be generalized to arbitrary values of treewidth.

The remainder of the article is organized as follows. In Section 2 we recall the de�nition
of (nice) tree decompositions and we present some basic preliminaries of parameterized
complexity. In Section 3 we focus on trees and in Section 4 we turn our attention to graphs
of bounded treewidth. We conclude this paper in Section 5 with some open questions.

2 Preliminaries

In this section, we recall de�nitions and introduce the terminology adopted on tree decom-
position and parameterized complexity.

Tree decompositions and treewidth. Given a graph G, a tree decomposition of G [17]
is a pair T = (T, (Xt)t∈V (T )), where T is a rooted tree and Xt is a subset of vertices of G,
for every t ∈ V (T ), that satis�es the following conditions:

1.
⋃
t∈V (T )Xt = V (G);

2. There exists t ∈ V (T ) such that {u, v} ⊆ Xt, for every edge uv ∈ E(G); and

1The original problem is de�ned in terms of outweight instead of inweight, but for convenience we consider
the latter version here, which is clearly equivalent to the original one.
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3. Let t, t′ ∈ V (T ) and t′′ ∈ V (T ) be a vertex in the (t, t′)-path in T . Then, Xt ∩Xt′ ⊆
Xt′′ .

We refer to the vertices of a tree decomposition as nodes. A tree decomposition is called
nice if each non-leaf node t ∈ V (T ) can be classi�ed into one of the following types:

1. Introduce node: if t has exactly one child t′ in T andXt = Xt′∪{u} for some u ∈ V (G);

2. Forget node: if t has exactly one child t′ in T and Xt = Xt′ \ {u} for some u ∈ V (G);
and

3. Join node: if t has exactly two children t′, t′′ in T , and Xt = Xt′ = Xt′′ .

The width of T is equal to the maximum size of a subset Xt minus one, and the treewidth
of G is the minimum width of a tree decomposition of G. It is known that if G has a tree
decomposition of width k, then G has a nice tree decomposition of width k such that the
tree has O(k · |V (G)|) nodes [15]. Additionally, for a node t ∈ V (T ) we denote by Tt the
subtree of T rooted at t, and by Gt the subgraph of G induced by

⋃
t′∈V (Tt)

Xt′ .

Parameterized complexity. We refer the reader to [10, 11] for basic background on
parameterized complexity, and we recall here only some basic de�nitions. A parameterized

problem is a language L ⊆ Σ∗ × N. For an instance I = (x, k) ∈ Σ∗ × N, the value k
is called the parameter ; note that x can be thought of as the instance of the associated
unparameterized problem. A parameterized problem L is �xed-parameter tractable (FPT)
if there exists an algorithm A, a computable function f , and a constant c such that given
an instance I = (x, k) of L, A (called an FPT algorithm) correctly decides whether I ∈ L
in time bounded by f(k) · |I|c.

Within parameterized problems, the classW[1] may be seen as the parameterized equiva-
lent to the class NP of classical decision problems. Without entering into details (see [10,11]
for the formal de�nitions), a parameterized problem beingW[1]-hard can be seen as a strong
evidence that this problem is not FPT. The canonical example of W[1]-hard problem is In-
dependent Set parameterized by the size of the solution2.

To transfer W[1]-hardness from one problem to another, one uses a parameterized reduc-
tion, which given an input I = (x, k) of the source problem, computes in time f(k) · |I|c,
for some computable function f and a constant c, an equivalent instance I ′ = (x′, k′) of
the target problem, such that k′ is bounded by a function depending only on k. Hence,
an equivalent de�nition of W[1]-hard problem is any problem that admits a parameterized
reduction from Independent Set parameterized by the size of the solution.

Even if a parameterized problem is W[1]-hard, it may still be solvable in polynomial time
for �xed values of the parameter: such problems are said to belong to the complexity class
XP. Formally, a parameterized problem whose instances consist of a pair (x, k) is in XP if
it can be solved by an algorithm with running time f(k) · |x|g(k), where f, g are computable
functions depending only on the parameter and |x| represents the input size. For example,
Independent Set parameterized by the solution size is easily seen to belong to XP, as it
su�ces to check all the possible subsets of size k of V (G).

3 Trees

In this section we investigate the weighted proper orientation number of trees. We �rst
generalize in Subsection 3.1 to the weighted version the fact that the proper orientation

2Given a graph G and a parameter k, the problem is to decide whether there exists S ⊆ V (G) such that
|S| ≥ k and E(G[S]) = ∅.
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number of any tree is at most 4, which had been proved by Araújo et al. [5] and by Knox
et al. [16]. This result will be then used in Subsection 3.2 to obtain a pseudo-polynomial
algorithm on trees. Finally, we prove in Subsection 3.3 that the problem is (weakly) NP-
complete on trees, by a reduction from the Subset Sum problem.

3.1 Upper bounds

As mentioned before, the following is a generalization of previous results by Araújo et al. [4]
and Knox et al. [16]. It will be used in the proof of Theorem 1.

Lemma 1 Let T be an edge-weighted tree and w : E(T )→ N\{0}. There exists a weighted

proper orientation D of T such that d−D(u) ≤ 4, for every u ∈ V (T ).

Proof: If T is a path, then there is nothing to prove, so suppose otherwise. Suppose T is
rooted at some vertex, and for each v ∈ V (T ) denote by Tv the subtree rooted at v. We use
induction on |V (T )|. For this, choose a vertex v of degree at least 3 that it is closest to the
leaves, i.e., at most one component of T −v is not a path, namely the component containing
the parent of v. Let u be the parent of v, and v1, . . . , vq be its remaining neighbors. For
each i ∈ {1, . . . , q}, denote by (Ai, Bi) the bipartition of the component of T − v containing
vi, and suppose that vi ∈ Ai. Also, denote by wi the value w(vvi) and suppose, without
loss of generality, that w1 ≥ w2 ≥ . . . ≥ wq. Now, let D be a weighted proper orientation
of T − Tv. We want to extend D to a weighted proper orientation of T . First, orient uv
toward v, and let w = w(uv) and c = w + w1 + w2. We analyze the cases:

1. w−(u) 6= c: orient vv1 and vv2 toward v, and all the edges of (Ai, Bi) from Ai to
Bi, for i = 1 and i = 2. Note that every vertex in Ai have weight 0, and every
vertex in Bi have weight greater than 0. Thus, if q = 2 we are done. Otherwise,
consider any i ∈ {3, . . . , q}. Orient vvi toward vi. If Bi = ∅ (i.e., vi is a leaf), we
are done since w−(v) = c > wi = w−(vi). Otherwise, let xi be the neighbor of vi
in Bi. If w(vixi) 6= c − wi, then orient the edges of (Ai, Bi) from Bi to Ai; all the
vertices in Bi have weight 0, all the vertices of Ai have weight greater than 0, and
w−(vi) = wi + w(vixi) 6= c. Otherwise, orient the edges of (Ai, Bi) from Ai to Bi.
Similarly, the only possible con�ict is between vi and xi, which does not occur since
w−(xi) ≥ c − wi = w + w1 + w2 − wi > wi = w−(vi) (recall that w1 ≥ w2 ≥ wi and
that w ≥ 1).

2. w−(u) = c and q ≥ 3: in this case, the same argument as above can be applied, except
that we orient vv1, vv2 and vv3 toward v;

3. w−(u) = c and q = 2: for i ∈ {1, 2}, if Bi 6= ∅, let xi be the neighbor of vi in Bi and
let ci = w(vvi)+w(vixi); otherwise, let ci = w(vvi). If ci 6= w(uv) for i = 1 and i = 2,
then for i = 1 and i = 2, orient vvi toward vi, and orient the edges of (Ai, Bi) from
Bi to Ai, if they exist. Now, let i ∈ {1, 2} be such that ci = w(uv), and let j = 3− i.
Orient vvj toward v, vvi toward vi, the edges of (Ai, Bi) from Bi to Ai, if any, and the
edges of (Aj , Bj) from Aj to Bj , if any. The only possible con�ict is between v and vi,
which does not occur because w−(v) = w(uv) + w(vvj) = ci + w(vvj) > ci = w−(vi).

�

Note that the above lemma does not guarantee the existence of an optimal weighted
proper orientation D such that d−D(u) ≤ 4, for every u ∈ V (T ); for instance, the tree con-
structed in the proof of Theorem 2 does not admit, in general, such an optimal orientation.
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3.2 Pseudo-polynomial algorithm

The next theorem proves the existence of an algorithm to solve the Weighted Proper

Orientation problem restricted to trees that runs in polynomial time on the size of the
input and the maximum weight. The algorithm crucially uses a subroutine to solve the
Subset Sum problem, which we recall here for completeness.

Subset Sum

Input: A set S ⊆ Z and a positive integer k.
Output: Does there exist S′ ⊆ S such that

∑
s∈S′ s = k?

We will use the shortcut SubsetSum(S, `) to denote the Subset Sum problem with
instance (S, `). It is well-known [12] that this problem can be solved in pseudo-polynomial
time O(` · |S|).

Before proving the theorem, we need an additional notation. Consider a rooted tree T
with root r ∈ V (T ), and assume that r has degree larger than 1. For each v ∈ V (T ), we
denote by π(v) the parent of v (consider π(r) to be null), by Tv be the subtree rooted at v,
and by NTv (v) the neighbors of v in Tv.

Theorem 1 Let T be an edge-weighted tree on n vertices, w : E(T ) → N \ {0}, and

K = maxe∈E(T ) w(e). It is possible to compute −→χ (T,w) in time O(K3n).

Proof: Suppose that |V (T )| ≥ 3, otherwise the problem is trivial. Consider T to be
rooted at r ∈ V (T ) with degree larger than 1. We will prove that, given a positive integer
k ∈ {K, . . . , 4K}, one can decide in time O(k2n) whether −→χ (T,w) ≤ k. Note that for
smaller values of k, the answer is trivially �no� and for larger values of k, it is �yes� by
Lemma 1. Therefore, this fact will prove the theorem. The general idea is to construct a
proper orientation for Tv given appropriate proper orientations of Tv′ for each v

′ ∈ NTv (v).
Given an orientation D of Tv, where v is any vertex of T , and a positive integer `,

we say that D + ` is proper if the function obtained from w−D by adding ` to w−D(v) is
also a proper coloring of Tv, i.e., if w

−
D(x) 6= w−D(y) for every xy ∈ E(Tv), x, y 6= v, and

w−D(v)+` 6= w−D(x) for every x ∈ NTv
(v). For each v ∈ V (T ) and each value w ∈ {0, . . . , k},

we de�ne the following parameters, which intuitively correspond to the existence of an
appropriate orientation of Tv where the edge vπ(v) is oriented away from v or toward v,
respectively:

ρ(v, w) =


1, if there exists a proper orientation D of Tv such that

w−D(v) = w, and µ−(D) ≤ k;
0, otherwise.

ρ′(v, w) =


1, if there exists an orientation D of Tv such that

D + w(vπ(v)) is proper, w−D(v) = w − w(vπ(v)), and
max{w, µ−(D)} ≤ k;

0, otherwise.

In the case of r, we get that ρ(r, w) equals ρ′(r, w), i.e., the parameter ρ(r, w) indicates
whether T admits a proper orientation D such that w−D(r) = w and µ−(D) ≤ k. The answer
to the problem is �yes� if and only if ρ(r, w) = 1 for some w ∈ {0, . . . , k}.

We now proceed to compute the parameters ρ(v, w) and ρ′(v, w), inductively from the
leaves to the root of T . First, observe that if v is a leaf, then V (Tv) = {v}, in which case
we have:

ρ(v, w) =

{
1, if w = 0, and
0, otherwise.
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ρ′(v, w) =

{
1, if w = w(vπ(v)), and
0, otherwise.

Now, let v ∈ V (T ) be a non-leaf vertex with neighbors {π(v), v1, . . . , vq}, and suppose
that we have already computed ρ(vi, w) and ρ′(vi, w), for every i ∈ {1, . . . , q} and every
w ∈ {0, . . . , k}. For each w ∈ {0, . . . , k}, we will use the already computed values to compute
ρ(v, w) and ρ′(v, w).

To this end, consider a proper orientation D of Tv such that w−D(v) = w and µ−(D) ≤ k.
Also, for each i ∈ {1, . . . , q}, let Di be the orientation D restricted to Tvi . For each vi such
that −→viv ∈ D, observe that Di is a proper orientation of Tvi such that w−Di

(vi) = w−D(vi).

This means that ρ(vi, w
−
D(vi)) = 1. Similarly, for each vi such that −→vvi ∈ D, we get that

Di+w(viv) is proper and is such that w−Di
(vi) = w−D(vi)−w(viv). Hence, ρ′(vi, w

−
D(vi)) = 1.

Since w−D(vi) 6= w, we are interested in the entries ρ(vi, w
′), ρ′(vi, w′) such that w′ 6= w. We

then de�ne the following subsets of NTv (v):

F+ = {vi, i ∈ {1, . . . , q} | ρ(vi, w
′) = 0 for every w′ 6= w}

F− = {vi, i ∈ {1, . . . , q} | ρ′(vi, w′) = 0 for every w′ 6= w}.

The discussion in the previous paragraph implies that, if the desired orientation exists,
then it must necessarily contain the arcs {−→vvi | vi ∈ F+} ∪ {−→viv | vi ∈ F−}. Thus,
if F+ ∩ F− 6= ∅, we can safely answer �no�, and this is why we can henceforth assume
otherwise.

Let N = {v1, . . . , vq} \ (F+ ∪ F−), that is, the vertices in NTv
(v) for which some choice

needs to be made; see Figure 1 for an illustration. In order to compute the values of ρ(v, w)
and ρ′(v, w), the orientation of the set of edges {viv | vi ∈ N} will be chosen according to
the output of an appropriate instance of the Subset Sum problem, constructed as follows.

v

π(v)

F+ F− N

vi

Tvi

Tv

Figure 1: Illustration in the proof of Theorem 1.

Note that if D is the desired orientation, then it holds that
∑
vi∈N−D (v)\F− w(viv) =

w −
∑
vi∈F− w(viv) =: `. This means that the problem SubsetSum({w(viv) | vi ∈ N}, `)

has a positive answer. Conversely, let S be a subset that certi�es a positive answer to
SubsetSum({w(viv) | vi ∈ N}, `). Since vi /∈ F+ for every vi ∈ S ∪ F−, there exists a
proper orientation Di of Tvi such that µ−(Di) ≤ k and w−Di

(vi) = wi for some wi 6= w.
Also, since vi /∈ F− for every vi ∈ (N \ S) ∪ F+, there exists an orientation Di of Tvi
such that, for some wi 6= w, we have max{wi, µ−(Di)} ≤ k, Di + w(vvi) is proper, and
w−Di

(vi) = wi − w(vvi). One can verify that a proper orientation of Tv can be obtained
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from D1, . . . , Dq by orienting toward v precisely the edges incident to F− ∪ S. Therefore,
ρ(v, w) = 1 if and only if SubsetSum({w(viv) | vi ∈ N}, `) has a positive answer.

On the other hand, by de�ning F+, F−, N in the same way as above and letting `′ :=
w(vπ(v)) +

∑
vi∈F− w(viv), using similar arguments one can prove that ρ′(v, w) = 1 if and

only if SubsetSum({w(viv) | vi ∈ N}, `′) has a positive answer.
In both cases, since SubsetSum({w(viv) | vi ∈ N}, `) can be solved in time O(` · |N |) =

O(k · degT (v)), where degT (v) denotes the degree of v in T , we get that computing the
parameters ρ(v, w) and ρ′(v, w), for every w ∈ {0, . . . , k}, takes time O(k2 · degT (v)). This
has to be done for every v ∈ V (T ) and every k ∈ {K, . . . , 4K}, yielding the claimed running
time O(K3 ·

∑
v∈V (T ) degT (v)) = O(K3n). �

3.3 NP-completeness

In this subsection, we reduce the Subset Sum problem to Weighted Proper Orien-

tation on trees. It is well-known that Subset Sum is one of Karp's 21 NP-complete
problems [14] and that it is weakly NP-complete [12].

Theorem 2 Weighted Proper Orientation is weakly NP-complete on trees.

Proof: One can easily verify in linear time whether a given orientation D is proper and
whether µ−(D) ≤ k. Thus, the problem is in NP.

Let S = {i1, . . . , ip} ⊆ Z and k be an instance of the Subset Sum problem, which is
known to be NP-complete even if every ij ∈ S is a positive integer [2]. Hence, we assume
that k and all integers in S are positive and that ij < k, for every j ∈ {1, . . . , p}. In the
sequel, we construct a tree T (S) and a function w : E(T (S))→ N \ {0} such that (S, k) is
a yes-instance of Subset Sum if, and only if, ((T (S), w), k′) is a yes-instance of Weighted

Proper Orientation, where k′ = 2k + 6.
The tree T (S) has p vertices vj , for every j ∈ {1, . . . , p}, and k + 2 paths on four

vertices: a path P ∗ = (w,w1, w2, w3) and k + 1 paths P` = (u`1, u
`
2, u

`
3, u

`
4), for every

` ∈ {k+ 4, . . . , 2k+ 5} \ {2k+ 4}. Besides the edges of the paths, the tree T (S) also has the
edges wvj and wu

`
1, for every j ∈ {1, . . . , p} and every ` ∈ {k + 4, . . . , 2k + 5} \ {2k + 4}.

The function w : E(T (S))→ N\{0} assigns weight ` to every edge whose both endpoints
lie in P` and weight 1 to the edges wu`1, for every ` ∈ {k + 4, . . . , 2k + 5} \ {2k + 4}. The
weight of the edges wvj is ij , for every j ∈ {1, . . . , p}. Finally, the edges ww1, w1w2 and
w2w3 have weight k + 5, 2k + 6 and 2k + 6, respectively. A representation of T (S) is
depicted in Figure 2. Let us prove that (S, k) is a yes-instance of Subset Sum if, and only
if, −→χ (T (S), w) ≤ 2k + 6.

Figure 2: A representation of a tree T (S).
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Suppose �rst that (S, k) is a yes-instance and let S′ ⊆ S be such that
∑
ij∈S′ ij = k.

Let us build a proper (2k + 6)-orientation of (T (S), w). Orient the edges of the paths P`
and the edges wu`1 in a way that vertices u`3 have indegree zero and the vertices u`1 have
inweight `+ 1, for every ` ∈ {k + 4, . . . , 2k + 5} \ {2k + 4}. Orient the edge ww1 toward w
and the other edges of P ∗ so that the inweight of w2 is zero. Finally, orient the edge wvj
toward w if, and only if, ij ∈ S′, for every j ∈ {1, . . . , p}. Let us check that this is a proper
(2k+ 6)-orientation. Since all weights are positive, the vertices of inweight zero (w2 and u

`
3,

for every ` ∈ {k + 4, . . . , 2k + 5} \ {2k + 4}) cannot have a neighbor with its inweight. The
vertices u`1 have one unit of inweight more than u`2 and, since no vertex u`1 has inweight
equal to 2k + 5, none of them has the same inweight as w. In fact, w has inweight 2k + 5
due to the edge w1w and the edges wvj , for every j ∈ {1, . . . , p}. Finally, since ij < k, no
neighbor of w has its inweight.

Conversely, suppose that (T (S), w) has a weighted (2k + 6)-proper orientation D. De-
�ne S′ = {ij ∈ S | vjw is oriented toward w}. We claim that

∑
ij∈S′ ij = k and thus

(S, k) is a yes-instance of Subset Sum. Since the inweight of every vertex of T (S) in D is
upper-bounded by 2k+ 6, note that the edges of P` and the edges wu`1 must necessarily be
oriented so that all vertices u`3 have inweight zero and the vertices u`1 have inweight ` + 1,
for every ` ∈ {k + 4, . . . , 2k + 5} \ {2k + 4}. Consequently, w has neighbors with inweight
k + 5, . . . , 2k + 4, 2k + 6. By a similar analysis, one can deduce that the edge w1w must be
oriented toward w. Thus, w must have inweight exactly 2k + 5 in D. Therefore the edges
wvj that are oriented toward w add to the inweight of w exactly k units. �

4 Graphs of bounded treewidth

In this section we focus on graphs of bounded treewidth. We provide the XP algorithm in
Subsection 4.1 and the W[1]-hardness proof in Subsection 4.2.

4.1 Dynamic programming algorithm

In this subsection, we provide a dynamic programming algorithm to determine the weighted
proper orientation number of an edge-weighted graph (G,w) with treewidth at most tw.

Let (T, (Xt)t∈V (T )) be a nice tree decomposition of G. We recall that given a node
t ∈ V (T ), Tt is the subtree of T rooted at t, and Gt is the subgraph of G induced by⋃
t′∈V (Tt)

Xt′ . Let k be a positive integer. Let us de�ne Xt = {v1, . . . , vp} where p = |Xt|,
and let γ = (D′, a1, d1, . . . , ap, dp) be a tuple such that D′ is an orientation of G[Xt], and
ai, di are non-negative integers with ai ≤ di ≤ k, for every i ∈ {1, . . . , p}. We say that an
orientation D of Gt agrees with γ if the edges in G[Xt] are oriented in the same way in D
and D′, w−D(vi) = ai for every i ∈ {1, . . . , p}, and w−D(v) ≤ k for every v ∈ V (Gt) \ Xt.
Finally, we say that D realizes γ if D agrees with γ, and the coloring fD,γ de�ned below is
a proper coloring of G.

fD,γ(v) =

{
w−D(v) , if v ∈ V (Gt) \Xt, and
di , if v = vi

Now, we de�ne the following:

Qt(γ) = 1 i� there exists an orientation D of Gt that realizes γ.

Observe that, if r is the root of T , then the following holds:
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Proposition 1 (G,w) admits an orientation D such that µ−(D) ≤ k if and only if Qr(γ) =
1, for some entry γ of the type (D, d1, d1, . . . , d|Xr|, d|Xr|), where di ≤ k for every i ∈
{1, . . . , |Xr|}.

Now, we present the main result of this section. We assume that a nice tree decompo-
sition of width at most tw is given along with the input graph. This assumption is safe,
since by the algorithm of Bodlaender et al. [8] we can compute a (nice) tree decomposition
of width at most 5tw of an n-vertex graph of treewidth at most tw in time 2O(tw) · n, and
this running time is asymptotically dominated by the running time given in Theorem 3.

Theorem 3 Given an edge-weighted graph (G,w) together with a nice tree decomposition of

G of width at most tw, and a positive integer k, it is possible to decide whether −→χ (G,w) ≤ k
in time O(2tw

2 · k3tw · tw · n).

Proof: By Proposition 1, it su�ces to prove that we can compute Qt(γ) for every node

t ∈ V (T ) in time O(ktw), where γ is de�ned as before. Indeed, since there are O(2tw
2 · k2tw)

possible entries γ and O(tw ·n) nodes in V (T ) [15], the theorem follows. Let us analyze the
possible types of nodes in the given nice tree decomposition of G.

Suppose �rst that t is a leaf. Then, D′ is the only allowed orientation of G[Xt] = Gt;
hence, it su�ces to test whether D′ agrees with γ, and whether fD′,γ is a proper coloring
of Gt. This takes time O(tw2).

Now, suppose that t is an introduce node. Let t′ be the child of t in T and suppose,
without loss of generality, that Xt = Xt′ ∪ {vp}. First, suppose that dp is di�erent from di
for every vi ∈ N(vp), as otherwise Qt(γ) is trivially 0. Let D′′ be equal to D′ restricted to
Xt′ and, for each i ∈ {1, . . . , p− 1}, let a′i be equal to ai −w(vpvi) if

−−→vpvi ∈ D′, or be equal
to ai otherwise. Observe that there exists an orientation D of Gt that realizes γ if and only
if Qt′(D

′′, a′1, d1, . . . , a
′
p−1, dp−1) equals 1. Hence, it su�ces to verify this entry in Qt′ .

Now, suppose that t is a forget node, and let t′ be the child of t in T and v ∈ V (G) be
such that Xt = Xt′ \ {v}. Observe that Gt = Gt′ . Thus, if D is an orientation of Gt that
realizes γ, then D is an orientation of Gt′ that realizes γ′ = (D′′, a1, d1, . . . , ap, dp, d, d),
where D′′ equals D restricted to G[Xt′ ], and d = w−D(v); in other words, the entry Qt′(γ

′)
equals 1. Conversely, if any such entry equals 1, then Qt(γ) also equals 1. Therefore, it
su�ces to verify all the entries of Qt′ whose orientation of Xt′ is an extension of D′ and
whose values related to v are equal; there are O(2tw · k) such entries.

Finally, suppose that t is a join node, and let t1, t2 be its children. Let D be an orienta-
tion of Gt that realizes γ, and denote by Di the orientation D restricted to Gti , for i = 1 and
i = 2. For each j ∈ {1, . . . , p}, let oj be the inweight of vj in D restricted to Xt, and a

i
j be

the inweight of vj in Di, i ∈ {1, 2}. Observe that a1j + a2j = aj + oj for every j ∈ {1, . . . , p}.
Finally, for i ∈ {1, 2}, let γi = (D′, ai1, d1, . . . , a

i
p, dp). Observe that Di agrees with γi and,

since V (Gt1)∩ V (Gt2) = Xt, the colorings fD1,γ1 and fD2,γ2 are equal to fD,γ restricted to
Gt1 , Gt2 , respectively; hence these are proper colorings, which means that Qti(γi) equals 1,
for i ∈ {1, 2}. Conversely, if γ1 = (D′, a11, d1, . . . , a

1
p, dp) and γ2 = (D′, a21, d1, . . . , a

2
p, dp) are

such that Qt1(γ1) = Qt2(γ2) = 1 and a1i + a2i = ai + oi for every i ∈ {1, . . . , p}, then we
can conclude that Qt(γ) equals 1. Therefore, since there are O(k) possible combinations of
values a1i , a

2
i for each i ∈ {1, . . . , p}, we can compute Qt(γ) in time O(ktw). �

4.2 W[1]-hardness parameterized by treewidth

In this subsection, we present a parameterized reduction from the Minimum Maximum

Indegree problem to the Weighted Proper Orientation problem, which proves that
the latter problem is W[1]-hard when parameterized by the treewidth of the input graph.
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If all edge weights are identical, Asahiro et al. [7] showed that Minimum Maximum In-

degree can be solved in polynomial time. Szeider [18] showed that, on graphs of treewidth
tw, the problem can be solved in time bounded by a polynomial whose degree depends on
tw, provided that the weights are given in unary. Later, Szeider [19] showed that this depen-
dence is necessary, that is, thatMinimum Maximum Indegree isW[1]-hard parameterized
by the treewidth of the input graph.

Theorem 4 The Weighted Proper Orientation problem is W[1]-hard parameterized

by the treewidth of the input graph G, even if the weights are polynomial in the size of G.

Proof: Let (G,w) be a weighted graph and k a positive integer. We present a parame-
terized reduction from the Minimum Maximum Indegree problem parameterized by the
treewidth of G, which is W[1]-hard [19]. We assume that there is no edge with weight
greater than k, as otherwise one can safely conclude that we are dealing with a no-instance.

By multiplying all the edge weights by two and setting k′ = 2k, we clearly obtain an
equivalent instance where all the edge weights are even. Hence, we assume henceforth that
all the edge weights, as well as the integer k, are even. We call such instances even. We
now prove that we can also assume the following property of the instance:

F For every edge e = uv ∈ E(G) such that w(e) = k, it holds that∑
y∈N(u)

w(uy) < 2k and
∑

y∈N(v)

w(vy) < 2k.

Indeed, given an even instance (G,w, k) of Minimum Maximum Indegree, we de�ne
another even instance (G′, w′, k′). The graph G′ is obtained from G by attaching a new
triangle (v, v1, v2) to every vertex v of G. The weights of the edges of G remain unchanged
and, for each triangle (v, v1, v2), we give weight 2 to vv1 and vv2, and weight k + 2 to
v1v2. Finally, we set k′ = k + 2. It is easy to check that (G,w, k) and (G′, w′, k′) are
equivalent instances. Indeed, observe that a proper orientation D of G with µ−(D) ≤ k can
be completed into an orientation D′ of G′ with µ−(D′) ≤ k + 2 by orienting −→v1v,−→vv2,−−→v2v1
for every v ∈ V (G). Conversely, if D′ is an orientation of G′ with µ−(D′) ≤ k + 2, then
for every v ∈ V (G), at least one between vv1, vv2 must be oriented toward v, which means
that D′ restricted to G has inweight at most k. Note that (G′, w′, k′) satis�es Property F.

Now, let (G,w, k) be an even instance of Minimum Maximum Indegree satisfying
Property F. We construct an instance (G′, w′, k) of Weighted Proper Orientation as
follows. We de�ne G′ and w′ from G and w by replacing each edge e = uv by the gadgets
depicted in Figure 3. Namely, if w(e) = w < k (resp. w(e) = k), we replace it by the gadget
and weights shown in Figure 3(a) (resp. Figure 3(b)).

Note that all the gadgets introduced so far do not increase the treewidth of the original
instance of Minimum Maximum Indegree, assuming that it is at least two. To conclude
the proof, we claim that the instances (G,w, k) and (G′, w′, k) are equivalent. Note that the
only di�erence between the two problems is the desired orientation needing to be proper or
not.

Assume �rst that (G,w, k) is a yes-instance of Minimum Maximum Indegree, and let
D be the corresponding orientation of G. We de�ne from D a proper orientation D′ of G′

satisfying −→χ (G′, w′) ≤ k as follows. Let e = uv ∈ E(G) be an edge such that w(e) = w < k
(cf. Figure 3(a)), and assume w.l.o.g. that −→uv is an arc of D. In this case, in D′, the edges
of the corresponding gadget will be replaced by the arcs −→ux,−→xv,−→xz,−→zy,−→yx. On the other
hand, let e = uv ∈ E(G) be an edge such that w(e) = k (cf. Figure 3(b)), and assume
w.l.o.g. that −→uv is an arc in D. Then, in D′, the edges of the corresponding gadget will be
replaced by the arcs −→ux,−→xy,−→yv.
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Figure 3: Gadgets in the proof of Theorem 4. The weights are depicted near the edges.

In the �rst case, we have that w−D′(u) = w−D(u), w−D′(v) = w−D(v), w−D′(x) = k − 1,
w−D′(y) = k, and w−D′(z) = k−w−1. Since w−D′(u), w−D′(v), and w−D′(y) are even, and w−D′(x)
and w−D′(z) are odd, we have that w−D′(u) 6= w−D′(x), w−D′(x) 6= w−D′(v), w−D′(x) 6= w−D′(y),
and w−D′(y) 6= w−D′(z). Also, as 2 ≤ w < k and k is even, 0 < w−D′(z) < w−D′(x).

In the second case, we have that w−D′(u) = w−D(u), w−D′(v) = w−D(v) = k, w−D′(x) = k,
and w−D′(y) = 1. As k is even, clearly w−D′(x) 6= w−D′(y) and w−D′(y) 6= w−D′(v). Also, since
(G,w, k) satis�es Property F, necessarily w−D(u) < k, and therefore w−D′(u) < w−D′(x).

Conversely, assume that (G′, w′, k) is a yes-instance of Weighted Proper Orienta-

tion, and let D′ be the corresponding orientation of G′. We de�ne from D′ an orientation
D of G′ satisfying that w−D(v) ≤ k for every v ∈ V (G).

Recall that every possible weight w is even, as well as k. In the �rst case (cf. Figure 3(a)),
note that the −→xy and −→xz cannot be simultaneously arcs of D′, as in that case one of y and
z, say y, would satisfy w−D′(y) = 2k − w − 1 > k, a contradiction. Hence, assume w.l.o.g.
that −→yx is an arc, which implies that −→ux and −→vx cannot be both arcs of D′, as in that case
w−D′(x) ≥ k + w − 1 > k, a contradiction. Therefore, at least one of −→xu and −→xv is an arc of
D′. If exactly one of them is, say −→xu, we replace the edge uv by the arc −→vu in D. Otherwise,
if both −→xu and −→xv are arcs of D′, in D, we replace the edge uv by one of the possible arcs
arbitrarily.

In the second case (cf. Figure 3(b)), note that if −→xy is an arc of D′, then −→yv is necessarily
an arc of D′, as otherwise w−D′(y) = k+ 1, a contradiction. Based on this remark, if the −→xy
(resp. −→yx) is an arc of D′, we replace the edge uv by the arc −→uv in D (resp. −→vu).

In both cases, it holds that w−D(u) ≤ w−D′(u) ≤ k and w−D(v) ≤ w−D′(v) ≤ k, as required.

Finally, by the W[1]-hardness reduction of Szeider [19] for Minimum Maximum Inde-

gree, we may assume that the value of k in the original instance (G,w, k) is bounded by
a polynomial on the size of G. Therefore the proof above indeed rules out the existence of
an algorithm for Weighted Proper Orientation running in time f(tw) · (k · n)O(1) for
any computable function f , provided that FPT 6= W[1]. �

5 Conclusions and further research

In this article, we introduced the parameter weighted proper orientation number of an edge-
weighted graph, and we studied its computational complexity on trees and, more generally,
graphs of bounded treewidth. In particular, we proved that the problem is in XP and
W[1]-hard parameterized by the treewidth of the input graph. While the XP algorithm can
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clearly be applied to the unweighted version as well, it is still open whether determining
the proper orientation number is FPT parameterized by treewidth. It is worth mentioning
that our positive results still apply if the edge-weights are positive real numbers.

Another avenue for further research is to generalize the upper bounds given by Araújo
et al. [5] on cacti to the weighted version, in the same way as Lemma 1 generalizes the
bounds given by Araújo et al. [4] and Knox et al. [16] on trees. More generally, it would
be interesting to know whether there exists a function f : N × N → N such that, if we
denote by wmax the maximum edge-weight of a weight function and by tw the treewidth of
the input graph, for any edge-weighted graph (G,w) it holds that −→χ (G,w) ≤ f(tw, wmax).
Lemma 1 shows that, if such a function f exists, then f(1, wmax) ≤ 4 ·wmax. Note that the
existence of g(tw) := f(tw, 1) was left as an open problem in [4].

Finally, we refer the reader to [4] for a list of open problems concerning the proper
orientation number, noting that most of them also apply to the weighted proper orientation
number. In particular, it is not known whether there exists a constant k such that −→χ (G) ≤ k
for every planar graph G. Another possibility is to try to generalize the (few) positive results
for the proper orientation number to the weighted version, such as the case of regular
bipartite graphs [1], or to prove stronger hardness results.

Acknowledgement. We would like to thanks the anonymous reviewers for helpful remarks
that improved the quality of the manuscript.
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