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Abstract

Golumbic, Hirst, and Lewenstein define a matching in a simple, finite, and undirected graph G to be

uniquely restricted if no other matching covers exactly the same set of vertices. We consider uniquely

restricted edge-colorings of G defined as partitions of its edge set into uniquely restricted matchings,

and study the uniquely restricted chromatic index χ′
ur(G) of G, defined as the minimum number of

uniquely restricted matchings required for such a partition.

For every graph G,

χ′(G) ≤ a′(G) ≤ χ′
ur(G) ≤ χ′

s(G),

where χ′(G) is the classical chromatic index, a′(G) is the acyclic chromatic index, and χ′
s(G) is the

strong chromatic index of G, respectively. While Vizing’s famous theorem states that χ′(G) is either

the maximum degree ∆(G) of G or ∆(G) + 1, two famous open conjectures due to Alon, Sudakov, and

Zaks, and to Erdős and Nešetřil concern upper bounds on a′(G) and χ′
s(G) in terms of ∆(G). Since

χ′
ur(G) is sandwiched between these two parameters, studying upper bounds in terms of ∆(G) is a

natural problem.

We show that χ′
ur(G) ≤ ∆(G)2 with equality if and only if some component of G is K∆(G),∆(G). If

G is connected, bipartite, and distinct from K∆(G),∆(G), and ∆(G) is at least 4, then, adapting Lovász’s

elegant proof of Brooks’ theorem, we show that χ′
ur(G) ≤ ∆(G)2 −∆(G). Our proofs are constructive

and yield efficient algorithms to determine the corresponding edge-colorings.

Keywords: Uniquely restricted matching; edge-coloring; chromatic index; acyclic chromatic index;

strong chromatic index
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1 Introduction

Motivated by a problem about matrices studied by Hershkowitz and Schneider [12], Golumbic, Hirst, and

Lewenstein [11] introduced the notion of a uniquely restricted matching. In the present paper we consider

the edge-coloring notion derived from this type of matching and provide best possible upper bounds on

the corresponding chromatic index in terms of the maximum degree.

Before we explain our results in detail and discuss related research, we collect some terminology

and notation. We consider finite, simple, and undirected graphs. For a graph G, let V (G) denote its

vertex set, and let E(G) denote its edge set. For a vertex u of G, the neighborhood NG(u) of u in G is

{v ∈ V (G) : uv ∈ E(G)}, and the closed neighborhood NG[u] of u in G is {u} ∪NG(u). A matching in G

is a set of pairwise non-adjacent edges of G. For a matching M , let V (M) be the set of vertices incident

with an edge in M . A matching M in G is induced if the subgraph G[V (M)] of G induced by V (M)

is 1-regular. Golumbic, Hirst, and Lewenstein [11] define a matching M in G to be uniquely restricted

if there is no matching M ′ in G with M ′ 6= M and V (M ′) = V (M), that is, no other matching covers

exactly the same set of vertices.

Each type of matching naturally leads to an edge-coloring notion. For a graph G, let χ′(G) be the

chromatic index of G, which is the minimum number of matchings into which the edge set E(G) of G can

be partitioned. Similarly, let the strong chromatic index χ′s(G) [8] and the uniquely restricted chromatic

index χ′ur(G) of G be the minimum number of induced matchings and uniquely restricted matchings into

which the edge set of G can be partitioned, respectively. A partition of the edges of a graph G into

uniquely restricted matchings is a uniquely restricted edge-coloring of G.

Another related notion is that of an acyclic edge-coloring, which is a partition of the edge set into

matchings such that the union of every two of these matchings is a forest. The minimum number of

matchings in an acyclic edge-coloring of a graph G is its acyclic chromatic index a′(G) [1, 9].

Clearly, every induced matching is uniquely restricted. Furthermore, it is easy to see that a matching

M in G is uniquely restricted if and only if there is no M -alternating cycle in G, which is a cycle in

G that alternates between edges in M and edges not in M . This implies that every uniquely restricted

edge-coloring is also an acyclic edge-coloring. These observations imply that, for every graph G,

χ′(G) ≤ a′(G) ≤ χ′ur(G) ≤ χ′s(G). (1)

Vizing’s classical result [18] states that χ′(G) of a graph G of maximum degree ∆ is either ∆ or ∆ + 1,

and two well known open conjectures concern upper bounds on χ′s(G) and a′(G) in terms of ∆. Erdős and

Nešetřil (see [8]) conjectured χ′s(G) ≤ 5
4∆2, and much of the research on the strong chromatic index is

motivated by this conjecture. Building on earlier work of Molloy and Reed [17], and Bruhn and Joos [4],

Bonamy, Perrett, and Postle [3] showed χ′s(G) ≤ 1.835∆2 provided that ∆ is sufficiently large. For further

results on the strong chromatic index we refer to [2,8,13,14]. Fiamčik [9] and Alon, Sudakov, and Zaks [1]

conjectured a′(G) ≤ ∆ + 2. See [5, 6, 10] for further references and the currently best known results

concerning general graphs and graphs of large girth. In view of these open conjectures, the inequality

chain (1) motivates to study upper bounds on χ′ur(G) in terms of the maximum degree ∆ of a graph G.

Our contribution are best-possible such bounds and the characterization of all extremal graphs. Since our

proofs are constructive, it is easy to extract efficient algorithms finding the corresponding edge-colorings.
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2 Upper bounds on χ′ur(G)

Our first result applies to general graphs, and its proof relies on a natural greedy strategy. Faudree,

Schelp, Gyárfás, and Tuza [7] conjectured χ′s(G) ≤ ∆2 for a bipartite graph G of maximum degree ∆,

and our Theorem 2.3 can be considered to be a weak version of this conjecture. Theorem 2.3 below shows

that excluding the unique extremal graph from Theorem 2.1, the uniquely restricted chromatic index of

bipartite graphs drops considerably.

For an integer k, let [k] be the set of all positive integers at most k.

Theorem 2.1. If G is a connected graph of maximum degree at most ∆, then χ′ur(G) ≤ ∆2 with equality

if and only if G is K∆,∆.

Proof. Since no two edges ofK∆,∆ form a uniquely restricted matching in this graph, we obtain χ′ur(K∆,∆) =

|E(K∆,∆)| = ∆2. Now, let G be a connected graph of maximum degree at most ∆. We first show that

χ′ur(G) ≤ ∆2. In a second step, we show that χ′ur(G) < ∆2 provided that G is not K∆,∆.

We consider the vertices of G in some linear order, say u1, . . . , un. For i from 1 up to n, we assume

that the edges of G incident with vertices in {u1, . . . , ui−1} have already been colored, and we color all

edges between ui and {ui+1, . . . , un} using distinct colors, and avoiding any color that has already been

used on a previously colored edge incident with some neighbor of ui. Since ui has at most ∆ neighbors,

each of which is incident with at most ∆ edges, this procedure requires at most ∆2 many distinct colors.

Suppose, for a contradiction, that some color class M is not a uniquely restricted matching in G. Since

M is a matching by construction, there is an M -alternating cycle C. Let C : ur1us1ur2us2 . . . urkuskur1

be such that r1 is the minimum index of any vertex on C, and ur1usk ∈M . These choices trivially imply

r1 < s1 and r1 < r2. If r2 > s1, then ur1usk ∈ M implies that, when coloring the edge us1ur2 , some

edge incident with the neighbor ur1 of us1 would already have been assigned the color of the edges in

M , and the above procedure would have avoided this color on us1ur2 . Therefore, since ur1usk ∈ M and

ur2us1 ∈M , the coloring rules imply r2 < s1, that is, r1 < r2 < s1. Now, suppose that ri < ri+1 < si for

some i ∈ [k − 1]. Since uri+1usi ∈M and uri+2usi+1 ∈M , the coloring rules imply in turn

• ri+1 < si+1, since otherwise we would have colored uri+1usi differently,

• ri+2 < si+1, since otherwise we would have colored uri+2usi+1 differently, and

• ri+1 < ri+2, since otherwise we would have colored uri+1usi differently.

It follows that ri+1 < ri+2 < si+1, where we identify rk+1 with r1. Now, by an inductive argument, we

obtain r1 < r2 < · · · < rk < r1, which is a contradiction.

Altogether, we obtain χ′ur(G) ≤ ∆2.

Now, let G be distinct from K∆,∆, and we want to prove that χ′ur(G) < ∆2. Among all uniquely restricted

edge-colorings of G using colors in [∆2], we choose a coloring for which the number of edges with color 1

is as small as possible. Clearly, we may assume that some edge uv has color 1, as otherwise we already

have that χ′ur(G) < ∆2.

If there is a color α in [∆2] \ {1} such that no edge incident with a neighbor of u has color α, then

changing the color of uv to α yields a uniquely restricted edge-coloring of G with less edges of color 1,
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which is a contradiction. In view of the maximum degree, this implies that every vertex in NG[u] has

degree ∆, the set NG(u) is independent, and, for every color α in [∆2], there is exactly one edge incident

with a neighbor of u that has color α.

Since G is not K∆,∆, some neighbor x of u has a neighbor y that does not lie in NG(v). Without loss

of generality, let ux have color 2, and let xy have color 3. Let M be the set of edges with color 3.

If G does not contain an M -alternating path of odd length (number of edges) at least 3 between x and

a vertex in NG(v) \ {u} that contains the edge xy, then changing the color of uv to 3 yields a uniquely

restricted edge-coloring of G with less edges of color 1, which is a contradiction. Hence, G contains such

a path, which implies that two edges incident with neighbors of y have color 3.

If there is a color α in [∆2] \ {1} such that no edge incident with a neighbor of y has color α, then

changing the color of xy to α and the color of uv to 3 yields a uniquely restricted edge-coloring of G with

less edges of color 1, which is a contradiction. Similarly as above, this implies that, for every color α in

[∆2] \ {1, 3}, there is exactly one edge incident with a neighbor of y that has color α. Now, changing the

color of uv to 2, the color of ux to 3, and the color of xy to 2 yields a uniquely restricted edge-coloring

of G with less edges of color 1, which is a contradiction. This completes the proof.

As observed above, the proof of Theorem 2.1 is algorithmic; the simple greedy strategy considered in its

first half efficiently constructs uniquely restricted edge-colorings using at most ∆2 colors. Furthermore,

also its second half can be turned into an efficient algorithm that finds uniquely restricted edge-colorings

using at most ∆2− 1 colors for connected graphs of maximum degree ∆ that are distinct from K∆,∆; the

different cases considered in the proof correspond to simple manipulations of a given uniquely restricted

edge-coloring that iteratively reduce the number of edges of color 1 down to 0. Golumbic, Hirst, and

Lewenstein [11] showed that deciding whether a given matching is uniquely restricted can be done in

polynomial time, and their algorithm can be used to decide which of the simple manipulations can be

executed.

Our next goal is to improve Theorem 2.1 for bipartite graphs. The following proof was inspired by

Lovász’s [16] elegant proof of Brooks’ Theorem.

Lemma 2.2. If G is a connected bipartite graph of maximum degree at most ∆ ≥ 4 that is distinct from

K∆,∆, and M is a matching in G, then M can be partitioned into at most ∆ − 1 uniquely restricted

matchings in G.

Proof. Let A and B be the partite sets of G, and let R = V (G) \ V (M). Note that M is perfect if and

only if R is empty. Whenever we consider a coloring of the edges in M , and α is one of the colors, let Mα

be the set of edges in M colored with α.

First, we assume that R is empty, and that G is not ∆-regular. By symmetry, we may assume

that some vertex a in A has degree less than ∆. Let ab ∈ M . Let T be a spanning tree of G that

contains the edges in M . Contracting within T the edges from M , rooting the resulting tree at the vertex

corresponding to the edge ab, and considering a breadth-first search order, we obtain the existence of a

linear order a1b1, . . . , anbn of the edges in M such that ab = anbn, and, for every i ∈ [n − 1], there is an

edge between {ai, bi} and {ai+1, bi+1, . . . , an, bn}. Since an has degree less than ∆, this implies that, for

every i ∈ [n], some vertex ui in {ai, bi} has at most ∆ − 2 neighbors in {a1, b1, . . . , ai−1, bi−1}. Now, we

color the edges in M greedily in the above linear order. Specifically, for every i from 1 up to n, we color
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the edge aibi with some color α in [∆ − 1] such that, for every j ∈ [i − 1], for which ui ∈ {ai, bi} has a

neighbor in {aj , bj}, the edge ajbj is not colored with α. By the degree condition on ui, such a coloring

exists. Suppose, for a contradiction, that Mα is not uniquely restricted for some color α in [∆−1]. Let the

edge aibi in Mα be such that it belongs to some Mα-alternating cycle C, and, subject to this condition,

the index i is maximum. If the neighbor of ui on C outside of {ai, bi} is in {aj , bj}, then the choice of the

edge aibi implies j < i, and the coloring rule implies that the edge ajbj is not colored with α, which is a

contradiction. Altogether, the statement follows.

Next, we assume that R is non-empty. Let K be a component of G−R. Let MK be the set of edges

in M that lie in K. Since G is connected, the graph K is not ∆-regular. Therefore, proceeding exactly

as above, we obtain a coloring of the edges in MK using the colors in [∆− 1] such that each color class is

a uniquely restricted matching in K. If K1, . . . ,Kk are the components of G − R, and Mi is a uniquely

restricted matching in Ki for every i ∈ [k], then M1 ∪ · · · ∪Mk is a uniquely restricted matching in G.

Therefore, combining the colorings within the different components, we obtain that also in this case the

statement follows.

At this point, we may assume that G is ∆-regular, and that M is perfect.

Next, we assume that there are two distinct edges e and e′ in M such that V ({e, e′}) is a vertex cut

of G. This implies that we can partition the set M \ {e, e′} into two non-empty sets M1 and M2 such

that there is no edge between V (M1) and V (M2). For i ∈ [2], let Gi be the subgraph of G induced by

V ({e, e′} ∪Mi). Since G is connected, the graph Gi is not ∆-regular. In view of the above, this implies

that there is a coloring ci of the edges of the perfect matching {e, e′}∪Mi of Gi using the colors in [∆−1]

such that each color class of ci is a uniquely restricted matching in Gi. If ci(e) 6= ci(e
′) for both i in [2],

then we may assume that c1 and c2 assign the same colors to e and e′, and it is easy to verify that the

common extension c of c1 and c2 to M has the property that every color class of c is a uniquely restricted

matching in G. Hence, we may assume that necessarily c1(e) = c1(e′). Note that this implies in particular

that at least one of the two possible edges between V ({e}) and V ({e′}) is missing.

Let c1(e) = α. Let e = ab, e′ = a′b′, and U = {a, b, a′, b′}. For every vertex u ∈ U , let C1(u) be

the set of colors β for which M1 contains an edge vw with c1(vw) = β such that u is adjacent to v or

w. If there is some u ∈ U and some color β ∈ ([∆ − 1] \ {α}) \ C1(u), then changing the color of the

unique edge in {e, e′} incident with u from α to β yields a coloring c′1 of the edges in {e, e′} ∪M1 using

the colors in [∆−1] such that each color class of c′1 is a uniquely restricted matching in G1. Furthermore,

c′1(e) 6= c′1(e′), which is a contradiction. This implies that [∆ − 1] \ {α} ⊆ C1(u) for every u ∈ U . In

particular, each vertex u in U has at least ∆− 2 neighbors in V (M1), and, hence, at most one neighbor

in V (M2). Let C2(u) for u ∈ U be defined analogously as above. Clearly, the set C2(a) ∪C2(a′) contains

at most two distinct colors. Since ∆− 1 ≥ 3, we may assume that c2 is such that the set C2(a) ∪ C2(a′)

does not contain the color α. Now, let c′2 be a coloring of the edges in {e, e′} ∪M2 that coincides with c2

on M2 and colors e and e′ with color α. It is easy to see that each color class of c′2 is a uniquely restricted

matching in G2. Let c be the common extension of c1 and c′2 to M . Suppose, for a contradiction, that

the color class Mβ of c is not uniquely restricted for some color β in [∆− 1]. Clearly, we have β = α. Let

C be an Mα-alternating cycle in G. It is easy to see that C contains both edges e and e′, but no edge

between {a, b} and {a′, b′}. Furthermore, it follows that C contains an edge between {a, a′} and V (M2).

Since c coincides with c2 on M2, and C2(a) ∪ C2(a′) does not contain α, we obtain a contradiction.
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Altogether, we may assume that there are no two distinct edges e and e′ in M such that V ({e, e′}) is

a vertex cut of G.

Now, we show the existence of three edges ab, a′b′, and a′′b′′ in M such that some of the two possible

edges between {a′, b′} and {a′′, b′′} is missing, and either a is adjacent to b′ as well as b′′ or b is adjacent

to a′ as well as a′′. Therefore, let a1b1 be an edge in M . Let a2b2, . . . , a∆b∆ be the edges in M such

that NG(a1) = {b1, . . . , b∆}. We may assume that {a2, b2, . . . , a∆, b∆} induces a complete bipartite graph

K∆−1,∆−1; otherwise, we find the three edges with the desired properties. Since G is not K∆,∆, the vertex

b1 is non-adjacent to some vertex ai in {a2, . . . , a∆}. Now, if aj ∈ {a2, . . . , a∆} \ {ai}, then one of the two

possible edges between {a1, b1} and {ai, bi} is missing, and bj is adjacent to a1 as well as ai. Altogether,

we obtain three edges ab, a′b′, and a′′b′′ in M with the desired properties.

By symmetry, we may assume that a is adjacent to b′ and b′′, and a′ is non-adjacent to b′′. In view

of the above, the graph G′ = G − V ({a′b′, a′′b′′}) is connected, and M ′ = M \ {a′b′, a′′b′′} is a perfect

matching of G′. Let T ′ be a spanning tree of G′ that contains the edges in M ′. Contracting within T ′ the

edges from M ′, rooting the resulting tree in the vertex corresponding to the edge ab, and considering a

breadth-first search order, we obtain the existence of a linear order a3b3, . . . , anbn of the edges in M ′ such

that ab = anbn, and, for every i ∈ [n−1]\ [2], there is an edge between {ai, bi} and {ai+1, bi+1, . . . , an, bn}.
Now, we color the edges in M greedily in the linear order a1b1, a2b2, a3b3, . . . , anbn, where a1b1 = a′′b′′ and

a2b2 = a′b′. Note that, for every i ∈ [n− 1] \ [2], some vertex ui in {ai, bi} has at most ∆− 2 neighbors in

{a1, b1, . . . , ai−1, bi−1}. We color a1b1 and a2b2 with the same color. For every i from 3 up to n − 1, we

color the edge aibi with a color α in [∆− 1] such that, for every j ∈ [i− 1], for which ui has a neighbor

in {aj , bj}, the edge ajbj is not colored with α. By the degree condition on ui, such a coloring exists.

Finally, since an has neighbors in the two edges a1b1 and a2b2 that are colored with the same color, there

is some color α in [∆− 1] for which no edge aibi with i ∈ [n− 1] such that an is adjacent to bi, is colored

with α, and we color the edge anbn with that color α. Suppose, for a contradiction, that Mβ is not

uniquely restricted for some color β in [∆− 1]. Let the edge aibi in Mβ be such that it belongs to some

Mβ-alternating cycle C, and, subject to this condition, the index i is maximum. Since a′ is non-adjacent

to b′′, we have i ≥ 3. Let un = an. If the neighbor of ui on C outside of {ai, bi} is in {aj , bj}, then the

choice of the edge aibi implies j < i, and the coloring rule implies that the edge ajbj is not colored with

β, which is a contradiction. This completes the proof.

Lemma 2.2 fails for ∆ = 3; the matching {a1b1, a2b2, a3b3, a4b4, a5b5} of the graph G in Figure 1 cannot be

partitioned into two uniquely restricted matchings. Note that the matching {a1b3, a2b1, a3b5, a4b2, a5b4}
though is the union of the two uniquely restricted matchings {a1b3, a3b5} and {a2b1, a4b2, a5b4}.

s s s s s
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Figure 1: A bipartite graph G.

Lemma 2.2 also fails for non-bipartite graphs; in fact, if G arises from the disjoint union of two copies
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of K∆ by adding a perfect matching M , then every partition of M into uniquely restricted matchings

requires ∆ sets.

With Lemma 2.2 at hand, the proof of our final result is easy.

Theorem 2.3. If G is a connected bipartite graph of maximum degree at most ∆ ≥ 4 that is distinct

from K∆,∆, then χ′ur(G) ≤ ∆2 −∆.

Proof. Since G is bipartite, its edge set can be partitioned into ∆ matchings [15]. By Lemma 2.2, each

of these matchings can be partitioned into ∆ − 1 uniquely restricted matchings. This completes the

proof.

Note that the graph G in Figure 1 also satisfies χ′ur(G) ≤ ∆2 − ∆ = 9 − 3 = 6. In fact, the uniquely

restricted matchings {a1b1, a4b2, a5b4}, {a1b2, a2b4, a5b5}, {a2b1, a3b3, a4b5}, {a1b3, a4b4}, {a2b2, a3b5}, and

{a3b1, a5b3} partition E(G).
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