
HAL Id: lirmm-02413025
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02413025

Preprint submitted on 16 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cutting an alignment with Ockham’s razor
Mark Jones, Philippe Gambette, Leo van Iersel, Remie Janssen, Steven Kelk,

Fabio Pardi, Celine Scornavacca

To cite this version:
Mark Jones, Philippe Gambette, Leo van Iersel, Remie Janssen, Steven Kelk, et al.. Cutting an
alignment with Ockham’s razor. 2019. �lirmm-02413025�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02413025
https://hal.archives-ouvertes.fr

ar
X

iv
:1

91
0.

11
04

1v
1

 [
q-

bi
o.

PE
]

 2
4

O
ct

 2
01

9
Noname manuscript No.
(will be inserted by the editor)

Cutting an alignment with Ockham’s razor

Mark Jones · Philippe Gambette · Leo van Iersel ·

Remie Janssen · Steven Kelk · Fabio Pardi ·

Celine Scornavacca

Received: date / Accepted: date

Abstract In this article, we investigate different parsimony-based approaches towards finding re-
combination breakpoints in a multiple sequence alignment. This recombination detection task is
crucial in order to avoid errors in evolutionary analyses caused by mixing together portions of se-
quences which had a different evolution history. Following an overview of the field of recombination
detection, we formulate four computational problems for this task with different objective func-
tions. The four problems aim to minimize (1) the total homoplasy of all blocks (2) the maximum
homoplasy per block (3) the total homoplasy ratio of all blocks and (4) the maximum homoplasy
ratio per block. We describe algorithms for each of these problems, which are fixed-parameter
tractable (FPT) when the characters are binary. We have implemented and tested the algorithms
on simulated data, showing that minimizing the total homoplasy gives, in most cases, the most
accurate results. Our implementation and experimental data have been made publicly available.
Finally, we also consider the problem of combining blocks into non-contiguous blocks consisting of
at most p contiguous parts. Fixing the homoplasy h of each block to 0, we show that this problem
is NP-hard when p ≥ 3, but polynomial-time solvable for p = 2. Furthermore, the problem is FPT
with parameter h for binary characters when p = 2. A number of interesting problems remain
open.

Keywords Recombination breakpoints, homoplasy, parsimony, block partitioning, exact
algorithms, experiments, fixed parameter tractability.

Mathematics Subject Classification 68Q25 92D15 92D20

Research funded in part by the Netherlands Organization for Scientific Research (NWO), including Vidi grant
639.072.602 and Gravitation grant NETWORKS-024.002.003, and partly by the 4TU Applied Mathematics Institute.

Mark Jones
Centrum Wiskunde & Informatica (CWI), P.O. Box 94079, 1090 GB Amsterdam, Netherlands.
E-mail: markelliotlloyd@gmail.com

Philippe Gambette
Laboratoire d’Informatique Gaspard-Monge (LIGM), Université Paris-Est, CNRS, ENPC, ESIEE Paris, UPEM,
F-77454, Marne-la-Vallée, France. Email: philippe.gambette@u-pem.fr

Leo van Iersel and Remie Janssen
Delft Institute of Applied Mathematics, Delft University of Technology, Van Mourik Broekmanweg 6, 2628 XE Delft,
The Netherlands. E-mail: {L.J.J.vanIersel, R.Janssen-2}@tudelft.nl

Steven Kelk
Department of Data Science and Knowledge Engineering (DKE), Maastricht University, P.O. Box 616, 6200 MD
Maastricht, Netherlands. E-mail: steven.kelk@maastrichtuniversity.nl

Fabio Pardi
LIRMM, Université de Montpellier, CNRS, Montpellier, France. E-mail: pardi@lirmm.fr

Celine Scornavacca
Institut des Sciences de l’Evolution, Université de Montpellier, CNRS, IRD, EPHE, 34095 Montpellier Cedex 5,
France. E-mail: celine.scornavacca@umontpellier.fr

http://arxiv.org/abs/1910.11041v1

2 Mark Jones et al.

1 Introduction

When a multiple alignment contains sequences whose ancestors have undergone recombination,
the evolutionary histories of different parts of the alignment are represented by different phylo-
genetic trees. In this case, using standard evolutionary analysis tools that assume a single phy-
logenetic tree for the entire alignment can introduce important biases for several inference tasks.
For example it has been shown that in the presence of recombination, positive selection pres-
sures (Anisimova et al. 2003; Kosakovsky Pond et al. 2008; Arenas and Posada 2010a), as well as
rate variation among sites and lineages tends to be overestimated (Schierup and Hein 2000a,b).
Recombination can also severely affect the inference of genetic distances (Schierup and Hein 2000a;
Lemey and Posada 2009), of ancestral sequences (Arenas and Posada 2010b), of demographic his-
tory (Schierup and Hein 2000a), and of course of the phylogeny itself, which may bear little resem-
blance to the true reticulate history of the sequences (Posada and Crandall 2002).

An often viable solution to these problems is to partition the input alignment into recombination-
free blocks, which can then be analysed with standard methods using a single phylogenetic tree
per block (see, e.g., Scheffler et al. 2006, for its application to the detection of positive selection
in viruses). Inferring “locus trees” for a large number of recombination-free blocks has also become
very popular in the context of species tree inference under the multi-species coalescent model (see
Xu and Yang 2016, for a recent review), where metiotic recombination is assumed to have happened
between—but not within—blocks.

For these reasons, a recurring preliminary step in evolutionary bioinformatics is to infer the putative
locations within an alignment where recombination has occurred, that is, the recombination break-
points, with the goal of partitioning the alignment into blocks for further downstream analyses. In
this paper, we closely examine a number of formulations of the problem of alignment partitioning in
the presence of recombination, and algorithms that allow to efficiently solve them. Many increas-
ingly sophisticated methods have been proposed for this or similar tasks (Salminen and Martin
2009; Martin et al. 2011). Below, we present an overview of the main ideas behind these meth-
ods.

Phylogenetic incompatibilities between sites in an alignment can either be due to recurrent sub-
stitutions—that is, the same or the inverse substitution having arisen on different branches in the
tree—or to recombination having occurred between those sites (see box 15.1 in Lemey and Posada
2009). Distinguishing between these two phenomena—recurrent substitution and recombination—
is strongly influenced by the prior belief about their relative frequencies. For example, if recurrent
substitutions are assumed to be impossible (the infinite sites model), every pair of incompatible
sites must be separated by a recombination breakpoint, an observation that led to one of the
earliest methods for breakpoints estimation (Hudson and Kaplan 1985). On the other hand, classi-
cal phylogenetic inference assumes no recombination, and all incompatibilities between characters
are explained by recurrent substitution. When both recombination and recurrent substitution are
possible, an observation that underlies virtually all the methodology for recombination detection
(and the present work is no exception) is that recombination leads to the spatial clustering along
the alignment of compatible or nearly-compatible sites. In other words, in the presence of recom-
bination, sites carrying similar phylogenetic signals tend to be closer than expected by chance
alone.

The literature about recombination detection is very rich. A review from 2011 reported that there
were already about 90 tools available at the time (see Table S1 in Martin et al. 2011). In prac-
tice, however, these were conceived with many different tasks and goals in mind (e.g., detecting
evidence of recombination, estimating breakpoints, identifying the parental sequences of the re-
combinants, etc.). Although it is beyond the scope of this article to provide a complete overview,
there are a number of recurring ideas that are easy to describe. The methods allowing the identifi-
cation of breakpoints in a multiple alignment can be roughly categorized in 3 groups (Martin et al.
2011).

Similarity- or distance-based methods constitute the conceptually simplest approach. They inspect
the variation along the alignment of the (dis-)similarity between sequences, measured in terms of
percent identity or of evolutionary distance (estimated via standard substitution models). Changes
along the alignment in the relative similarities among sequences are interpreted as evidence of

Cutting an alignment with Ockham’s razor 3

recombination. Examples of this approach are Rip (Siepel et al. 1995), PhilPro (Weiller 1998),
SimPlot (Lole et al. 1999), Rat (Etherington et al. 2004) and T-Recs (Tsimpidis et al. 2017).
A problem with these methods is that the relation between pairwise similarities and phylogenetic
relatedness is not straightforward, for example because of rate variation among lineages or selec-
tion pressures, meaning that a change in relative similarity does not always indicate phylogenetic
incongruence or recombination (Lemey and Posada 2009).

Substitution distribution methods focus on a small subset of sequences (e.g., a triple) and, for each
such subset in the alignment, they test whether some site patterns (e.g., those with the form xxy,
xyx and xyy) occur in clustered locations along the alignment. Recombination breakpoints are
identified with those positions where, as we move along the alignment, a change in the relative
frequencies of these patterns is detected. These methods are often, but not exclusively, based on the
use of a sliding window. Examples of this approach are GeneConv (Sawyer 1989; Padidam et al.
1999), MaxChi (Smith 1992), Chimaera (Posada and Crandall 2001; Martin et al. 2010), Sis-

can (Gibbs et al. 2000), 3-Seq (Boni et al. 2007; Lam et al. 2017), Rapr (Song et al. 2018). The
necessity to analyse only a subset at a time, instead of all sequences simultaneously, may be prob-
lematic when the alignment contains many sequences. This is not just for computational reasons
(e.g., the number of triples grows cubically in the number of sequences) and statistical reasons
(correcting for the rapidly increasing multiple tests may lower the power to detect recombina-
tion (Martin et al. 2017)). Another important issue is that the situation where the alignment only
contains sequences that are direct recombinants of other sequences within the alignment is in fact
the exception rather than the rule. If an alignment contains several descendants of the same re-
combinant, or a parental sequence of a recombinant is the ancestor of several sequences in the
alignment, then the same recombination event should be detected in several partially overlapping
subsets. Being able to recognize when two subsets have detected the same event is a difficult and
open question (Song et al. 2018).

Phylogenetic-based methods seek to detect when different contiguous blocks in the alignment
support different phylogenetic trees. A seminal paper in this context is due to J. Hein (Hein
1993). That paper introduced an optimization problem whose goal is to determine a sequence
of breakpoints in the alignment and a sequence of phylogenetic trees for each of the blocks de-
limited by the breakpoints, so as to minimize a linear combination of the parsimony scores of
the trees and of the cost of breakpoints. Each breakpoint has a cost that expresses the mini-
mum number of recombination events that are necessary to “switch” between the two trees that
it separates. Solving this problem exactly is impractical for several reasons (see the formal defini-
tion and discussion in Sec. 9.8.1 of Huson et al. 2010), so a heuristic named RecPars was pro-
posed (Hein 1993; Huson et al. 2010). Subsequent methods relied on distance-based phylogenetics
(e.g., BootScan (Salminen et al. 1995), Topal (McGuire et al. 1997)), maximum-likelihood tech-
niques (e.g., Plato (Grassly and Holmes 1997), Lard (Holmes et al. 1999), Gard (Kosakovsky Pond et al.
2006a,b)), while more recent methods use hidden Markov models whose hidden states correspond
to phylogenetic trees, and where the observations are the columns of the alignment. These models,
sometimes referred to as phylo-HMMs, can be used to infer probable partitions of the input align-
ment into recombination-free blocks and are at the core of tools such as Barce (Husmeier and McGuire
2003), DualBrothers (Minin et al. 2005), StHmm (Webb et al. 2008) and many others (Hobolth et al.
2007; Bloomquist et al. 2008; de Oliveira Martins et al. 2008; Dutheil et al. 2009; Boussau et al.
2009). Although phylogenetic-based methods are very appealing as they directly look for phyloge-
netic incongruence—instead of relying on indirect evidence from pairwise similarities or site pat-
tern frequencies—they are usually much more computationally demanding than similarity-based or
substitution distribution methods. In practice, sophisticated methods such as those based on phylo-
HMMs are only applicable to a small number of sequences (e.g., 4 for Husmeier and McGuire 2003),
unless the space of tree topologies that can be assigned to the blocks is heavily restricted (Minin et al.
2005; Webb et al. 2008). For this reason, some authors have proposed the use of parsimony cri-
teria (Hein 1993; Maydt and Lengauer 2006; Ruths and Nakhleh 2006; Ané 2011), well-known to
lead to faster computations at the cost of some loss in accuracy. We note in particular the Mdl

approach by Ané (2011), which seeks to solve an optimization problem that is a simplification of
that by Hein (1993) mentioned above, in that all breakpoints receive the same penalty.

The work we present here falls naturally in this context of phylogenetic- and parsimony-based
methods for recombination-aware alignment partitioning. Our goal is not to present a new software
tool for this task—although we do provide implementations of some novel algorithms—but to

4 Mark Jones et al.

investigate a number of natural formulations of the problem, and provide exact algorithms to solve
them. We also investigate the relative strengths of the alternative formulations. Our optimization
problems are defined in terms of the homoplasy within each block (informally, the amount of
recurrent substitution that is needed to explain the sequences in that block), although equivalent
formulations could be expressed in terms of parsimony scores. This choice is motivated by the
observation that deciding whether a block has a level of homoplasy below a (small) constant is
polynomially solvable (Fernández-Baca and Lagergren 2003; Sridhar et al. 2007).

Another key choice we made is related to the well-known observation that the number of blocks
inferred by many methods for alignment partitioning is sensitive to parameters such as the size
of a sliding window, or the cost/penalty of breakpoints or recombinations, relative to that of sub-
stitutions, for parsimony-based methods such as RecPars and Mdl (Hein 1993; Ané 2011). To
a lesser extent, this also holds for HMM-based statistical approaches, which rely on the use of
priors on breakpoint frequency (Husmeier and McGuire 2003) or on the total number of break-
points (Minin et al. 2005). In our problem formulations, instead of introducing a parameter that
indirectly influences the number of blocks inferred, we chose to directly constrain the maximum
number of blocks in the partition. We believe this has the merit of making more explicit the
dependency of block partitioning on user-defined parameters.

Overview of the article. We start by introducing necessary preliminaries in Section 2, and then move
on to defining four different parsimony-based models for detecting recombination breakpoints in
Section 2.1. Some of these models aim to minimize the maximum homoplasy in a block—or the
relative frequency of homoplasy in a block—while others take an aggregate perspective, consider-
ing all blocks together. Although these models constitute fairly natural optimization criteria for
parsimony-based models, one of our primary contributions is that, for all models, explicit pseu-
docode, rigorous proofs of correctness and detailed running time analyses are given: these are
provided in Section 3. Several of the algorithms are Fixed Parameter Tractable (FPT) for bi-
nary characters, meaning—in essence—that certain natural parameters of the problems have an
independent, and thus limited, contribution to the overall running time (We refer the reader to
Flum and Grohe 2006; Downey and Fellows 2012, for more background on FPT algorithms). In
Section 4 we describe algorithms that attempt to merge blocks, from a pre-computed block parti-
tion, such that parsimony-motivated criteria are optimized (these models are formally defined in
Section 2.2). In Section 5 we describe our publicly-available software package CutAl, which im-
plements the four algorithms described in Section 3. We have performed a number of experiments
on simulated data testing the ability of the four algorithms to recover the locations of breakpoints;
in particular, we look at the influence of the number and length of blocks, the number of taxa and
the branch lengths (of the phylogenies used to experimentally generate alignments) on the over-
all performance of the algorithms. This data has also been made publicly available. Our analysis
suggests that, of our four algorithms, aggregate minimization of the total amount of homoplasy
seems most effective, and is highly accurate under many variations of experimental parameters.
In Section 6 we present our overall conclusions and propose a number of interesting directions for
future work.

2 Preliminaries

Let S be a set of character states. Throughout the paper, we assume that the cardinality s of S is a
constant. An alignment A is an n×m matrix with elements from S. Denote by Aj the j-th column
of A and denote by Ai,j the element in the i-th row and j-th column of A, for any 1 ≤ i ≤ n and
1 ≤ j ≤ m. We also refer to the columns of an alignment as characters.

A block A[i− j] in A is the alignment formed by the columns Ai, . . . , Aj , for some 1 ≤ i ≤ j ≤ m.
When A is clear from context we will write [i− j] as shorthand for A[i− j]. When the indices i and
j are not important, we often write B to denote a block. Note that blocks are always composed
of contiguous columns. The number of columns in a block B is denoted |B|. A block partitioning
of A is a partition B = B1, . . . Bb of the columns of A, such that each Bh is a block.

The null score s0(A) of an alignment A is
∑m

j=1 s0(Aj), with s0(Aj) the number of different
character states appearing in column Aj minus one.

Cutting an alignment with Ockham’s razor 5

A phylogenetic tree on X is an unrooted tree with no degree-2 vertices and leaf set X . An h-near
perfect phylogeny for an alignment A is a phylogenetic tree T = (V,E) on {x1, . . . , xn} with a
mapping τ : V → Sm such that τ(xi) = Ai and

∑

{u,v}∈E

dh(τ(u), τ(v)) ≤ s0(A) + h

with dh(s1, s2) the Hamming distance of s1 and s2 (the number of positions where they differ).
The parsimony score PS(T,A) can now be defined as the minimum value of s0(A)+h such that T
is an h-near perfect phylogeny for A. A 0-near perfect phylogeny is a perfect phylogeny, which has
parsimony score s0(A).

An alignment A is said to have homoplasy score h if h is the minimum integer for which there exists
an h-near perfect phylogeny for A. The total homoplasy of a block partitioning is the sum of the
homoplasies of its blocks. Observe that the total homoplasy of a block partition of an alignment is
at most the homoplasy of the alignment. Denote by h(B) the homoplasy of a block B. Denote by

r(B) = h(B)
|B| the homoplasy ratio of B.

We note some established results concerning the calculation of homoplasy scores. In particular, we
note that calculating the homoplasy score of an alignment is fixed-parameter tractable for binary
characters:

Theorem 1 (Sridhar et al. 2007) Given an n×m alignment A with elements from S with |S| = 2,
it can be decided in O(21h + 8hnm2) time whether A has an h-near perfect phylogeny.

Theorem 2 (Fernández-Baca and Lagergren 2003) Given an n × m alignment A with elements

from S with |S| = s, it can be decided in O(nmO(h)2O(h2s2)) time whether A has an h-near perfect
phylogeny.

We also recall the well-known four-gamete test (Buneman 1971), which characterizes alignments
for which there exists a perfect phylogeny when |S| = 2.

Theorem 3 (Four-gamete test) (Buneman 1971) Let A be an alignment on S where S = {0, 1}.
Call two characters j, k of A incompatible if there exist rows i1, i2, i3, i4 such that
Ai1,j = 1 = 1 = Ai1,k

Ai2,j = 1 6= 0 = Ai2,k

Ai3,j = 0 6= 1 = Ai2,k

Ai4,j = 0 = 0 = Ai4,k.
Then A has homoplasy score 0 if and only if no two characters of A are incompatible.

A column Aj is called an uninformative site if some character state s ∈ S appears n − s0(Aj)
times in Aj , and every other character state appears at most once. Otherwise, Aj is an informative
site. Observe that a column Aj is an uninformative site if and only if every phylogenetic tree on
{x1, . . . , xn} is a perfect phylogeny for Aj . From a parsimony perspective, uninformative sites pro-
vide no meaningful information, and we will therefore ignore them when considering the accuracy
of block partitions (see Section 5). For a given block B in A that contains at least one informative
site, let B′ be the minimal contiguous block in B that contains all the informative sites of B. Then
we call B′ the informative restriction of B. Note that B′ can still contain uninformative sites,
but the first and last columns in B′ are guaranteed to be informative. A block B is said to be
completely uninformative if every column in B is an uninformative site. Given a block partition B
of A, the informative restriction of B is derived from B by deleting all completely uninformative
blocks, and replacing each remaining block with its informative restriction.

2.1 Partitioning into contiguous blocks

We consider a number of block partitioning problems in which the aim is to partition an alignment
into a small number of blocks with homoplasy as small as possible.

6 Mark Jones et al.

Total Homoplasy Score

Given: an alignment A and integer b.

Find: a block partitioning of A into b′ ≤b blocks B1, . . . , Bb′ , such that
∑b′

i=1 h(Bi) is mini-
mized.

Max Homoplasy Ratio

Given: an alignment A and integer b.
Find: a block partitioning of A into b′ ≤b blocks B1, . . . , Bb′ , such that maxb

′

i=1 r(Bi) is mini-
mized.

Max Homoplasy Score

Given: an alignment A and integer b.
Find: a block partitioning of A into b′ ≤b blocks B1, . . . , Bb′ , such that maxb

′

i=1 h(Bi) is mini-
mized.

Total Homoplasy Ratio

Given: an alignment A and integer b.

Find: a block partitioning of A into b′ ≤b blocks B1, . . . , Bb′ , such that
∑b′

i=1 r(Bi) is mini-
mized.

Note that the variant of these four problems when the blocks in the output are not required to be
contiguous is NP-complete, as it was proved by Linz et al. (2013) that the restricted case where the
total homoplasy is 0 and the number of blocks is fixed to an integer b ≥ 3 (called b-Character-

Compatibility) is NP-complete.

2.2 Combining blocks to non-contiguous blocks

A multiblock for an alignment A is an alignment formed by some subset of columns in A. Thus,
the difference between a block and multiblock is that a multiblock is not necessarily contiguous.
We say a multiblock is a p-multiblock if it can be partitioned into at most p contiguous parts—i.e.,
it is the union of at most p blocks. A non-contiguous block partitioning of an alignment A is a
partitioning of the columns of A into mulitblocks. The total homoplasy of a non-contiguous block
partitioning is defined similarly as for block partitionings. The next problem studied in this paper
aims at merging blocks with small total homoplasy to a small number of non-contiguous blocks. It
is formally defined as follows.

Block Combining

Given: an alignment A, a block partitioning B of A with total homoplasy h and an integer c.
Decide: does there exist a non-contiguous block partitioning with total homoplasy h that consists
of at most c non-contiguous blocks, each of which is a union of blocks from B?

Since allowing blocks to be completely atomized into many small contiguous parts seems to be too
flexible, we also consider a variant where we only allow a partition into p-multiblocks.

We say that two blocks Bj and Bk are mergeable if their union Bj ∪ Bk has homoplasy equal to
the homoplasy of Bj plus the homoplasy of Bk. In the following problem, we assume that input
blocks Bj and Bj+1 are not mergeable for any j. This is a reasonable assumption in cases where the
input block partition is derived from a block partitioning algorithm. It holds, for example, when the
blocks are those generated by Algorithm 3, and it also holds for solutions to Total Homoplasy

Score provided the value of b is chosen to be as small as possible without increasing h.

Block Combining to p-Multiblocks

Given: an alignment A, a block partitioning B of A with total homoplasy h such that Bj and
Bj+1 are not mergeable for any j, and integer c.
Decide: does there exist a non-contiguous block partitioning with total homoplasy h that consists
at most c p-multiblocks, each of which is a union of blocks from B?

Cutting an alignment with Ockham’s razor 7

3 Block partitioning algorithms

3.1 Minimizing total homoplasy

In this section, we describe an approach that can be used to solve the Total Homoplasy Score

problem. The key observation is that, given a suitable method to calculate the homoplasy score
of each possible block in A, an optimal block partitioning can be found using standard dynamic
programming techniques. Algorithm 1 describes this dynamic programming technique, under the
assumption that a value φ(B) has been calculated for each possible block B. For the purposes
of solving Total Homoplasy Score, we let φ(B) be the homoplasy score of block B. How-
ever, by changing the function φ we can also use Algorithm 1 to solve other block partitioning
problems.

In particular, for the implementation described in Section 5, we will not use exact homoplasy
scores for φ, but instead use the values returned by the heuristic parsimony solver Parsimonator

(https://sco.h-its.org/exelixis/web/software/parsimonator/index.html).

We begin by proving the correctness of Algorithm 1 with respect to an arbitrary function φ.

Lemma 1 Given an alignment A with columns A1, . . . , Am, an integer b, and a value φ(B) for each
block B in A, Algorithm 1 returns the minimum value h for which there exists a block partitioning

B1, . . . , Bb′ of A into b′ ≤ b blocks such that
∑b′

i=1 φ(Bi) = h, or ∞ if no such block partitioning
exists.

Proof For each triplet of integers (i, j, b′) such that 1 ≤ i ≤ j ≤ m and 1 ≤ b′ ≤ b, Algorithm 1
calculates a value hpart(i, j, b

′). We first claim that for each choice of (i, j, b′), hpart(i, j, b
′) is

equal to the minimum h for which there exists a block partitioning B1, . . . , Bb′ of A[1 − j] with∑b′

i′=1 φ(Bi′) = h, such that Bb′ = A[i − j], i.e., the last block consists of columns Ai to Aj , and
that hpart(i, j, b

′) = ∞ if no such block partitioning exists.

We prove this claim by induction on j. We start with the base case, j = 1. In this case, the
only possible partitioning on A[1 − j] is the one consisting of the single block B1 = [1 − 1]. Thus
hpart(i, j, b

′) should be equal to φ([1 − j]) if i = b′ = 1, and ∞ otherwise. It can be seen that this
is the value calculated by Algorithm 1, and thus the claim is correct for j = 1.

Now suppose that j > 1. If i = 1, then the only possible block partitioning is the one consisting
of the single block B1 = [1− j]. Thus hpart(i, j, b

′) should be equal to φ([1 − j]) if i = b′ = 1, and
∞ otherwise. Again this is the value calculated by Algorithm 1. If i > 1, then we have that an
optimal block partitioning consists of a b′−1-block partitioning for A[1− (i−1)] together with the
block [i− j]. Moreover, the last block in the block partitioning of A[1− (i−1)] must be [i′− (i−1)]

for some i′ ≤ i− 1. Thus in the case j > 1, i > 1, the total value
∑b′

i=1 φ(Bi) for an optimal block
partitioning B1, . . . , Bb′ of [1 − j] is equal to hpart(i

′, i− 1, b′ − 1) + φ([i − j]), for the choice of i′

that minimizes this value. As this is exactly what the algorithm calculates, the claim is correct.
This completes the inductive proof.

It remains to observe that any block partitioning of A into at most b blocks must have exactly b′

blocks for some 1 ≤ b′ ≤ b, and the last block must be A[i − m] for some 1 ≤ i ≤ m. It follows
that the value of an optimal block partitioning can be found by taking the minimum value of
hpart(i,m, b′) for all choices of i and b′. ⊓⊔

The following Lemma is clear from the structure of Algorithm 1 and is stated without proof.

Lemma 2 Given an alignment A with columns A1, . . . , Am, an integer b, and a value φ(B) for
each block B in A, Algorithm 1 has running time O(bm3).

Although we do not give a full proof here, we observe that Algorithm 1 can easily be converted into
an algorithm that returns a block partitioning B1, . . . , Bb′ of A into b′ ≤ b blocks that minimizes∑b′

i=1 φ(Bi). Indeed, an optimal block partitioning for A[1 − j] with b′ blocks can be constructed

https://sco.h-its.org/exelixis/web/software/parsimonator/index.html

8 Mark Jones et al.

by finding the value i for which hpart(i, j, b
′) is minimized, recursively finding an optimal block

partitioning for A[1 − (i − 1)] with b′ − 1 blocks (if i > 1), and combining this block partitioning
with the block Bb′ = A[i − j]. We therefore have the following lemma.

Lemma 3 Let φ be a function on blocks of A such that the value of φ(B) can be calculated in
f(n,m) time for any block B, and let b be an integer. Then in f(n,m)m2 +O(bm3) time, we can

calculate a block partitioning B1, . . . , Bb′ of A into b′ ≤ b blocks such that
∑b′

i=1 φ(Bi) is minimized.

The m2 factor comes from the need to calculate φ(B) for each of the O(m2) blocks B in A.

Using Theorems 1 and 2 we can now prove the following theorem.

Theorem 4 For binary characters, the Total Homoplasy Score problem can be solved in time
O(h21h+8hhnm4), where h is is the maximum homoplasy of a block in the block partitioning, and
is thus fixed-parameter tractable with respect to h. For s-state characters, the problem can be solved
in time O(hnmO(h)2O(h2s2)).

Proof Recall that by Theorem 1, for binary characters it can be decided in O(21h+8hnm2) whether
an alignment has an h-near perfect phylogeny (Sridhar et al. 2007). It follows that given an integer
h, the homoplasy score of a block can be found in O(h21h + 8hhnm2) time if this score is at most
h. Similarly by Theorem 2, for s-state characters, the homoplasy score of a block can be found in
O(hnmO(h)2O(h2s2)) time if this score is at most h (Fernández-Baca and Lagergren 2003).

So now, given an integer h let φ be the function on blocks in A such that φ(B) is equal to
the homoplasy score of block B if this is at most h, and φ(B) = ∞ otherwise. It remains to
apply Lemma 3 using this function, with f(n,m) = O(h21h + 8hhnm2) for binary characters and

f(n,m) = O(hnmO(h)2O(h2s2)) for s-state characters. For binary characters, this gives a running
time of O(h21h+8hhnm2)m2 +O(bm3) = O(h21h+8hhnm4) (as we may assume b ≤ m), and for

s-state characters a running time of O(hnmO(h)2O(h2s2))m2 + O(bm3) = O(hnmO(h)2O(h2s2)) (as
O(mO(h)) ·m2 +O(bm3) = O(mO(h)+2+4) = O(mO(h)). ⊓⊔

We also observe that by letting φ(B) be the homoplasy ratio of a block B, Algorithm 1 can be
used to solve Total Homoplasy Ratio.

Data: Alignment A with columns A1, . . . , Am, integer b, a value φ(B) for each block B in A (for instance, φ(B) is
the homoplasy score of B).

Result: Minimum value h for which there exists a block partitioning B1, . . . , Bb′ of A into b′ ≤ b blocks such that
∑b′

i=1
φ(Bi) = h, or ∞ if no such block partitioning exists.

for j = 1, . . . ,m do
hpart(1, j, 1) := φ([1− j]);
for i = 2, . . . , j do

hpart(i, j, 1) := ∞;
end
for b′ = 2, . . . , b do

hpart(1, j, b′) = ∞;
for i = 2, . . . , j − 1 do

hpart(i, j, b′) := min1≤i′≤i−1 hpart(i′, i− 1, b′ − 1) + φ([i− j]);

end

end

end
return minb′≤b,i≤m hpart(i,m, b′)

Algorithm 1: Algorithm ToHoPar(A, b).

3.2 Minimizing homoplasy ratio per block

In this section, we describe an approach that can be used to solve the Max Homoplasy Ratio

problem. Similarly to Total Homoplasy Score, the key observation is that after calculating

Cutting an alignment with Ockham’s razor 9

the homoplasy score (and thus the homoplasy ratio) of each possible block in A, an optimal block
partitioning can be found using standard dynamic programming techniques. Algorithm 2 describes
this dynamic programming technique, under the assumption that a value φ(B) has been calculated
for each possible block B. For the purposes of solving Max Homoplasy Ratio, we let φ(B) be
the homoplasy score of block B.

Data: Alignment A with columns A1, . . . , Am, integer b, a value φ(B) for each block B in A (for instance, φ(B) is
the homoplasy ratio of B).

Result: Minimum value r for which there exists a block partitioning B1, . . . , Bb′ of A into b′ ≤ b blocks such that

maxb
′

i=1
φ(Bi) = r, or ∞ if no such block partitioning exists.

for j = 1, . . . ,m do
rpart(1, j, 1) := φ([1− j]);
for i = 2, . . . , j do

rpart(i, j, 1) := ∞;
end
for b′ = 2, . . . , b do

rpart(1, j, b′) = ∞;
for i = 2, . . . , j − 1 do

rpart(i, j, b′) := max(φ([i− j]),min1≤i′≤i−1 rpart(i
′, i− 1, b′ − 1));

end

end

end
return minb′≤b,i≤m rpart(i,m, b′)

Algorithm 2: Algorithm HoRaPar(A, b).

Lemma 4 Given an alignment A with columns A1, . . . , Am, an integer b, and a value φ(B) for each
block B in A, Algorithm 2 returns the minimum value r for which there exists a block partitioning
B1, . . . , Bb′ of A into b′ ≤ b blocks such that maxb

′

i=1 φ(Bi) = r, or ∞ if no such block partitioning
exists.

Proof Observe that Algorithm 2 is identical to Algorithm 1, except for line 9 which handles con-
struction of rpart(i, j, b

′) in the case where b′ > 1 and j > i > 1. Consequently, the proof of this
lemma is identical to that of Lemma 1, except for the case b′ > 1 and j > i > 1, and we omit the
other cases.

As with Lemma 1, we prove by induction on j that rpart(i, j, b
′) is equal to the minimum r for

which there exists a block partitioning B1, . . . , Bb′ of A[1 − j] with maxb
′

i′=1 φ(Bi′) = r, such that
Bb′ = A[i − j], and that rpart(i, j, b

′) = ∞ if no such block partitioning exists. For the case b′ > 1
and j > i > 1, we have that an optimal block partitioning consists of a b′ − 1-block partitioning
for A[1− (i− 1)] together with the block [i− j]. Moreover, the last block in the block partitioning
of A[1 − (i − 1)] must be [i′ − (i − 1)] for some i′ ≤ i − 1. Thus the value maxb

′

i=1 φ(Bi) for an
optimal block partitioning B1, . . . , Bb′ of [1− j] is equal to the maximum of rpart(i

′, i − 1, b′ − 1)
and φ([i− j]), for the choice of i′ that minimizes this value. As this is exactly what the algorithm
calculates, the claim is correct, and we have completed the proof for this case. ⊓⊔

The following Lemma is clear from the structure of Algorithm 2 and is stated without proof.

Lemma 5 Given an alignment A with columns A1, . . . , Am, an integer b, and a value φ(B) for
each block B in A, Algorithm 2 has running time O(bm3).

As with Algorithm 1, we observe that Algorithm 2 can be made to return a block partitioning using
standard backtracking techniques, and that using existing homoplasy algorithms, a certain param-
eterization of Max Homoplasy Ratio for binary characters is fixed-parameter tractable.

Theorem 5 For binary characters, the Max Homoplasy Ratio problem can be solved in time
O(h21h+8hhnm4), where h is is the maximum homoplasy of a block in the block partitioning, and
is thus fixed-parameter tractable with respect to h. For s-state characters, the problem can be solved
in time O(hnmO(h)2O(h2s2)).

We also observe that by letting φ(B) be the homoplasy score of a block B, Algorithm 1 can be
used to solve Max Homoplasy Score.

10 Mark Jones et al.

3.3 Minimizing number of blocks

In this section, we consider a variation of the Max Homoplasy Score problem, described be-
low.

Fewest Parsimonious Blocks

Given: an alignment A and integer h.
Find: a block partitioning B1, . . . , Bb, of A into a minimum number of blocks such that each block
Bk admits an h-near perfect phylogeny.

Algorithm 3 solves the Fewest Parsimonious Blocks problem.

Data: Alignment A with columns A1, . . . , Am and an integer h.
Result: Block partitioning B1, . . . , Bb of A into a minimum number of blocks, such that each block Bk admits an

h-near perfect phylogeny.
b := 1;
j := 1;
for i = 2, . . . , m do

if A[j − i] does not admit an h-near perfect phylogeny then
Bb := A[j − (i− 1)];
b := b+ 1;
j := i

end

end
Bb := A[j −m];
return B1, . . . , Bb

Algorithm 3: Algorithm FewParBlo(A, h)

Theorem 6 Algorithm 3 solves the Fewest Parsimonious Blocks problem.

Proof Let B1, . . . , Bb be a block partitioning produced by Algorithm 3, and let F1, . . . , Fc be a
block partitioning into a minimum number of blocks such that the index of the first column where
B1, . . . , Bb and F1, . . . , Fc differ (i.e., the minimum i such that columnn Ai appears in blocks Bk

and Fk′ for some k 6= k′) is as large as possible. Consider the smallest k for which Fk 6= Bk.
It is not possible that Fk has more columns than Bk since otherwise the algorithm would have
extended Bk with another column. Hence, Fk has fewer columns than Bk. However, then we can
add a column to Fk and obtain a solution with the same number of blocks as F1, . . . , Fc where the
first columns where it differs from B1, . . . , Bb is one larger. This contradicts the assumption that
the first column where B1, . . . , Bb and F1, . . . , Fc differ is as large as possible. Hence, we conclude
that B1, . . . , Bb is identical to F1, . . . , Fc and therefore optimal. ⊓⊔

The running time of Algorithm 3 is m times the running time of the h-near perfect phylogeny
algorithm, hence O(21hm + 8hnm3) for binary characters and O(nmO(h)2O(h2s2)) for general s-
state characters. Consequently, the Fewest Parsimonious Blocks problem is fixed-parameter
tractable for binary characters.

Corollary 1 Fewest Parsimonious Blocks is fixed-parameter tractable when the parameter
is h for binary characters.

If the number of blocks b is known to be small (b ≤ m/ logm), the following algorithm may
also be useful. It uses binary search to find the location of the recombination site between two
blocks.

The correctness of this algorithm follows from a similar argument as for the previous algorithm: this
algorithm uses binary search instead of linear search to find the longest possible block, using l and
u2 as lower and upper bounds on the last column of that block. The only extra observation needed is
the following. If A[i−j] admits an h-near perfect phylogeny, then so does A[i−(j−1)]; and, similarly,
if A[i− j] does not admit an h-near perfect phylogeny, then neither does A[i− (j + 1)].

Note that the running time of the part within the while loop is dominated by the function checking
whether an h-near perfect phylogeny exists. As this while loop performs a binary search on a list

Cutting an alignment with Ockham’s razor 11

Data: Alignment A with columns A1, . . . , Am and an integer h.
Result: Block partitioning B1, . . . , Bk of A into a minimum number of blocks, such that each block Bi admits an

h-near perfect phylogeny.
end_previous_block := 0;
while end_previous_block < m do

l = end_previous_block + 1;
u2 = m;
while l < u2 do

u1 = ⌈(l + u2)/2⌉;
if A[(end_previous_block + 1)− u1] admits an h-near perfect phylogeny then

l := u1;
else

u2 := u1 − 1;
end

end
Bb := A[(end_previous_block + 1) − u2];
b := b+ 1;
end_previous_block := u2;

end
return null;

Algorithm 4: Algorithm FewParBlo2(A, h, b)

of length m − l, its contents are executed log2(m − l) < log2(m) times. Finally, this while loop
is contained in a for loop which runs b times at most. Therefore the running time is bounded by
b log2(m) times the running time of the h-near perfect phylogeny algorithm, which theoretically
gives a factor m/(b log2 m) improvement over the previous algorithm. An important note here is
that actual running time may also depend on implementation of the h-near perfect phylogeny
algorithm. If the worst case for this algorithm is only attained in NO cases, the improvement of
the second algorithm may be less than expected as the first algorithm encounters exactly one NO
case per block, and the second may encounter more such cases.

4 Combining blocks to non-contiguous blocks

We now consider the Block Combining to p-Multiblocks problem and first show this problem
to be NP-complete for p ≥ 3 by reduction from the Bounded Coloring problem: given a graph G,
does there exist a coloring of the vertices of G with at most c colors such that each color is used
at most p times and adjacent vertices always get different colors? This problem is NP-complete for
each fixed p ≥ 3 (Hansen et al. 1993).

Theorem 7 For every integer p ≥ 3, the Block Combining to p-Multiblocks problem is
NP-complete for h = 0.

Proof Given an instance of the Bounded Coloring problem, that is an integer p ≥ 3 and a
graph G = (V,E) with n = |V |, we build the following blocks Bj of 3n + 1 aligned sequences
S0, S1, . . . , S3n of length n for each vertex vj of G, illustrated in Figure 1:

– Bj
0,k = 0 for all k ∈ {1, . . . , n} (that is, the first row in Bj consists of all 0’s);

– Bj
3j−2,j = Bj

3j−1,j = 1 and Bj
k,j = 0 for all k in {1, . . . , 3j − 3} ∪ {3j, . . . , n};

– for all i ∈ [1, . . . , n] distinct from j such that vj adjacent with vi, Bj
3i−1,i = Bj

3i,i = 1 and

Bj
k,i = 0 for all k ∈ {1, . . . , 3i− 2} ∪ {3i+ 1, . . . , n};

– for all i ∈ {1, . . . , n} distinct from j such that vj not adjacent with vi, B
j
3i−2,i = Bj

3i−1,i =

Bj
3i,i = 1 and Bj

k,i = 0 for all k ∈ {1, . . . , 3i− 3} ∪ {3i+ 1, . . . , n}.

Recall from the four-gamete test that an alignment A has homoplasy 0 if and only if no two
characters are incompatible, where characters j, k are incompatible if there exist rows i1, i2, i3, i4
such that Ai1,j = 1 = Ai1,k, Ai2,j = 1 6= 0 = Ai2,k, Ai3,j = 0 6= 1 = Ai2,k and Ai4,j = 0 = Ai4,k.

12 Mark Jones et al.

B1 B2 B3 B4

S0 0000 0000 0000 0000
S1 1000 1000 0000 0000
S2 1000 1000 1000 1000
S3 0000 1000 1000 1000
S4 0100 0100 0100 0100
S5 0100 0100 0100 0100
S6 0100 0000 0100 0100
S7 0000 0010 0010 0010
S8 0010 0010 0010 0010
S9 0010 0010 0000 0010
S10 0000 0001 0001 0001
S11 0001 0001 0001 0001
S12 0001 0001 0001 0000

Fig. 1 An instance of the Block Combining to p-Multiblocks problem built from an instance G = {{v1, v2,
v3, v4}, {v1v3, v1v4}} of the Bounded Coloring problem with at most p vertices per color.

First note that by construction, the only characters which may be equal to 1 in each block Bj

are the i-th character of the block on sequences S3i−2, S3i−1 and 3i, all other characters are equal
to 0. Therefore, there is at most one character equal to 1 in each line of block Bj , therefore Bj

contains no incompatible characters, so the block Bj has homoplasy 0, therefore we have built a
proper instance of the Block Combining to p-multiblocks problem for h = 0.

Now, suppose that G is a positive instance of the Bounded Coloring problem using at most c
colors used at most p times, then there exist c independent sets I1, . . . , Ic in G. We claim that the
corresponding p-multiblocks have homoplasy 0.

To prove this claim, let us consider 2 characters c and c′ in two distinct blocks B and B′ in the
same p-multiblock, such that c is the i-th character of block B and c′ is the i′-th character of
block B′. If i 6= i′, the two characters are compatible because the 1s in those two characters do not
appear in the same line. Otherwise, by construction the only 1s may appear in the sequences S3i−2,
S3i−1 and S3i for these 2 characters. The vertices v and v′ corresponding to blocks B and B′ are
not adjacent because they are part of an independent set, therefore by construction the sequences
S3i−2, S3i−1 and S3i all contain 1 for one of these two characters, therefore both characters are
compatible. So in all cases each p-multiblock has homoplasy 0.

To prove the reverse, let us assume that it is possible to merge the blocks of the instance of the
Block Combining to p-Multiblocks we have built so that each p-multiblock has homoplasy
0. For each p-multiblock P , let us consider two vertices vi and vi′ of G corresponding to two
blocks Bi and Bi′ of P . Suppose by contradiction that vi and vi′ are adjacent. Then we have
Bi

3i−1,i = 1 = Bi′

3i−1,i, B
i
3i−2,i = 1 6= 0 = Bi′

3i−2,i, B
i
3i,i = 0 6= 1 = Bi′

3i,i and Bi
0,i = 0 = Bi′

0,i. Thus

the i-th character of block Bi and of block Bi′ are incompatible, and therefore the homoplasy
cost of the block combination containing Bi and Bi′ is strictly greater than 0; a contradiction.
Therefore, no pair of vertices corresponding to the blocks of the block combination are adjacent,
thus each set of vertices corresponding to each of the c block combinations is an independent set,
so G has a c-coloring.

Thus, we have built an instance of the Block Combining to p-Multibocks problem where
a merge into c non-contiguous blocks (each containing at most p contiguous blocks) with total
homoplasy 0 for each of these c blocks is possible if and only if there is a c-coloring of G where
each color is used at most p times, therefore Block Combining to p-Multiblocks is NP-hard.

Given a merge into c non-contiguous blocks, it is easy to check if all the characters of each of these
blocks are compatible, and that each non-contiguous block contains at most p contiguous blocks,
so Block Combining to p-Multiblocks is NP-complete. ⊓⊔

We now focus on the case p = 2, i.e., the problem Block Combining to 2-Multiblocks.

We now argue correctness of the algorithm. Suppose that there exist c′ 2-multiblocks with total
homoplasy h and such that each of the 2-multiblocks is a union of blocks from B. Each 2-multiblock
that consists of exactly two contiguous parts corresponds to an edge of G. Let M ′ be the set of
all such edges and observe that they form a matching in G. Each 2-multiblock that consists of a
single contiguous part corresponds to a vertex of G. Moreover, each vertex of G that is not covered

Cutting an alignment with Ockham’s razor 13

Data: Alignment A, a block partitioning B of A with total homoplasy h such that Bj and Bj+1 are not mergeable
for any j, and integer c.

Result: At most c 2-multiblocks, each of which is a union of blocks from B, such that the total homoplasy of the
2-multiblocks is h (if such a solution exists).

Construct a graph G = (V, E) with a vertex for each block and an edge {Bj , Bk} if Bj and Bk are mergeable;
Find a maximum matching M in G;
for each edge {Bj , Bk} ∈ M do

merge Bj and Bk into a 2-multiblock;
end
for each vertex Bj that is not covered by M do

make Bj a 2-multiblock consisting of a single continuous part;
end
if the number of obtained 2-multiblocks is at most c then

return the obtained 2-multiblocks;
else

return null;
end

Algorithm 5: Algorithm BloCo2Mul(A,B, h, c)

by M ′ corresponds to such a 2-multiblock. Hence, c′ = (|V |−2|M ′|)+ |M ′| = |V |− |M ′|. It follows
that we get the smallest possible number c′ of 2-multiblocks by choosing a maximum cardinality
matching M ′, which Algorithm 5 does.

The following theorem follows directly, since it can be checked in polynomial time whether an
alignment has homoplasy 0 (Agarwala and Fernandez-Baca 1994; Kannan and Warnow 1997) and
for binary states this is fixed-parameter tractable with parameter h (Sridhar et al. 2007).

Theorem 8 Block Combining to p-Multiblocks can be solved in polynomial time for p = 2
and h = 0 and it is fixed-parameter tractable with parameter h for binary characters and p = 2.

We now continue to the general Block Combining to p-Multiblocks problem with p ≥ 2.
This problem can be solved by Algorithm 6. We say that a collection of blocks B′ ⊆ B is mergeable
if the total homoplasy of B′ is equal to the homoplasy of the alignment obtained by combining all
blocks from B′. Note that, in general, it may happen that a set of blocks is not mergeable even if
the blocks in the set are pairwise mergeable.

Data: Alignment A, a block partitioning B of A with total homoplasy h such that Bj and Bj+1 are not
mergeable for any j, and integer c.

Result: At most c p-multiblocks, each of which is a union of blocks from B, such that the total homoplasy of the
p-multiblocks is h.

Construct a graph G = (V, E) with a vertex for each set B′ ⊆ B with |B′| ≤ p that is mergeable and an
edge {B′,B′′} if B′ ∩ B′′ 6= ∅;

Give each vertex B′ a weight equal to |B′| − 1 (i.e., the number of blocks in B′ minus one);
Find a maximum weight independent set I in G;
for each input block B ∈ B not in any element of I do

add the vertex {B} to I;
end
for each vertex B′ ∈ I do

Merge the blocks in B′ into a p-multiblock;
end
if the number of obtained p-multiblocks is at most c then

return the obtained p-multiblocks
else

return null
end

Algorithm 6: Algorithm BloCopMul(A,B, h, c)

Correctness of Algorithm 6 follows from the following argument. First we argue that each p-
multiblock partitioning of B with total homoplasy h and c multiblocks corresponds to an inde-
pendent set in G containing all input blocks B ∈ B of weight |B| − c. Then we show that each
independent set I of G with weight |B| − c gives a p-multiblock partitioning of B in c multiblocks.
We now prove this in detail.

14 Mark Jones et al.

Lemma 6 Algorithm 6 is correct.

Proof Suppose we have a p-multiblock partitioning {B′
i}i∈[c] of B with total homoplasy h into c

multiblocks, then each multiblock must consist of a mergeable set of input blocks. Indeed, the
total homoplasy h(B′

i) of each multiblock B′
i = {Bi1 , . . . , Biji

} is at least the sum
∑ji

k=1 h(Bik) of

the homoplasies of the contained blocks. So, if the total homoplasy of all multiblocks
∑c

i=1 h(B
′
i)

is at most h, and the total homoplasy
∑

B∈B h(B) of B is also h, none of the multiblocks may
have strictly greater total homoplasy than the sum of the homoplasy of the contained blocks, i.e.,
h(B′

i) >
∑ij

k=1 h(Bik) is not allowed. Hence h(B′
i) =

∑ij
k=1 h(Bik) for each multiblock B′

i, or in
other words, each multiblock B′

i is mergeable.

This means that every multiblock corresponds to a vertex of G and because the multiblocks form
a partition of B, there are no edges between these vertices. Hence the nodes corresponding to the
chosen multiblocks form an independent set in G. The weight of this independent set is w(I) =∑c

i=1 |B
′
i| − 1 = |B| − c.

Now define BI := ∪B′∈IB
′ and suppose we find an independent set I with BI 6= B, then BI must be

a strict subset of B as each element of I is a subset of B. Let B ∈ B be an input block not chosen
for any element of the independent set (i.e., B 6∈ BI). Then {B} is a vertex of G because the total
homoplasy of {B} is trivially equal to the homoplasy of B. Furthermore, there is no edge {{B},B′}
for any element B′ ∈ I. This means that adding {B} to I gives a new independent set, and its
weight is w(I) + w({B}) = w(I) + |{B}| − 1 = w(I). As the algorithm uses the same procedure
to add elements to an independent set until each block is in one of the elements, we may assume
that each input block is in at least one element of the independent set I, i.e., BI = B.

Because there is an edge between two vertices in G exactly if they are not disjoint, an independent
set of G corresponds to a partition of (a subset of) B, so each input block is in at most one element
of the independent set. We conclude that each block of the input is in exactly one element of an
independent set produced by the algorithm.

Now we look at the weight of such an independent set in G. Let I = {B′
i}i∈[k] be an independent

set in G, then the weight w(I) of I is w(I) =
∑k

i=1 |B
′
i|−1 = |B|−k. This means that if the weight

of I is |B| − c, then the number of multiblocks in the partitioning corresponding to I is c. Hence,
there is a solution with at most c p-multiblocks if and only if there is an independent set in G of
weight at least |B| − c. Because the algorithm finds a maximum weight independent set in G, it
outputs a solution with the minimum number of p-multiblocks. ⊓⊔

5 Experiments

We have implemented the four optimization models Max Homoplasy Score, Total Homo-

plasy Score, Max Homoplasy Ratio and Total Homoplasy Ratio in the open-source soft-
ware package CutAl, which can be downloaded from https://github.com/celinescornavacca/CUTAL.
This program does not use the near-perfect phylogeny algorithms from (Sridhar et al. 2007) be-
cause no implementation of these algorithms is available and they are not expected to run effi-
ciently for larger data sets. Instead, for the construction of phylogenetic trees we implemented a
brute-force algorithm for small data sets and use the heuristic parsimony solver Parsimonator

(https://sco.h-its.org/exelixis/web/software/parsimonator/index.html) for larger data
sets. Parsimonator is used by the high-performance software RAxML-light (and more recently,
ExaML (Kozlov et al. 2015)) to warm-start the search for maximum likelihood trees.

We performed 2 experiments, whose main goal was to act as a first “sanity check” to pick up
potential problems of the inferences produced by the 4 models—under ideal conditions—rather
than to assess their behavior on realistic data. The first experiment concerned alignments with
2 blocks, the second experiment concerned multiple blocks (ranging from 3 to 6). Full output
of the experiments can be downloaded from the CutAl GitHub page. A detailed description of
the experimental protocol, and some brief information concerning running times, can be found in
the appendix. To enhance readability we describe here only the overall structure of the experiments.

The high-level, informal idea is to generate an alignment consisting of 400 nucleotides and k ∈

https://github.com/celinescornavacca/CUTAL
https://sco.h-its.org/exelixis/web/software/parsimonator/index.html

Cutting an alignment with Ockham’s razor 15

{2, 3, 4, 5, 6} blocks, such that the locations of the breakpoints, denoted breakpoints, are specified
as a parameter of the experiment (in the case of the 2-block experiment) or are chosen randomly
(in the case of the multiple-block experiment). For each block, a random phylogenetic tree is
chosen, where all the trees have t ∈ {5, 10, 20, 50} taxa and all branches of the tree have length
bℓ ∈ {0.001, 0.01, 0.1}. These branch lengths have been chosen to mimic the three more com-
mon branch length categories in the OrthoMaM database (Scornavacca et al. 2019). We use Dawg

(Cartwright 2005) to simulate a DNA alignment corresponding to these parameters. The alignment
is fed to CutAl and optimal solutions with k blocks under the four models Max Homoplasy

Score, Total Homoplasy Score, Max Homoplasy Ratio and Total Homoplasy Ratio

are computed. (CutAl computes the optima for all four models in a single execution, so the four
models are always applied to exactly the same input data.) For each model, we assess how far
the breakpoints chosen by CutAl are from the experimentally generated breakpoints. To mea-
sure this, we use the breakpoint error, defined as the number of informative sites separating the
inferred breakpoints from the correct ones. To decrease the impact of randomness, we run each
(t, bℓ, breakpoints, k) combination 20 times (i.e., we obtain 20 ‘replicates’), taking the average and
standard deviation of the breakpoint errors.

As stated above, the only difference between the 2-block and the multiple-block experiment is the
way breakpoints are dealt with: in the 2-block experiment (k = 2) the exact location of the single in-
ternal breakpoint is controlled experimentally, so a given combination of experimental parameters—
corresponding to a single row of Table 1—is more accurately summarized as (t, bℓ, location). In
the multiple-block experiment only the number of blocks is controlled experimentally, and the
breakpoints themselves are selected randomly: so a given combination of experimental parameters,
corresponding to a single row of Table 2, is in this case actually (t, bℓ, k).

The results are summarized in Table 1 (for the 2-block experiment) and Table 2 (for the multiple-
block experiment.) For each parameter combination, we report average and standard deviation
of the breakpoint error (ranging over the 20 replicates). In each row of the tables, the smallest
average (ranging across the four optimization models) is shown in bold. At the foot of each table
we provide average-of-averages and average-of-standard-deviations.

5.1 Analysis of experiments

Both experiments indicate that, overall, Total Homoplasy Score is the best algorithm, then
Max Homoplasy Ratio, then Max Homoplasy Score, and finally Total Homoplasy Ra-

tio. The average-of-averages shown at the foot of each table emphasize this. A number of obser-
vations can be made:

– Across both experiments, and across most parameter combinations, Total Homoplasy Score

achieves an average error across the 20 replicates of (much) less than 1.0. This means that To-

tal Homoplasy Score is almost always inferring breakpoint locations that are within one
informative site of the their correct locations. In the 2-block experiment, the only exception to
this is several of the (t, bℓ) = (5, 0.1) parameter combinations, which have slightly higher aver-
ages and standard deviations. (These combinations also disrupt the other optimization models.)
We believe this is because trees with long branches and few taxa produce very little phyloge-
netic signal enabling the separation of regions generated by different trees. In the multiple-block
experiment, the (5, 0.1) combinations behave similarly, but there (50, 0.001) combinations also
cause the average to rise marginally above 1.0.

– In both experiments, many of the parameter combinations cause both Max Homoplasy Score

and Total Homoplasy Ratio to suffer very large breakpoint errors. Interestingly, in both
experiments these huge errors only occur when branch lengths are long (0.1). We reflect below
on the reasons for this, which are different for the two models.

– Overall, the performance of Max Homoplasy Ratio seems somewhat correlated with To-

tal Homoplasy Score. Unlike the other two optimization models, neither of these models
produces any spectacularly large breakpoint errors.

16 Mark Jones et al.

– In both experiments, for extremely short branch lengths (0.001) all models exhibit similar
performance. This is connected to the fact that, for such extremely short branch lengths, an
alignment typically contains very few informative sites. To give a concrete example: in the
2-block experiment, for bℓ = 0.001, an alignment generated with t = 5 might contain only 1
informative site per block, rising to at most 15-20 for t = 50. Given the definition of breakpoint
error this means that there are many sites that do not contribute to the error, so the breakpoint
error will be limited in magnitude irrespective of the exact optimisation criterion being used.

– Close observation of the full experimental results, available on the CutAl GitHub page, for
Max Homoplasy Score shows that this criterion tends to underestimate the size of the
largest block. In the 2-block experiments, this is particularly evident for bℓ = 0.1, where for
location = 50, 100, 150 the inferred breakpoint is nearly always to the right of the correct
position (e.g., for t = 50 it is always between 150 and 205, irrespective of the true position of
the breakpoint). This phenomenon is also detectable for t = 50, bℓ = 0.01 and location = 50,
where the inferred breakpoint is on average more than 10 informative sites to the right of the
correct beakpoint (cf. Table 1). This behavior is not surprising, as the goal of this problem is to
minimize the homoplasy in the block with the most homoplasy (which usually coincides with
the largest block). Thus, solutions of Max Homoplasy Score will tend to reduce the size of
the largest block to reduce its homoplasy (while increasing the homoplasy of the blocks flanking
the largest block). The incentive to do so is stronger when the homoplasy within the largest
block is much bigger than the homoplasy in its flanking blocks, a difference that we expect to
be particularly pronounced when the tree has very long (or many) branches (for large values
of bℓ and/or t) or when the blocks have very different sizes. As expected, when the true blocks
have similar sizes (e.g., for location = 200 in the 2-block experiment) this phenomenon has a
tendency to disappear (cf. Table 1).

– Total Homoplasy Ratio suffers from a problem that can be seen as a very severe inverse
of that of Max Homoplasy Score: whenever per-site substitutions are frequent (in our
experiments for bℓ = 0.1), the partitions it produces tend to consist of a single large block and
a number of smaller blocks. For example, for the extreme case where t = 50 and bℓ = 0.1: (a)
in the 2-block experiments, all of the partitions returned consist of a block of 1 or 2 sites, and a
block containing the remaining sites; (b) in the multi-block experiments, all partitions consist
of a number of blocks of 1 or 2 sites, and a single block with all the remaining sites. (2-site
blocks are much rarer than 1-site blocks, as they only occur in <5% of these partitions.) The
reason why this happens is that when substitutions are frequent—in other words, when the
sites are saturated with substitutions—each block will have a high homoplasy ratio, regardless
of whether the MP tree for that block accurately describes its evolution, or not. The only
exception to this are very small blocks consisting of few sites, in which case it becomes possible
to find a tree that explains those few sites with little or no homoplasy (e.g., 1-site blocks always
have homoplasy ratio 0). So, in order to minimize the sum of homoplasy ratios for k blocks, it
becomes convenient to have k− 1 small blocks with very small homoplasy ratios and one large
block with high homoplasy ratio, rather than to have a realistic block partition where each
block has an anyway high homoplasy ratio. This is a very serious issue for Total Homoplasy

Ratio, which results in very high breakpoint errors whenever the alignment is saturated with
substitutions.

6 Discussion

Inference methods estimating quantities that are paramount to our understanding of molecular
evolution (e.g. positive selection and branch length estimates) can be seriously mislead by recom-
bination. Since no theory yet exists to define the amount of recombination that can be borne by
these methods to still produce the correct answer, a safer way to deal with the problem is to restrict
one’s attention to the analysis of non-recombinant loci.

In this article, we investigated several different parsimony-based approaches towards detecting
recombination breakpoints in a multiple sequence alignment, and we described algorithms for each
of our formulations. These algorithms have been implemented and, via tests on simulated data, we
have identified a number of important weaknesses of two of these approaches. Our experiments also

Cutting an alignment with Ockham’s razor 17

MAX
HOM

SCORE

TOT
HOM

SCORE

MAX
HOM

RATIO

TOT
HOM

RATIO

taxa
branch
length

breakpoint
location

avg sd avg sd avg sd avg sd

5 0.001 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.001 100 0.05 0.22 0.05 0.22 0.05 0.22 0.05 0.22
5 0.001 150 0.15 0.37 0.15 0.37 0.15 0.37 0.15 0.37
5 0.001 200 0.15 0.49 0.15 0.49 0.15 0.49 0.15 0.49
5 0.01 50 0.25 0.64 0.25 0.64 0.25 0.64 0.25 0.64
5 0.01 100 0.35 0.67 0.35 0.67 0.75 1.45 0.75 1.45
5 0.01 150 0.75 1.33 0.70 1.30 0.85 1.50 0.85 1.50
5 0.01 200 1.20 2.26 1.15 2.28 1.25 2.29 1.25 2.29
5 0.1 50 13.70 10.58 5.75 16.28 15.50 26.66 18.80 26.82
5 0.1 100 4.85 8.51 1.85 4.46 3.50 5.28 15.80 19.66
5 0.1 150 1.15 1.73 0.70 1.22 1.20 1.47 8.25 11.67
5 0.1 200 2.45 2.31 2.30 6.61 3.90 8.28 10.05 15.42
10 0.001 50 0.05 0.22 0.05 0.22 0.05 0.22 0.05 0.22
10 0.001 100 0.05 0.22 0.05 0.22 0.05 0.22 0.05 0.22
10 0.001 150 0.10 0.31 0.10 0.31 0.10 0.31 0.10 0.31
10 0.001 200 0.10 0.31 0.10 0.31 0.10 0.31 0.10 0.31
10 0.01 50 0.15 0.37 0.05 0.22 0.15 0.49 0.20 0.70
10 0.01 100 0.25 0.72 0.00 0.00 0.05 0.22 0.05 0.22
10 0.01 150 0.25 0.64 0.10 0.45 0.25 0.64 0.25 0.55
10 0.01 200 0.15 0.49 0.00 0.00 0.10 0.45 0.05 0.22
10 0.1 50 48.45 11.49 0.15 0.37 3.00 4.70 33.40 36.38
10 0.1 100 22.25 4.41 0.35 0.59 3.30 5.03 77.00 55.78
10 0.1 150 9.80 5.78 0.45 0.89 3.00 3.39 63.40 51.56
10 0.1 200 3.95 3.43 0.40 0.60 4.20 4.50 34.30 53.41
20 0.001 50 0.15 0.49 0.15 0.49 0.15 0.49 0.15 0.49
20 0.001 100 0.35 0.67 0.35 0.67 0.35 0.67 0.35 0.67
20 0.001 150 0.15 0.37 0.10 0.31 0.10 0.31 0.10 0.31
20 0.001 200 0.35 0.49 0.35 0.49 0.35 0.49 0.35 0.49
20 0.01 50 1.70 4.17 0.00 0.00 0.80 1.85 1.05 2.06
20 0.01 100 0.35 0.99 0.05 0.22 0.25 0.72 0.15 0.37
20 0.01 150 0.05 0.22 0.00 0.00 0.10 0.31 0.10 0.31
20 0.01 200 0.40 0.60 0.10 0.31 0.10 0.31 0.10 0.31
20 0.1 50 91.40 10.45 0.20 0.41 4.15 5.78 81.10 94.81
20 0.1 100 44.75 5.74 0.00 0.00 5.15 5.76 94.65 38.34
20 0.1 150 20.00 3.37 0.10 0.31 2.25 2.45 150.75 38.21
20 0.1 200 4.15 3.13 0.25 0.44 3.65 3.88 175.55 5.17
50 0.001 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 0.001 100 0.05 0.22 0.05 0.22 0.05 0.22 0.05 0.22
50 0.001 150 0.30 0.57 0.25 0.55 0.35 0.59 0.30 0.57
50 0.001 200 0.30 0.73 0.25 0.55 0.15 0.37 0.20 0.41
50 0.01 50 11.30 7.26 0.00 0.00 1.35 2.28 4.65 5.71
50 0.01 100 4.00 3.49 0.10 0.31 0.55 1.43 0.30 0.92
50 0.01 150 2.45 2.72 0.00 0.00 0.65 1.04 0.30 0.57
50 0.01 200 1.05 1.47 0.00 0.00 0.10 0.31 0.10 0.31
50 0.1 50 113.45 5.60 0.05 0.22 2.05 4.15 49.00 0.00
50 0.1 100 57.80 3.11 0.05 0.22 1.30 1.69 98.90 0.31
50 0.1 150 28.25 2.99 0.00 0.00 2.60 3.12 168.90 41.09
50 0.1 200 2.15 1.42 0.00 0.00 2.50 2.14 198.80 0.41

AVG: 10.32 2.45 0.37 0.93 1.48 2.28 26.90 10.68

Table 1 2-block experiment

suggest that the best formulation of block partitioning, among those that we have considered, is
Total Homoplasy Score. We note that this formulation is closely linked to that of Mdl (Ané
2011): it is easy to see that for any value of the penalty parameter against the number of blocks
in Mdl, there exists a value of the parameter b for Total Homoplasy Score that would yield
the same block partition.

The work in this paper has led to several interesting open computational problems which could
be studied in further research. First of all, a fundamental question is whether one can decide in
polynomial time whether two blocks are mergeable, i.e., whether they can be combined into a single
block without increasing the total homoplasy. Simply computing the homoplasy for each block and

18 Mark Jones et al.

MAX
HOM

SCORE

TOT
HOM

SCORE

MAX
HOM

RATIO

TOT
HOM

RATIO

taxa
branch
length

blocks avg sd avg sd avg sd avg sd

5 0.001 3 0.03 0.11 0.03 0.11 0.03 0.11 0.03 0.11
5 0.001 4 0.30 0.44 0.30 0.44 0.30 0.44 0.30 0.44
5 0.001 5 *** *** *** *** *** *** *** ***
5 0.001 6 *** *** *** *** *** *** *** ***
5 0.01 3 0.80 1.22 0.60 1.12 0.68 1.13 0.60 1.12
5 0.01 4 1.33 1.34 1.30 1.28 1.20 1.08 1.20 1.08
5 0.01 5 0.93 1.16 0.88 1.18 0.88 1.18 0.88 1.18
5 0.01 6 1.31 1.27 1.31 1.27 1.31 1.27 1.31 1.27
5 0.1 3 7.58 8.30 3.88 6.02 6.38 9.38 10.25 10.47
5 0.1 4 4.13 4.63 2.93 3.99 6.85 8.07 13.40 7.97
5 0.1 5 5.93 4.31 4.24 5.97 6.10 6.19 23.23 13.64
5 0.1 6 4.23 3.37 3.38 4.05 8.25 5.57 23.60 9.18
10 0.001 3 0.50 1.08 0.50 1.08 0.50 1.08 0.50 1.08
10 0.001 4 0.25 0.36 0.25 0.36 0.25 0.36 0.25 0.36
10 0.001 5 0.56 0.76 0.56 0.76 0.56 0.76 0.56 0.76
10 0.001 6 0.37 0.42 0.37 0.42 0.37 0.42 0.37 0.42
10 0.01 3 0.83 1.32 0.30 0.91 1.18 2.89 1.05 2.86
10 0.01 4 1.53 2.83 0.72 2.09 0.42 0.66 0.42 0.67
10 0.01 5 0.41 0.46 0.15 0.19 1.10 1.54 1.00 1.73
10 0.01 6 1.28 1.66 0.63 1.05 1.17 1.78 0.64 0.97
10 0.1 3 17.03 15.03 0.63 0.93 5.13 6.71 80.03 33.37
10 0.1 4 17.62 11.88 0.55 0.60 4.40 3.31 86.60 32.55
10 0.1 5 14.33 8.27 0.34 0.34 6.54 11.32 80.95 21.78
10 0.1 6 7.27 5.41 0.33 0.31 6.35 7.04 96.84 21.16
20 0.001 3 0.80 1.37 0.80 1.37 0.85 1.36 0.85 1.36
20 0.001 4 0.77 0.91 0.77 0.91 0.72 0.91 0.72 0.91
20 0.001 5 0.88 0.76 0.88 0.76 0.88 0.76 0.88 0.76
20 0.001 6 0.66 0.60 0.66 0.60 0.66 0.60 0.66 0.60
20 0.01 3 1.13 1.19 0.10 0.21 0.70 0.80 0.45 0.69
20 0.01 4 1.37 1.18 0.17 0.28 1.27 3.97 0.60 1.24
20 0.01 5 1.14 1.65 0.18 0.18 1.23 3.00 1.50 3.86
20 0.01 6 0.63 0.61 0.11 0.15 0.72 1.31 0.45 0.87
20 0.1 3 39.03 20.64 0.28 0.34 1.78 2.11 121.48 35.40
20 0.1 4 24.80 11.97 0.08 0.15 2.78 1.64 144.58 42.29
20 0.1 5 18.70 9.01 0.14 0.19 4.08 6.74 148.66 37.15
20 0.1 6 13.41 7.02 0.09 0.12 2.83 1.72 131.72 35.70
50 0.001 3 0.83 1.40 0.80 1.41 0.80 1.41 0.80 1.41
50 0.001 4 1.65 1.83 1.35 1.59 1.28 1.59 1.28 1.59
50 0.001 5 1.60 1.86 1.59 1.87 1.56 1.88 1.55 1.89
50 0.001 6 1.70 1.68 1.66 1.71 1.52 1.40 1.48 1.41
50 0.01 3 6.88 5.85 0.13 0.22 1.05 1.16 1.55 3.69
50 0.01 4 5.57 6.48 0.15 0.20 0.73 0.68 0.80 1.45
50 0.01 5 2.76 2.51 0.13 0.21 1.03 0.89 1.90 6.83
50 0.01 6 1.44 0.68 0.09 0.14 0.91 1.00 0.19 0.21
50 0.1 3 52.08 26.90 0.13 0.22 3.20 3.37 135.93 56.92
50 0.1 4 29.05 18.99 0.07 0.14 1.07 0.83 162.22 44.56
50 0.1 5 23.43 10.96 0.05 0.10 1.66 1.04 149.60 39.10
50 0.1 6 18.12 7.31 0.10 0.15 2.04 1.41 149.65 34.72

AVG 7.32 4.76 0.75 1.04 2.07 2.48 34.42 11.28

Table 2 Multiple-block experiment

the combined block does not work (unless P = NP) because computing the homoplasy of a block
is NP-hard. Hence, a more advanced strategy would need to be developed. A slightly different but
equally interesting question is the following. Suppose we are given a tree with minimum homoplasy
for the first j columns of an alignment. Can we decide in polynomial time whether the same tree has
minimum homoplasy for the first j+1 columns? We would also like to reiterate here a well-known
open problem in the area, which is strongly related to the studied problems. Does there exists an
FPT algorithm deciding whether there exists a tree with homoplasy at most h for a given alignment
of nonbinary characters, when h is the parameter? In particular, this problem (the h-near perfect
phylogeny problem) is even open for 3-state characters. Answering this question positively would
also extend the FPT results in this paper to nonbinary characters.

Cutting an alignment with Ockham’s razor 19

The dependency of our algorithms on the length of the alignment is at least cubic. This is due
to the fact that we allow breakpoints to occur at any position of the alignment, and that we
want to detect these positions precisely. These requirements could be relaxed by decreasing the
granularity of breakpoint detection, only allowing breakpoints to be inferred at given positions
of the alignments. This approach would make it possible to analyse longer alignments, and has
already been adopted by tools such Mdl (which only allowed the inference of a breakpoint every
300 sites in their study (Ané 2011)) and Gard (which only allows breakpoints to be inferred up
to the nearest variable site (Kosakovsky Pond et al. 2006a)).

Another avenue of research would be to adapt CutAl’s approach to a likelihood-based context. For
example, instead of minimizing the sum of the block homoplasies, we could aim to maximize the sum
of the log likelihoods for the blocks (basically replacing homoplasy with the − log of the likelihood
in Total Homoplasy Score). Since our implementations are based on a precalculation of the ho-
moplasy scores for contiguous subalignments of the input alignment, the same could be done for log
likelihoods relatively easily, although at the cost of some efficiency. Such an approach could benefit
likelihood-based programs for breakpoint detection, for example Gard (Kosakovsky Pond et al.
2006a,b) which is based on a genetic algorithm to search the space of block partitionings, and on
a information-theory penalty to limit the number of blocks. Our results imply that partitions that
Gard would consider optimal for a fixed number of blocks can be calculated efficiently (assuming
that log-likelihoods are precalculated for a large set of intervals in the input alignment). This would
eliminate the need for a heuristic search within the space of block partitionings of a fixed size, thus
largely simplifying Gard’s optimization.

Note that while the drawbacks of maximum parsimony for phylogenetic reconstruction are known
and well-understood (Felsenstein 1978), an investigation of parsimony’s flaws when the goal is
alignment partitioning rather than tree inference is still lacking. In fact some authors have sug-
gested that a possible bias of maximum parsimony in this context would be to detect extra break-
points (Ané 2011), which is not an excessively disruptive bias, and could be resolved by merging
contiguous blocks separated by breakpoints where the evidence of recombination is not sufficiently
strong.

References

Agarwala R, Fernandez-Baca D (1994) A polynomial-time algorithm for the perfect phylogeny problem when the
number of character states is fixed. SIAM Journal on Computing 23(6):1216–1224

Aldous D (1996) Probability distributions on cladograms. In: Random discrete structures, Springer, pp 1–18
Ané C (2011) Detecting phylogenetic breakpoints and discordance from genome-wide alignments for species tree

reconstruction. Genome biology and evolution 3:246–258
Anisimova M, Nielsen R, Yang Z (2003) Effect of recombination on the accuracy of the likelihood method for

detecting positive selection at amino acid sites. Genetics 164(3):1229–1236
Arenas M, Posada D (2010a) Coalescent simulation of intracodon recombination. Genetics 184(2):429–437
Arenas M, Posada D (2010b) The effect of recombination on the reconstruction of ancestral sequences. Genetics

184(4):1133–1139
Bloomquist EW, Dorman KS, Suchard MA (2008) StepBrothers: inferring partially shared ancestries among recom-

binant viral sequences. Biostatistics 10(1):106–120
Boni MF, Posada D, Feldman MW (2007) An exact nonparametric method for inferring mosaic structure in sequence

triplets. Genetics 176(2):1035–1047
Boussau B, Guéguen L, Gouy M (2009) A mixture model and a hidden markov model to simultaneously detect

recombination breakpoints and reconstruct phylogenies. Evolutionary Bioinformatics 5:EBO–S2242
Buneman P (1971) The Recovery of Trees from Measures of Dissimilarity. In: Kendall D, Tautu P (eds) Mathematics

the the Archeological and Historical Sciences, Edinburgh University Press, pp 387–395
Cartwright RA (2005) DNA assembly with gaps (dawg): simulating sequence evolution. Bioinformatics

21(Suppl_3):iii31–iii38
Downey RG, Fellows MR (2012) Parameterized complexity. Springer Science & Business Media
Dutheil JY, Ganapathy G, Hobolth A, Mailund T, Uyenoyama MK, Schierup MH (2009) Ancestral population

genomics: the coalescent hidden markov model approach. Genetics 183(1):259–274
Etherington GJ, Dicks J, Roberts IN (2004) Recombination analysis tool (rat): a program for the high-throughput

detection of recombination. Bioinformatics 21(3):278–281
Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Systematic

zoology 27(4):401–410
Fernández-Baca D, Lagergren J (2003) A polynomial-time algorithm for near-perfect phylogeny. SIAM Journal on

Computing 32(5):1115–1127
Flum J, Grohe M (2006) Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS

Series). Springer-Verlag, Berlin, Heidelberg

20 Mark Jones et al.

Gibbs MJ, Armstrong JS, Gibbs AJ (2000) Sister-scanning: a monte carlo procedure for assessing signals in recom-
binant sequences. Bioinformatics 16(7):573–582

Grassly NC, Holmes EC (1997) A likelihood method for the detection of selection and recombination using nucleotide
sequences. Molecular Biology and Evolution 14(3):239–247

Hansen P, Hertz A, Kuplinsky J (1993) Bounded vertex colorings of graphs. Discrete Mathematics 111(1-3):305–312
Harding E (1971) The probabilities of rooted tree-shapes generated by random bifurcation. Advances in Applied

Probability 3(1):44–77
Hein J (1993) A heuristic method to reconstruct the history of sequences subject to recombination. Journal of

Molecular Evolution 36(4):396–405
Hobolth A, Christensen OF, Mailund T, Schierup MH (2007) Genomic relationships and speciation times of human,

chimpanzee, and gorilla inferred from a coalescent hidden markov model. PLoS genetics 3(2):e7
Holmes EC, Worobey M, Rambaut A (1999) Phylogenetic evidence for recombination in dengue virus. Molecular

biology and evolution 16(3):405–409
Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a

sample of DNA sequences. Genetics 111(1):147–164
Husmeier D, McGuire G (2003) Detecting recombination in 4-taxa DNA sequence alignments with bayesian hidden

markov models and markov chain monte carlo. Molecular Biology and Evolution 20(3):315–337
Huson DH, Rupp R, Scornavacca C (2010) Phylogenetic networks: concepts, algorithms and applications. Cambridge

University Press
Kannan S, Warnow T (1997) A fast algorithm for the computation and enumeration of perfect phylogenies. SIAM

Journal on Computing 26(6):1749–1763
Kingman JF (1982) On the genealogy of large populations. Journal of applied probability 19(A):27–43
Kosakovsky Pond S, Poon A, Zarate S, Smith D, Little S, Pillai S, Ellis R, Wong J, Leigh Brown A, Richman D,

et al. (2008) Estimating selection pressures on hiv-1 using phylogenetic likelihood models. Statistics in medicine
27(23):4779–4789

Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD (2006a) Automated phylogenetic detection of
recombination using a genetic algorithm. Molecular biology and evolution 23(10):1891–1901

Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD (2006b) Gard: a genetic algorithm for recom-
bination detection. Bioinformatics 22(24):3096–3098

Kozlov AM, Aberer AJ, Stamatakis A (2015) Examl version 3: a tool for phylogenomic analyses on supercomputers.
Bioinformatics 31(15):2577–2579

Lam HM, Ratmann O, Boni MF (2017) Improved algorithmic complexity for the 3seq recombination detection
algorithm. Molecular biology and evolution 35(1):247–251

Lemey P, Posada D (2009) Introduction to recombination detection. In: Lemey P, Salemi M, Vandamme AM (eds)
The phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing, Cambridge
University Press, chap 15, pp 493–518

Linz S, John KS, Semple C (2013) Optimizing tree and character compatibility across several phylogenetic trees.
Theoretical Computer Science 513(Supplement C):129 – 136, DOI https://doi.org/10.1016/j.tcs.2013.10.015,
URL http://www.sciencedirect.com/science/article/pii/S0304397513007676

Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS, Novak NG, Ingersoll R, Sheppard HW, Ray SC
(1999) Full-length human immunodeficiency virus type 1 genomes from subtype c-infected seroconverters in
india, with evidence of intersubtype recombination. Journal of virology 73(1):152–160

Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P (2010) Rdp3: a flexible and fast computer program
for analyzing recombination. Bioinformatics 26(19):2462–2463

Martin DP, Lemey P, Posada D (2011) Analysing recombination in nucleotide sequences. Molecular Ecology Re-
sources 11(6):943–955

Martin DP, Murrell B, Khoosal A, Muhire B (2017) Detecting and analyzing genetic recombination using rdp4. In:
Bioinformatics, Springer, pp 433–460

Maydt J, Lengauer T (2006) Recco: recombination analysis using cost optimization. Bioinformatics 22(9):1064–1071
McGuire G, Wright F, Prentice MJ (1997) A graphical method for detecting recombination in phylogenetic data

sets. Molecular Biology and Evolution 14(11):1125–1131
Minin VN, Dorman KS, Fang F, Suchard MA (2005) Dual multiple change-point model leads to more accurate

recombination detection. Bioinformatics 21(13):3034–3042
de Oliveira Martins L, Leal E, Kishino H (2008) Phylogenetic detection of recombination with a bayesian prior on

the distance between trees. PLoS One 3(7):e2651
Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination.

Virology 265(2):218–225
Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: computer

simulations. Proceedings of the National Academy of Sciences 98(24):13757–13762
Posada D, Crandall KA (2002) The effect of recombination on the accuracy of phylogeny estimation. Journal of

molecular evolution 54(3):396–402
Ruths D, Nakhleh L (2006) RECOMP: A parsimony-based method for detecting recombination. In: Proceedings Of

The 4th Asia-Pacific Bioinformatics Conference, World Scientific, pp 59–68
Salminen M, Martin DP (2009) Detecting and characterizing individual recombination events. In: Lemey P, Salemi

M, Vandamme AM (eds) The phylogenetic handbook: a practical approach to phylogenetic analysis and hy-
pothesis testing, Cambridge University Press, chap 16, pp 519–548

Salminen MO, Carr JK, Burke DS, McCutchan FE (1995) Identification of breakpoints in intergenotypic recombi-
nants of hiv type 1 by bootscanning. AIDS research and human retroviruses 11(11):1423–1425

Sawyer S (1989) Statistical tests for detecting gene conversion. Molecular biology and evolution 6(5):526–538
Scheffler K, Martin DP, Seoighe C (2006) Robust inference of positive selection from recombining coding sequences.

Bioinformatics 22(20):2493–2499
Schierup MH, Hein J (2000a) Consequences of recombination on traditional phylogenetic analysis. Genetics

156(2):879–891

http://www.sciencedirect.com/science/article/pii/S0304397513007676

Cutting an alignment with Ockham’s razor 21

Schierup MH, Hein J (2000b) Recombination and the molecular clock. Molecular Biology and Evolution 17(10):1578–
1579

Scornavacca C, Belkhir K, Lopez J, Dernat R, Delsuc F, Douzery EJP, Ranwez V
(2019) OrthoMaM v10: Scaling-Up Orthologous Coding Sequence and Exon Alignments
with More than One Hundred Mammalian Genomes. Molecular Biology and Evolution
36(4):861–862, DOI 10.1093/molbev/msz015, URL https://doi.org/10.1093/molbev/msz015 ,
http://oup.prod.sis.lan/mbe/article-pdf/36/4/861/28264279/msz015.pdf

Siepel AC, Halpern AL, Macken C, Korber BT (1995) A computer program designed to screen rapidly for hiv type
1 intersubtype recombinant sequences. AIDS research and human retroviruses 11(11):1413–1416

Smith JM (1992) Analyzing the mosaic structure of genes. Journal of molecular evolution 34(2):126–129
Song H, Giorgi EE, Ganusov VV, Cai F, Athreya G, Yoon H, Carja O, Hora B, Hraber P, Romero-Severson E, et al.

(2018) Tracking hiv-1 recombination to resolve its contribution to hiv-1 evolution in natural infection. Nature
communications 9(1):1928

Sridhar S, Dhamdhere K, Blelloch G, Halperin E, Ravi R, Schwartz R (2007) Algorithms for efficient near-perfect
phylogenetic tree reconstruction in theory and practice. IEEE/ACM Transactions on Computational Biology
and Bioinformatics 4(4):561–571

Tsimpidis M, Bachoumis G, Mimouli K, Kyriakopoulou Z, Robertson DL, Markoulatos P, Amoutzias GD (2017)
T-recs: rapid and large-scale detection of recombination events among different evolutionary lineages of viral
genomes. BMC bioinformatics 18(1):13

Webb A, Hancock JM, Holmes CC (2008) Phylogenetic inference under recombination using bayesian stochastic
topology selection. Bioinformatics 25(2):197–203

Weiller GF (1998) Phylogenetic profiles: a graphical method for detecting genetic recombinations in homologous
sequences. Molecular Biology and Evolution 15(3):326–335

Xu B, Yang Z (2016) Challenges in species tree estimation under the multispecies coalescent model. Genetics
204(4):1353–1368

https://doi.org/10.1093/molbev/msz015
http://oup.prod.sis.lan/mbe/article-pdf/36/4/861/28264279/msz015.pdf

22 Mark Jones et al.

A Appendix: full description of experiments

All experiments were conducted on the Linux Subsystem (Ubuntu 16.04.6 LTS), running under Windows 10, on
a 64-bit HP Envy Laptop 13-ad0xx (quad-core i7-7500 @ 2.7 GHz), with 8 Gig of memory. CutAl was compiled
with GCC. We incorporated code from Parsimonator version 1.0.2. We used DAWG version 1.2 (Cartwright
2005) to simulate alignments. This software is capable of simulating the evolution of nucleotides along the branches
of a phylogenetic tree, such that different blocks of the generated alignment correspond to different phylogenetic trees.

Protocol common to both experiments

1. All random sampling in the experiments is with-replacement (i.e., repetition is allowed).
2. Binary phylogenetic trees, one per block, are generated by randomly splitting the taxa into two subgroups, and

iterating this process on the subgroups until sets comprising single taxa are obtained (i.e., the leaves). In other
words binary rooted trees are sampled following the standard Yule-Harding distribution (Harding 1971), which
also arises in the context of the coalescent model (Aldous 1996; Kingman 1982).

3. The generated DNA alignments consist of 400 nucleotides, without indels.
4. When executing CutAl, an upper bound on the number of blocks has to be indicated. We set this equal to

the number of blocks k. We also feed CutAl breakpoints so that it can compute breakpoint errors for us; this
auxiliary functionality is built into CutAl).

5. DAWG is asked to generate a DNA alignment with k blocks on t taxa, where the breakpoint locations are
indicated by breakpoints. For each block we ask that the nucleotides evolve according to the Jukes Cantor
model along a randomly selected binary tree with t taxa where all the branches have length bℓ. (DAWG does
not select the trees itself: we generate them using the method described in point 2).

6. For each combination of experimental parameters, we perform 20 iterations (‘replicates’), and then compute the
average and standard deviation of the breakpoint errors for each of the four optimization models. Note that,
although all replicates share the same set of experimental parameters, binary trees and alignments are not held
constant across the replicates. In other words, for each replicate we select a new set of binary trees (one per
block) and generate a new alignment with DAWG.

7. We never feed CutAl alignments that contain completely uninformative blocks. Specifically: if a replicate pro-
duces an alignment which has at least one completely uninformative block, we discard that and try generating a
new replicate, repeating as often as necessary until we obtain an alignment in which all blocks are informative.
The reasons for doing this are explained in the point below. We emphasize that it is not due to an inherent
limitation of CutAl, but rather an artefact of the way that we measure breakpoint errors in this experiment.
Practically, discarding alignments in this way means that, to obtain 20 replicates for a given parameter com-
bination, we might have to generate (many) more than 20 alignments. In particular, for the multiple-block
experiment this means we have to omit two extreme parameter combinations: essentially, those with many
blocks, short branch lengths and few taxa. The chance that all blocks are informative under these parameters
is so low, that it is prohibitively difficult to randomly generate such inputs.

8. The score used for measuring beakpoint errors is defined as follows. Recall that the left-most block always
starts in the first column of the alignment, and the right-most block always finishes in the last column of the
alignment, so in terms of testing the accuracy with which breakpoints are inferred, we only need to look at the
k− 1 “internal” breakpoints. We take the average, ranging over the k− 1 internal breakpoints, of the
absolute difference between the location of that breakpoint given by breakpoints and the location
of the corresponding breakpoint inferred by CutAl. So, for example, if there are 3 blocks with internal
breakpoints at positions 50 and 150 and CutAl infers blocks with internal breakpoints at positions 65 and 147
respectively, the score will be (|50− 65|+ |150 − 147|)/2 = 9. Three points are worth noting:
(a) The score assumes a left-to-right bijection between the experimentally generated breakpoints, and those

inferred by CutAl. This is why we discard alignments that contain completely uninformative blocks: they
disrupt this bijection and thus lead to artificially and punitively high errors.

(b) When computing the absolute difference between the locations of two corresponding internal breakpoints,
uninformative sites do not contribute to the difference, in the following sense. If there are x informative sites
and y uninformative sites between the two breakpoints, the absolute difference is taken to be x, rather than
x+y. In particular, if CutAl and the experimentally generated partition place corresponding breakpoints in
the same region of uninformative sites, this counts as an absolute difference of 0, i.e., total agreement. This
is because, from the perspective of the four optimization models, all these locations are indistinguishable.

(c) When computing the score, if CutAl infers that optimality is obtained (for a given optimization model)
by a number of blocks strictly less than k, CutAl uses the best solution with exactly k blocks to compute
the boundary errors.

9. Since uninformative sites are indistinguishable from the perspective of the four optimization models, CutAl

does not return a simple block partition but rather its informative restriction. For example, if CutAl would
return [1 − 65], [66 − 147], [148 − 200] but sites 64, 65, 66, 148 and 160 are uninformative, CutAl will instead
return [1− 63], [67− 147], [149− 200].

10. To enhance the readability of the results, for each parameter combination we have only reported average and
standard deviation (of the breakpoint error, ranging over the 20 replicates) in the results tables, and below we
also give a rough indication of running times. However, in the supplementary material available on the CutAl

GitHub page we have provided the following, more complete information for each parameter combination:
(a) Running times of individual replicates;
(b) The number of times that, for each of the four optimization models, the optimum inferred by CutAl

contained strictly fewer than k blocks;
(c) The number of alignments that we had to sample (above the baseline of 20) in order to obtain 20 replicates

where all blocks of the alignment are informative.

Protocol specific to 2-block experiment (k = 2) and summary of running times

Cutting an alignment with Ockham’s razor 23

1. We select location ∈ {50, 100, 150, 200}. So the alignment consists of two blocks, where the first has length
location and the second has length (400 − location). This ensures a balance between situations where the two
blocks have very different sizes, and situations where they have the same size.

2. As indicated earlier: for each t, bℓ, location parameter combination we take 20 replicates, and each replicate
selects new trees and alignments. So in this experiment trees and alignments are random variables.

3. For t ∈ {5, 10}, CutAl solves each replicate to optimality (for all four optimization models combined) in time
ranging from 3 seconds to 11 seconds. For t = 20 the running time varies between 11s and 43s, and within this
range increases with branch length. For t = 50 the running time varies between 57s and 425s, again increasing
inside this range with branch length. Note that these running times include the time to execute Parsimonator

on all intervals of the input alignment.
4. See Table 1 for the results. In each row, the smallest average (ranging across the four optimization models) is

shown in bold.

Protocol specific to multiple-block experiment and summary of running times

1. We select k ∈ {3, 4, 5, 6}.
2. Unlike the 2-block experiment, where every replicate uses new trees and new alignments, in this case every

replicate also randomly selects new breakpoint locations. So in this experiment the random variables are trees,
alignments and breakpoint locations.

3. Breakpoint locations are sampled uniformly at random, subject to the following rules: the length of each block
is a multiple of 50, with a minimum length of 50.

4. We omit the parameter combinations where (t, bℓ, k) is equal to (5,0.001, 5) and (5, 0.001, 6). This is due to
technicalities associated with completely uninformative blocks, discussed earlier. Specifically, with these param-
eter combinations the chance of observing an alignment where all blocks are informative is extremely low. In
the table of results we have used “*” to indicate that these two parameter combinations have been excluded.

5. Running times are of a similar magnitude, and follow a similar pattern, to the 2-block experiment. The number
of taxa, and then to a lesser extent the branch lengths, and then to a lesser extent the number of blocks, are
correlated with increasing times.

6. See Table 2 for the results. In each row, the smallest average (ranging across the four optimization models) is
shown in bold.

	1 Introduction
	2 Preliminaries
	3 Block partitioning algorithms
	4 Combining blocks to non-contiguous blocks
	5 Experiments
	6 Discussion
	A Appendix: full description of experiments

