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Introduction

Nanosatellites have become one of the fastest ways to reach space due to their design simplicity and low-cost approach. They are small satellites (ranging from 1 to 10 kg) with scientific and commercial purposes. This class of satellite has emerged as an outstanding solution to allow students to have hands-on expe-5 rience on actual space projects. The nanosatellites' launching "low price" and short development time attracts not only universities but also space enthusiasts. Many companies also have demonstrated interest to test their products and innovations in space through nanosatellites.

The CubeSat standard definition in 1999 (by Stanford and Cal Poly Univer-10 sities) significantly increased the interest in small satellites. It defines a modular 10cm x 10cm x 11.35cm (1U) cubic shaped satellite, planned to operate in Low Earth Orbit and to be designed mostly with commercial off-the-shelf (COTS) components [1] [2].

However, along with the spread of the small sized satellite concept, a high 15 failure rate has been noticed [3]. Hardware and software design mistakes and failures on the integration process appear among some of the causes. Qualifi-
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cation and verification tests performed at laboratory are intended to avoid this problem [4]. A Platform to guide hardware and software design for small satellites have also been proposed. Through component-based topology, the design platform allows software reutilization, diminishing design time and increasing the system reliability [5]. Also, a CubeSat mission design tool to estimate risk relationship appears as an interesting solution to predict and mitigate failures for small satellite missions [6]. Nevertheless, these strategies do not fully cover all the failure possibilities encountered during a real space mission.

Therefore, some strategies have been proposed to address this issue. Tests with atmospheric balloons [7] have emerged as a low cost and effective solution to test nanosatellites. Although it allows important preliminary communication tests between the satellite and the ground station, it does not evaluate the satellite behavior under the severe conditions of a rocket launching.

In a more elaborated solution, sounding rockets [8] have been used for preliminary tests of nanosatellites, reducing failures before the mission. In this case, the sounding rocket ejects the nanosatellite after reaching a predetermined altitude. The satellite then communicates with a ground station for a period of time, before hitting the ground.

Although this is a more complete test than the ones performed with the atmospheric balloons, normally, nanosatellites only record/transmit data after they are released from the rocket. Actually, this occurs not only in preliminary tests with sounding rockets, but also during real missions. Normally, nanosatellites are activated only several minutes after they are ejected from the rocket. This precludes nanosatellites to record/transmit data during the rocket flight.

Many nanosatellite failures may occur during the rocket flight and may not be analyzed and understood due to the lack of information in this critical period of the mission. Several nanosatellites do not transmit after the rocket ejection procedure and the developers have no idea about what may have caused the failure(s).

In this work an innovative procedure to test nanosatellites subsystems on board sounding rockets is presented. Instead of ejecting the nanosatellite, the
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proposed test is completely performed aboard the sounding rocket. This allows the nanosatellite to record data during all the phases of the rocket flight (including the launching). The nanosatellite starts operating before the rocket lift-off and it remains operating along the whole flight. The satellite data are transmitted to the rocket electronics, which retransmits the data to the ground station. With this strategy, one may have access to nanosatellite failures information that may occur during the rocket flight. Temperature increases during flight, high acceleration levels, cables issues due vibration, powering fails due to battery damage, are among some problems that may occur during launching and flight, which may be detected with the proposed test procedure.

An important remark here is that the proposed test procedure is not designed to substitute the others. It shall be interpreted as a complement to the aforementioned ones. The main technical contribution on this procedure is the capability to analyze satellite subsystems' behavior under the rocket launching and flight conditions. Although stratospheric balloons (or flying subsystems with drones) allow longer and more appropriate strategy for communication tests, they do not emulate the harsh environment of rocket launching and flight conditions. Even real nanosatellite missions can not provide data to this analysis, since the spacecrafts are placed in the P-POD (or equivalent launching device) during the flight, obligatorily in switch off condition. Laboratory qualification tests are essential, and they may be performed with the satellite subsystems collecting data. However, the physical phenomena are treated separately in each test (vibration, acceleration, mechanical shock, temperature cycling, etc.), and normally, in a lower level of intensity (specially for nanosatellite projects).

These are the reasons why this test procedure has been proposed, believing that new data may arise from these suborbital flights, which will help nanosatellite designers in their projects.

Besides the procedures of nanosatellite's subsystem configuration and integration, this paper also describes the design of the Multi-Mission Platform (MMP), which is an embedded system conceived to allow nanosatellite tests (and other experiments) aboard sounding rockets. This platform is based on a
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modular architecture, which is a stack of three printed circuit boards (processing, acquisition and power units). Also, the ground station decoder software is presented in this work. It is based on LabVIEW language and its main application is to decode and save transmitted data along the rocket flight.

Finally, the paper presents the results of the FloripaSat (1U CubeSat) subsystems tested aboard a VSB-30 sounding rocket. Three engineering model subsystems have been tested: Electrical Power Subsystem (EPS); Telemetry, Tracking and Command (TT&C); and On Board Data Handling (OBDH). The flight data of each subsystem are presented and discussed. This analysis will help preventing eventual failures on FloripaSat flight model, as well as, guide the design to improve some of its features.

The remaining of this paper is organized as follows: Section 2 presents the Multi-Mission Platform, designed to interface the nanosatellite subsystems and the rocket electronics; Section 3 explains how the microgravity experiment was planned, presenting the nanosatellite subsystems test configuration; Section 4 presents the ground station data processing software; Section 5 discusses the integration process; Section 6 explains the acceptance tests procedure; Section 7 discusses the suborbital flight results; finally, Section 8 concludes the paper.

Multi-Mission Platform

Sounding rockets have an electronic system (rocket electronics) responsible for receiving data from the payload experiments, and for transmitting them to 100 a ground station. Therefore, any experiment which intends to transmit data to the Earth during the flight, shall communicate with the rocket electronics. The rocket electronics then sends the experiment data to a ground station through radio signal.

On the other hand, nanosatellites may communicate with ground stations 105 by themselves, using their own radio and antenna. However, no external antennas (except the rocket main antenna) have been allowed for our sounding rocket flight. This has precluded the direct test of the TT&C radio system.
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Consequently, the nanosatellite data had to be sent to the rocket electronics, which transmitted the data via radio to the ground station, through the rocket main antenna.

In case there were sounding rocket missions that allowed the satellite to use its own antenna, the flight test of this subsystem could be completely accomplished, but other factors as rocket shielding and antennas interference should be considered.

Another important information is that in a rocket mission the payload is not always rescued after flight. Therefore, sending data through telemetry is extremely recommended for experiments tested on sounding rockets. Simultaneously, as a redundant option, the experiments' electronics shall save information in their own internal memory, for the case of accessing them later. From the experience obtained in previous sounding rocket missions, telemetry is also not always fully received and the internal memory may be the only way to obtain the flight data [9] [10].

Beside this, the experiments are strongly recommended to provide communication with the bunker, through a specific cable named umbilical. Figure 1 shows the ideal pre-flight experiment electronics configuration regarding the communication with the rocket and the bunker.

With this in mind, there were two design options for our case: Either we modified the nanosatellite hardware and software to directly communicate with the rocket electronics and with the bunker, or we could create an intermediate embedded system to attend the sounding rocket mission specifications. Modifications on the nanosatellite design would imply in testing a different setup than the final version of the satellite. In addition, it is not recommended to make the nanosatellite more complex in order to test it. Therefore, a dedicated embedded system has been designed to test the nanosatellite subsystems (and other experiments) in sounding rockets. We named it the sounding rocket Multi-Mission Platform (MMP), shown in (Figure 2).

Besides the capability of testing nanosatellites, the Multi-Mission Platform is intended for scientific thermal experiments [11] Multi-Mission Platform. However, some characteristics are important to be mentioned, in order to comprehend the nanosatellite subsystems test procedure and the needed hardware/software resources to accomplish this goal.

According the mission requirements, the communication between the experiment electronics and the bunker shall be through RS-422 standard due to the distance between the bunker and the rocket launching platform (See Section 3.4 for detailed information on the communication protocol). Besides this, there shall be a second communication channel (between the experiment and the rocket electronics). For safety reasons both communication channels must be isolated, avoiding any eventual electrical instability to be propagated to the rocket electronics. This is the first reason to have a Multi-Mission Platform, since this kind of communication is not implemented in nanosatellites. The communication transceivers (ADM2682E) have been placed on the MMP data acquisition PCB. Figure 3 shows the transceivers electrical schematic, where signals with the label uZed come/go to/from the MMP processing PCB.

Also in the mission requirements it is stated that the experiment electronics must present a safety mechanical turn on/off system. The power on command shall come from the bunker, using a control box. This is not a requirement for nanosatellites, but for the rocket mission. Therefore, the Multi-Mission Platform is provided with an isolated push button circuit to switch it on and off. Figure 4 shows the push button electrical schematic. Figure 5 shows the control box, placed at the bunker.

Finally, the rocket electronics keeps all the experiments informed regarding the lift-off and the microgravity condition. This is achieved by switching two pins/lines to ground (lift-off and uG pins). It is extremely important to the experiments to obtain these events triggering time reference in order to map the experiments results with the flight dynamics. Therefore, the Multi-Mission

Platform has an analog circuitry to identify the events, as shown in Figure 6.

Besides the analog circuitry, the embedded software is responsible for including 

The Experiment

The experiment to be performed in the sounding rocket is called New Medium to the TT&C subsystem (via SPI), which sends the data to the ground station (via radio transceiver). Also, in case the satellite receives a telecommand (via radio transceiver), the TT&C subsystem sends the data to OBDH (via SPI) in order to process it.
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Figure 8 shows the FloripaSat configuration to operate in orbit, which differs from the configuration of the sounding rocket experiment (Figure 9). As mentioned in Section 2, it was not allowed to place an external dedicated antenna to directly test the TT&C communication. For this reason, a different communication configuration has been planned for the suborbital flight test with no hardware modifications made on the nanosatellite subsystems. For the sake of experiment electronics simplicity, only minor changes on the communication protocol were performed (see also Section 3.4) for complementary information.

In case of in-orbit configuration (Figure 8) the transceiver shall operate at 437.5Mhz, transmitting and receiving signals, while the beacon shall only transmit (unidirectional TM downlink) at 145.9Mhz. On the other hand, for the sounding rocket experiment (Figure 9), the beacon radio was configured to transmit data internally to the transceiver radio. Even without the antennas, the radio frequency circuits should be able to send and to receive data to each other, due to their proximity (both circuits were placed at the same PCB). To make the internal communication possible, the beacon radio trans- Platform Processing PCB via UART, and finally, the data frame is sent to the rocket electronics via RS-422. Figure 9 summarizes this data flow process.

An important remark is that the beacon configuration to change its transmitting frequency from 145.9Mhz to 437.5MHz is performed externally, through the computer, writing in the chip internal memory. This means that no software is changed on the beacon side when comparing the in-orbit configuration scenario and the sounding rocket experiment. 

Mission frame definition

Before discussing in details the FloripaSat's telemetry data, it is important to recall that the Multi-Mission Platform acquires data not only from the Flori-paSat subsystems, but also from a thermal experiment, as previously stated. Be- 

FloripaSat telemetry data

Unlike the thermal experiment data, the FloripaSat telemetry data are not generated at the Multi-Mission Platform. It is the nanosatellite's OBDH task to acquire data from subsystems and sensors, to generate an internal frame and to send it to the MMP through UART. Notice that the FloripaSat frame is then split by the MMP and encapsulated in its own frame previously described.
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Since the FloripaSat OBDH main function is to control the nanosatellite tasks execution and build up the transmitted data frame, only few bytes were necessary to evaluate its own performance. Three OBDH features were tested with no need to include information on the data sent: 1 -receiving data from sensors and from other subsystems; 2 -the data frame generation routine; 3the communication with the transceiver. Additionally, an internal counter (two bytes for seconds and two bytes for milliseconds) has been implemented in the OBDH microcontroller. The counter data was sent as an internal parameter.

Also, two bytes from microcontroller internal temperature have been included

in the main data frame. Finally, a status byte has been generated, signaling eventual microcontroller anomalies in tasks execution.

The OBDH subsystem also has an Inertial Measurement Unit (IMU), whose data have been included in the data frame sent by the FloripaSat. Both acceleration and rotation have been measured, in three different axis. Every measurement consists of two bytes, totaling twelve bytes of information.

The main EPS subsystem functionality is to control the battery charge and discharge process, as well as to ensure the proper power distribution for all the nanosatellite subsystems. Normally, EPS subsystems have a battery monitoring chip, circuit or subroutine. Therefore, the piece of information selected to evaluate the EPS performance was related to the battery monitoring. Input power is also a crucial aspect to be monitored, however, no external solar panels were allowed for the VSB-30 flight. Therefore, regarding the power input test, only Therefore, in order to the MMP to identify the FloripaSat data frame (higher level verification), three bytes were defined as Start of Frame, and three bytes as the End of Frame (EOF). These bytes allow the ground station decoder software to correctly identify the beginning of new upcoming data frames, after receiving an eventual broken frame. Finally, an eight bit CRC has been implemented to identify corrupted data frames. The list containing all field in FloripaSat data frame is shown next.
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Communication protocol specification

The VSB-30 electronics receives data from the payload through an RS-422 interface. This interface is not common on nanosatellite applications due to its voltage requirements. Instead of including an RS-422 driver in the FloripaSat, in order to attend the rocket requirements, it was placed on the Multi-Mission Platform (see Section 2).

Two different communication channels have been implemented on the Multi-Mission Platform (see Figure 3). The first one is dedicated to the communication between the bunker and the experiment electronics, before the rocket lift-off, where the main limitation on this channel is the distance between the bunker and the rocket (which is below the RS-422 standard limitation of 1500 m). This is a point to point channel and could be taken to the physical bandwidth limits defined by the standard. The second channel concerns the communication of the experiment and the rocket electronics used to transmit the data to the ground station. It is limited in bandwidth due to all the payload experiments on board the rocket using the same channel. The maximum allowed baud rate for each experiment on board was 57,600 bps.

The Multi-Mission Platform receives FloripaSat data frames through a UART port. There is no synchronization protocol between them but, to ensure that no data are lost due to overflows, the Multi-Mission Platform defines a maximum UART baud rate and guarantees that below that limit, it is able to store and transmit all the received data frames. The Multi-Mission Platform initially parses the received data to ensure it follows the data frame specification presented previously. It initially searches for the SOF bytes and then it buffers all the data it receives, until it finds the EOF bytes. Next, it checks if the CRC is valid. If it is, the data frame is stored for transmission with the rest of the experiment data. In case of a mismatch in the CRC, the data frame is discarded.

One important remark is that the communication between the EPS and the beacon microcontroller, which shall occur for in-orbit configuration (see Figure 8) has not been tested on the sounding rocket test procedure (see Figure ,   where there is no EPS-beacon UART communication). The reason for this
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decision is that, in a real mission, the EPS data goes to the ground station via the beacon radio, and not back to the OBDH, as designed for this experiment.

Implementing this for the sounding rocket mission would allow testing the EPS -beacon communication, but on the other hand, it would cause an overhead on the OBDH functionality. The OBDH would have enough computation resource for this task, but the embedded code would be considerably different from the OBDH flight software for the satellite mission in orbit. Therefore, the decision was to keep it simple, not testing this portion of the protocol in the suborbital flight.

A protocol modification was also necessary on the beacon/transceiver communication. In case of in-orbit operation, when a telecommand is received by the transceiver, the OBDH decodes it and executes the command. In the suborbital mission configuration, the "telecommand" received by the transceiver (sent by the beacon) does not causes the OBDH to execute any task. In fact, this "telecommand" is a counter running on the beacon microcontroller, which has its current value sent periodically (every each increment) to the transceiver.

This was made to simplify the internal communication test, since the beacon is not supposed to generate telecommands. This internal communication between beacon/transceiver shall never occur in orbit, and for this reason the proposed protocol has been simplified, with the intention to test the RF link only.

On-ground data processing software

In order to send as much information as possible to the ground station, both the thermal experiment and the FloripaSat data were transmitted in raw format. As explained in Section 3.2, the data were packaged to frames with SOF, Number and CRC bytes. Therefore, a software application was implemented to allow data unpacking, processing and logging at the bunker during the rocket flight. The software was based on LabVIEW language, running in a notebook placed at the bunker.

As mentioned previously, the mission main data frame has 432 bytes (72 The second processing block receives the vector with 36 bytes and, through another for loop, rearranges them in a vector with 18 positions. This reorganization is performed in order to generate the 18 data observed in Figure 12:

M
timestamp, accelerometer, gyroscope, current, voltage, etc. In addition to rearranging the data, some of them go through formulas in order to be converted to meaningful data. This 18 position vector is the output of the Fsat subVI. It is reinserted into the mission data array (which also contains the processed data from thermal experiment) and then saved to a file. Therefore, the on-ground After that, the FloripaSat PCBs internal communication were tested. To achieve this, a simple periodic routine was implemented to send a vector of fixed bytes from EPS to OBDH through I 2 C protocol. To verify the correctness on this internal communication, the OBDH was configured to send the vector of bytes to a computer, through UART. After validating the internal communication, the EPS software has been modified to acquire real data from its sensors.

Also, the OBDH included real sensors data to the FloripaSat data frame sent to the computer. Finally, the communication between TT&C and OBDH has been validated. A counter has been implemented on the beacon microcontroller, for each performed transmission to the transceiver. The SPI communication between these two subsystems has been validated by checking the counter increases on the final data vector sent from the OBDH to the computer.

Then, the integration with the MPP initiated. Both electronics were placed side-by-side and the activating system has been wired up from MPP to Flori-paSat subsystems. It is important to understand how this solution has been implemented. Nanosatellites are normally turned on by deployment switches attached to the satellite's structure [START_REF]The CubeSat Program, Cubesat design specification rev. 13[END_REF]. These switches remain deactivated when the satellite is inside the launcher, causing the satellite to electrically disconnect the power system from the others. Once the satellite is launched, these switches electrically close and the satellite is powered on.

The activating circuit schematic, considering the case of a satellite mission, is shown in Figure 14. Two P channel MOSFETs are connected to the deployment switches and to the Remove Before Flight (RBF) to power off the subsystems.

When the RBF is placed or/and the deployment switches are open (this is the condition when the satellite is placed in the deployment mechanism, e.g. P-POD), the P-channel MOSFETs do not allow the current to flow from the battery to the load. When the satellite is placed in the deployment mechanism, the RBF shall be removed, since the deployment switches will remain opened.

When the satellite is released in orbit, theses switches close, and the satellite is powered.

M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT

However, in the sounding rocket mission, this activating system needed to be changed. First of all, there was no deployment mechanism to place the subsystems in, since they were not deployed from the rocket, as in a common satellite mission. Secondly, the FloripaSat subsystems shall be activated by the MMP, when it receives the lift-off signal. Therefore, the FloripaSat EPS hardware was configured in order to attend the sounding rocket mission requirements.

It is important to differentiate hardware configuration from modifications in hardware. The first concept is related to components values that may be changed, or components that may or not be assembled in the PCB. On the other hand, the hardware modification concept implies on changes on the PCB circuit, which results in a new PCB design or in irreversible re-manufacturing changes on the PCB (e.g. cutting tracks). From the original FloripaSat switching circuit (Figure 14) to the modified version (Figure 15), only a new hardware configuration was defined for the EPS. A FloripaSat engineering model pair of PBCs was assembled specifically for the sounding rocket campaign, therefore the hardware could be previously configured.

The resistor R26 in Figure 15 was mounted with 133kΩ, instead of 0Ω(as in the original schematics shown in Figure 14). The Remove Before Flight connector was not mounted on the PCB, and its terminals have been shortcircuited. End-rail switches connectors have not been mounted (since those switches are not used in the sounding rocket experiment); jumpers were mounted in their places. Resistor R80 has not been mounted (Figure 14) and the NPN transistor has been mounted in its place, with the transistor's base pin being wired to the Multi-Mission Platform (Enable Multi-Mission Platform). As the P-channel MOSFET only conducts when it has a low level voltage in its gate, this configuration allowed the Multi-Mission Platform to enable the FloripaSat subsystems, as shown in Figure 15.

After that, the FloripaSat was connected with the Multi-Mission Platform Then, the flight version of the software was programmed into the boards before stacking them, since the programming connectors were not accessible after mechanical integration. After this step, the FloripaSat PCBs were stacked.

The electrical connection between boards is performed through a PC-104 style connector. Metallic spacers have been screwed between PCBs to guarantee mechanical stability. The connections between FloripaSat subsystems and the MMP were made by soldering wires. To increase the mechanical stability of electronic components on the PCBs, silicone was poured over the most sensitive areas of all subsystems. Figure 16 shows a photo of the FloripaSat OBDH, EPS and TT&C subsystems under integration. After this test procedures, the FloripaSat subsystems were attached to the top part of the MPM-A aluminum case. Also, the batteries have been placed at the lower compartment of the aluminum case. Figure 17 shows a photo of the MPM-A instrument under integration, just before closing it. 
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Flight results

This section is dedicate to present the nanosatellite results during the sounding rocket mission. The intention is to verify the nanosatellite operation under severe conditions, once the nanosatellite was operating even before the rocket lift-off.

However, before analyzing the flight data, it is important to briefly describe the mission phases, in order to correctly interpret the results.

• Phase 1 -The MMP and the FloripaSat have been turned on with the rocket at the launching platform 30 minutes before the rocket lift-off. At this moment, there was a physical communication between the MMP and the bunker, through the umbilical cable. This allowed receiving data from the FloripaSat and also charging its battery (see Figure 1).

• Phase 2 -Three minutes before the launching, the batteries charging process (for both the MPP and the FloripaSat) was intentionally interrupted, due to safety reasons, as a mission requirement. However, the MMP and the FloripaSat remained operating and sending data to the bunker through the umbilical cable.

• Phase 3 -At the lift-off moment, the umbilical cable was disconnected and the rocket entered on flight mode. From this moment on, data have been sent through the rocket radio communication system only. Flight data were received by the ground station antenna and sent to the bunker to be processed by the on-ground data processing software.

• Phase 4 -After nearly 1 minute the rocket should have entered the microgravity phase. Unfortunately, due to the rocket malfunctioning, which is not related to the experiments, this phase was not observed in this flight, and the respective related data are not available.

• Phase 5 -After less than 3 minutes the rocket payload parachute system has been activated and the payload safely landed on sea nearly 6 minutes after the lift-off.
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The rocket electronics generates two important signals to the payload experiments: lift-off and microgravity signals. These signals are important time references for data analyses. However, since there was no microgravity condition in this flight, only the lift-off signal has been received on the MMP. In our experiment, besides the lift-off signal time reference, the batteries charging interruption (which has occurred before the lift-off) has also been registered in order to be considered on mission data analyses. The parachute activating system generates no signal to the experiments, therefore, there is no specific time reference for this flight event.

The first results to be analyzed are the FloripaSat EPS data, acquired before and during the flight by the battery monitoring chip. This chip communicates with the EPS microcontroller and measures battery cells voltages, battery current, battery remaining electric charge and temperature. The acquired data are sent from the EPS microcontroller to the OBDH microcontroller through the I 2 C protocol, as shown in Figure 9.

Figure 20 shows the FloripaSat battery cells voltages behavior along the time. During the phase that FloripaSat was operating with the rocket at the launching platform (nearly 27 minutes), one may note that both battery cells remained nearly at the same voltage level. When the charging process was interrupted, the cells voltage instantaneously dropped, but remained on the expected operating level. Also, it is possible to identify a slightly voltage drop for both battery cells during the flight, due to the discharging process. No unexpected behavior has been identified on this result.

Figure 21 shows the FloripaSat instantaneous battery current behavior during the mission. Negative currents represent the battery discharging behavior.

This plot shows that, even during the charging period, the battery current remained negative. The first reason for this behavior is that the subsystems were operating during the battery charging process and they demanded more current than the charging current. The second reason was the adopted charging methodology, which is constant voltage charging. It is well known from the literature that constant voltage is not the most appropriate way to charge lithium-ion batteries [15], however, this was the safest manner to charge the battery at that critical moment. Constant current charging could lead the battery cells to over-voltage state (there was no external charging control system available), which would activate the battery protection system minutes before the flight.

In order to avoid this unnecessary risky condition, a most conservative approach has been chosen.

This charging issue faced during the mission has led to a charging circuit design, which will be used for battery external charging procedure before the FloripaSat flight. Also, the research group is testing a constant current charging circuit block to be implemented between the solar panels and the battery.

This could reduce the EPS harvesting energy capability, but extend the battery lifetime. Therefore, this different architecture is under consideration for future EPS designs. This data is extremely valuable to the FloripaSat in order to schedule its tasks.

Figure 22 shows a slightly decrease on the battery remained electric charge before the flight. This occurs, as explained above, due to the higher consuming current than the charging current. After the battery charging interruption, one may note that the battery discharging rate has increased. Also, this figure shows that during the flight, the battery discharging rate was the same than before the flight, since the subsystems power consumption has remained the same.

Figure 23 shows the battery monitoring chip internal temperature. A considerable temperature increase may be noted in this plot. Two are the main reasons for this effect: the first one is that the thermal experiment dissipates heat to the instrument aluminum casing (pre-heating operation mode), which leads to an overall temperature increasing inside the electronic compartment; the second reason is the chip internal self heating due to its operation. One should note that the heat dissipation to the instrument aluminum casing, due to the thermal experiment, may affect the thermal environment for the nanosatellite when the spacecraft is in orbit. Therefore, the failures causes (or the failures themselves) may not be identifiable and recorded without the proposed test procedure or similar. Although the thermal environment inside the rocket is not representative when compared with the in-orbit condition, it may be considered a solution to record the nanosatellites' systems behavior during the rocket flight, as a matter of analysis, once all satellite shall face this mission stage.

Figure 25 shows the acceleration measurements performed by the OBDH IMU (MPU6050). From the plot, one may note only the g acceleration on z-axis before the launching, since the rocket z-axis was perpendicular to the Earth's surface at the launching platform. Also, as expected, there was no acceleration on axis x and y before the launching. Figure 25 Figure 26 shows the rotation measurements performed by the OBDH IMU.

Before the launching, as the rocket was attached to the launching platform, no rotation was measured on any axis. After launching, fast rotation around z axis was recorded, due to the ascendant spinning movement of the rocket. The plot shows a saturation on the z axis measurement, which could be avoided using a dynamic IMU range reconfiguration. However, this rotation rate is not expected to occur when the satellite is in orbit. Therefore, no additional IMU reconfiguration software routine has been added for the sounding rocket mission.

At 1800 s, rocket attitude control was activated but due to the belt separation problem it failed. At 1900 s parachute was opened. Finally, a telemetry data loss shall be performed in order calculate the percentage of missed frames along the mission. This is an important parameter to evaluate the verification layers proposed both in the embedded software as well as in the ground station software. Since the rocket payload has been recovered, it was possible to compare the expected number of frames received by the ground station with the number of frames written in the OBDH internal memory. After computing both internal memory saved and telemetry received number of frames the conclusion was that 95.44% of the frames have been successfully received by the ground station. 
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 9 Figure 9: FloripaSat engineering model architecture diagram for the suborbital test

  data to the ground station, the Multi-Mission Platform packs the thermal experiment data (174 bytes) and the FloripaSat data (42 bytes) into a multiple frames containing 432 bytes (216 payload bytes) every sampling period. The Multi-Mission Platform transmits the acquired data split into 72 frames of 6 bytes. The first 58 frames concern the thermal experiment data frame and the last 14 frames concern the FloripaSat telemetry data. Further discussions regarding each of the thermal experiment data is beyond the scope of this work. Therefore, the focus is kept on the FloripaSat. Figure10shows the structure of the data frame transmitted by the Multi-Mission Platform to the ground station.

Figure 10 :

 10 Figure 10: Data frame structure with the corresponding bit number above each field.

  the battery charge procedure (established on ground, before the rocket lift-off) has been monitored. Eleven bytes have been reserved for the EPS subsystem, as follows: battery electrical input/output current (two bytes); battery voltage (four bytes); battery monitoring chip internal temperature (two bytes); battery remaining electric charge (two bytes); and finally the EPS status (one byte).It is important to mention that the FloripaSat internal data frame integrity is firstly verified by the Multi-Mission Platform (FloripaSat -MMP UART communication integrity verification). Later, in a second verification level, the ground station processing software verifies the mission main data frame (rocket elec-M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT tronics -ground station radio communication integrity verification -see Section 4).

  A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPTframes of 6 bytes) where the last 84 (14 frames of 6 bytes) are the ones related to the FloripaSat. Therefore, the LabVIEW software has been designed to identify the FloripaSat frames in order to unpack and process them. Since each frame contains 3 bytes of data (the other 3 bytes are SOF, Number and CRC), there are 42 data bytes in total which contain information from the FloripaSat (payload bytes). These are the bytes that must be converted by the LabVIEW software into readable information to be saved during the rocket flight.

Figure 11 shows

 11 Figure11shows the FloripaSat data frame extraction from the mission data frame. It occurs in two parallel paths. The first one (upper part of Figure11), extracts the frames 60 to 71, which are the FloripaSat data frames excepting the EOF and the SOF. These 12 frames go to the Fsat subVI in order to be processed. This VI converts the data to readable values, sends them to the LabVIEW Front Panel (left hand column (Data) in Figure12). For each data value on the LabVIEW Front Panel (left hand column), there is a label to identify it (e.g. Clock(s), Clock(ms), Internal Temp., etc.). After the data unpacking and conversion, they are saved in a .csv file.

Figure 11 :

 11 Figure 11: LabVIEW block diagram of FloripaSat data unpacking process

Figure 12 :

 12 Figure 12: LabVIEW front panel for the FloripaSat received data

  allows the converted and raw data being visualized during the flight and saved in files for further analyses.

Figure 13 :

 13 Figure 13: LabVIEW subVI of FloripaSat data decoder
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 1415 Figure 14: Original switching on circuit from FloripaSat

Figure 16 :

 16 Figure 16: FloripaSat OBDH, EPS and TT&C subsystems under integration

Figure 17 :

 17 Figure 17: FloripaSat subsystems under integration with the MPM-A instrument

Figure 19 Figure 18 :

 1918 Figure19shows the MPM-A instrument right before the acceptance tests at the DCTA. Due to military restrictions, it was not possible to take pictures of the MPM-A instrument under acceptance tests. The performed tests were: mass test; fit test; and vibration test. Vacuum tests were not needed because the rocket payload modules were pressurized and hermetically sealed.After the MPM-A instrument has passed the acceptance tests, the rocket payload and its electronics were integrated and submitted again to a new acceptance test. Next, when the rocket payload has passed through all the acceptance tests, it was partially dissembled to be sent to the Alcântara Launching Center. After the final integration at the launching center, the rocket was ready for flight.
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 20 Figure 20: Battery cells voltages

Figure 21 also

 21 Figure 21 also shows that, after the lift-off, the battery current remained constant along the whole flight, on the expected level of nearly 23 mA (global current consumption of all modules).

Figure 22 Figure 21 :

 2221 Figure22shows the electric charge of the battery before and during the

Figure 22 :

 22 Figure 22: Battery remaining electric charge

Figure 24 Figure 23 :

 2423 Figure 24 shows the OBDH microcontroller internal temperature. The temperature curve has a similar behavior than the one acquired by the EPS. This result confirms the consistence on the results, since two different sensors, in two different PCBs have registered similar results. The temperature increase rate observed in Figures 23 and 24 is significantly higher than the ones applied on qualification tests (for instance, in thermal cycling test). The combination of harsh conditions verified along the rocket flight stage (high vibration, acceleration, mechanical shock) associated with this high increasing rate of temperature may cause satellite failures noted only

Figure 24 :

 24 Figure 24: OBDH microcontroller internal temperature

  Figure 25: OBDH acceleration measurements

Figure 27 Figure 27 :

 2727 Figure27present a comparison between data received on the ground station and data saved in the OBDH internal memory along the flight for the OBDH microcontroller internal temperature measurement. One may note that there are slightly more points from the internal memory data than from the telemetry data, which represent the 4.56% on data losses.
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The highlights of the paper are the following:
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• Embedded system to interface the nanosatellite subsystems and the rocket electronics.

• Design description, test and on-flight validation of a Multi-Mission Platform.

• Ground station data processing software.

• Nanosatellite subsystems test results from a sounding rocket flight.
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