
HAL Id: lirmm-02416052
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02416052v1

Submitted on 17 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boolean Recombinase-Based Devices
Guillaume Pérution-Kihli, Sarah Guiziou, Federico Ulliana, Michel Leclère,

Jérôme Bonnet

To cite this version:
Guillaume Pérution-Kihli, Sarah Guiziou, Federico Ulliana, Michel Leclère, Jérôme Bonnet. Boolean
Recombinase-Based Devices. TPNC 2019 - 8th International Conference on Theory and Practice of
Natural Computing, Dec 2019, Kingstone, Canada. pp.82-94, �10.1007/978-3-030-34500-6_5�. �lirmm-
02416052�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02416052v1
https://hal.archives-ouvertes.fr

Boolean Recombinase-based Devices

G. Pérution-Kihli1[https://orcid.org/0000−0002−8502−2465], S.
Guiziou2,3[https://orcid.org/0000−0002−1185−5421], F.
Ulliana1[https://orcid.org/0000−0002−9192−9573], M.

Leclère1[https://orcid.org/0000−0003−0484−3964], and J.
Bonnet2[https://orcid.org/0000−0002−8420−9359]

1 LIRMM, CNRS UMR 5506, University of Montpellier, France
2 CBS, INSERM U154, CNRS UMR 5048, University of Montpellier, France.

3 Department of Biology, University of Washington, Seattle, Washington 98195, USA

Abstract. This paper relates to a central problem in synthetic biology,
which is that of designing Recombinase-based biological devices by match-
ing a functional specification expressed as a Boolean function. This task is
challenging as exploring the space of possibilities is typically unfeasible,
and therefore many non-trivial design alternatives remain unexplored.
Also, the issue has been so far regarded mainly from a practical perspec-
tive and is still lacking of formal foundations on which the definition of
algorithms for assisting the biologists in their design tasks can be based.
In this work, we present the first formal study of the problem, and give
a formal semantics for a family of Recombinase-based biological devices.
We then exhibit a set of semantic properties leading to the definition of
representative devices, a notion that allows one to express infinitely large
classes of design possibilities in a finite way. Building on this, we then
provide a terminating algorithm for generating representative devices for
n-input Boolean functions. An open online database of 18M design solu-
tions for 4-inputs devices generated with our method has been released
at http://recombinator.lirmm.fr.

1 Introduction: the Design Issue

One of the main targets of the field of synthetic biology is that of designing
new biological systems (also called devices) by matching a functional specifi-
cation with state of the art techniques in biological engineering. As a concrete
example, a novel type of bacteria can be assembled for clinical diagnosis pur-
poses to react to the presence of a combination of molecules by exhibiting a
fluorescence recognizable via microscopy [9]. This is a challenging task as, when
designing a new biological device, the space of possibilities rapidly becomes too
large to be explored and the biological reliability of each of them impossible to
be experimentally tested. This implies that biological engineering solutions often
fall back to best-practices and established architecture patterns, and many non-
trivial design alternatives remain unexplored. Synthetic biology has nowadays
key applications in health, environment, and manufacturing, and there is there-
fore a huge need for tools assisting biologists in best engineering their biological
devices [6].

2 G. Pérution-Kihli et al.

The specification of a new biological device includes 1) its intended behaviour
and 2) the biotechnologies to be used to implement it. The biologist formalizes
the behaviour of a device as a function of its inputs. Intuitively, the purpose
of this is to precisely describe how the device must react to the substances in
the environment where it will be deployed. Many approaches are today used for
synthetic biology. Among them, we mention transcriptional regulators [10], RNA
molecules [13], proteins [5], and Recombinases [3]. In this work, we focus on the
problem of assisting the design of biological systems whose behaviour is 1) speci-
fied as Boolean functions and 2) based on (single-layer single-cell)Recombinases.

Boolean functions affirmed as an intuitive means for biologists to precisely
define the device behaviour [3]. Inputs serve to acquire the environment stimuli.
A biological system with a binary output means that it emits a signal (or not)
depending on the inputs. In biological terms, such a “signal” corresponds to the
outcome of a well understood biological process called gene expression, which
is the natural process by which living cells produce proteins. In other words,
gene expression is the natural process exploited by biotechnologists to artificially
assemble the DNA of living organisms implementing logic functions [3].

Our interest in Recombinase-based devices stems from their importance in
biological engineering. It is worth mentioning that Recombinase-based devices
are named after Recombinases [11], which are the enzymes used to control gene
expression. This type of devices offer several design advantages. First, they can
be adapted to various species of living organisms with minimal modifications [12,
2]. Then, and most importantly for the study conducted here, they are modular
and compact. Modular means among other that the device inputs can be eas-
ily interchanged. From a biological engineering point of view, this implies that
the same device architecture can be reused to implement different logic func-
tions (by simply interchanging the inputs). This is reminiscent of the notion of
P -class introduced for analogous problems in circuit-logic design [1]. Compact
means that this type of devices allow the biologists to minimize the number of
living cells implementing together a certain logic function, hence increasing the
device reliability. It is known that any Boolean function can be implemented
over multicellular [8] or multi-layer devices [4] (i.e., where distinct “parts” of the
Boolean function are implemented separately). Here, we will focus on the study
of the capacity of single-layer single-cell devices whose expressivity limits, that
is, the Boolean functions they can implement in a “monolithic” way (i.e., with-
out distributing the Boolean function in several parts), are still unknown. From
a computational point of view, recombinase-based devices enable two types of
operations, named inversion and excision, on the elements controlling the pro-
cess of gene expression. Hence, abstracting away, biological devices can be seen
as programs, written in a specific formal language allowing for inversion and
excision like operations on word expressions, that implement a logic function.

Despite the importance of recombinase-based devices in synthetic biology,
the development of most design solutions mainly follows best-practices and fixed
architecture patterns which limit the possibilities of such type of devices. Indeed,
so far mostly 2-input functions only have been considered [3] with the exception

Boolean Recombinase-based Devices 3

of [12] that considered 3-input functions implemented with excisions only (that
is, all designs using inversions have not been considered). Also, at the best of our
knowledge, no foundational study of the properties of devices has been done.

The first goal of this paper is to present a formal study of recombinase-based
devices (presented in Section 2) which can serve as foundations of the develop-
ment of new biological engineering solutions for this type of devices. Precisely,
we present the first formal semantics allowing one to compare them from a com-
putational point of view (Section 3). From this, a set of minimality properties
naturally emerge, which lead us to the notion of canonical and representative
devices, by which infinitely large classes of design solutions can be expressed in
a finite way (Section 4). The second goal of this paper is to actually compute
devices that can help biologists defining their engineering solutions. We then
present a terminating algorithm which allows one to generate all representa-
tive canonical devices for n-input systems (Section 5). Then, since each device
has an associated Boolean function, the output of this algorithm can be used
by biologist as a starting point to design new devices starting from a Boolean
logic specification. An online platform for search and detailed comparison of
18M canonical and representative design solutions of up to 4-input devices gen-
erated with our method has been released (http://recombinator.lirmm.fr).
Finally, our results also indicate some interesting expressivity limits for single-
layer single-cell devices (Section 6). Indeed, the generation process shows that
8% among all 4-input Boolean functions cannot be implemented. We also show
that they cannot implement all n-input Boolean functions, for every n ≥ 7.

2 Recombinase-based Devices

This section presents the main biological aspects of Recombinase-based devices
[11]. The notions presented here are intended to introduce the reader to the for-
mal semantics presented next. In biological terms, a device is a DNA construct
in a living cell capable of gene expression. The DNA is artificially assembled
thereby controlling gene expression according to the stimuli of the environment
where the cell is. Roughly speaking, the two macro steps of gene expression are
called transcription and translation. First, the cell DNA is copied to RNA (tran-
scription). Then, the RNA is used to manufacture proteins (translation). By this
process, a bacteria can for instance express a protein triggering a fluorescence.

To control gene expression, the main goal is to control the transcription phase
of the device, i.e., which segment of the DNA is transcribed in RNA. Towards this
goal, the DNA sequence of a cell is assembled by concatenating DNA segments
called biological parts. As DNA, every biological part has a forward (F) or
reverse (R) orientation, and therefore the transcription of a gene (and hence
gene expression) can succeed in both directions. As a convention, we assume the
forward orientation to run from left to right, opposed to the reverse orientation.

The two basic types of biological parts are promoters and terminators, which
are responsible to start and stop the transcription phase, respectively. Then, the

4 G. Pérution-Kihli et al.

genes encode the information transcribed for the manufacturing of a protein at
the end of the translation phase (and hence of gene expression).

P (F -promoter) T (F -terminator) G (F -gene)

P

(R-promoter)

T

(R-terminator)

G

(R-gene)
Note at this point that whether a gene is transcribed from a device with only
promoters, terminators, and genes, does not depend from the environment stim-
uli. Gene transcription directionally occurs if and only if a promoter starts a
transcription (of course, without this being stopped by a terminator) that tran-
scribes a gene. For instance, gene expression occurs for the device P

T

G but not
for PTG. In principle, many distinct genes can be expressed by the same device.
Here, we consider the case where a single gene can be expressed.

Recombinase-based devices use a third type of parts, namely the attachment
sites, which enable the rearrangement of the DNA segments. We assume that
there is a unique pair of sites for every input. Every rearrangement occurs be-
tween a pair of sites, and is triggered by an input i, so every site is labeled by its
corresponding input. These rearrangements perform either the inversion which
reverses the segment between two sites (e.g., P

T

G becomes

G

T

P

) and the excision
which suppresses the segment between two sites. The modified DNA is likely to
behave differently after the DNA rearranging. In practice, what happens is that
a transcription process can be started or stopped. Also, a gene can be suppressed
or transcribed thereby changing the outcome of the process.

3 Syntax and Transcriptional Semantics

This section presents a formalization of Recombinase-based devices. A Device is
defined starting from an architecture and a naming of the inputs. A biological
architecture A is an expression obtained from 1) biological parts, 2) the concate-
nation of expressions and finally 3) the nesting of expressions between excision
and inversion marks. Two types of delimiters are marking excision and inver-
sion operations. The excision marks are denoted by a pair of square brackets []
while the inversion marks are denoted by a pair of round brackets (). The set of
architectures we consider is thus defined by the following grammar.

A ::= ε | P | AA | [A] | (A) P ::= P | T | G | P| T| G

Here, ε is the empty architecture, P the set of parts, and AA the concatenation
of two architectures. Note that the grammar generates only balanced parenthe-
sized expressions, whose backbone are Dyck words with two types of delimiters.
An architecture with n excisions or inversions is called a n-input architecture; 0-
input architectures are special expressions also called elementary sequences and
will be denoted by E. An architecture obtained by suppressing (at least) one
biological part of an architecture A is called a part-erasure of A. An architecture
obtained by suppressing (at least) one pair of marks denoting an excision or
inversion of an architecture A is called an input-erasure of A. Note that archi-
tectures are closed for erasure, that is, any erasure of an architecture is still an
architecture. A device is a couple D = (A, ρ) where A is a n-input architecture

Boolean Recombinase-based Devices 5

and ρ is a bijective labeling function which associates every pair of companion
delimiters of A to its corresponding input, i.e. an integer in {1, . . . , n}. For ex-
ample the architecture A = [P](G) can be used to build the devices D = [P]1(G)2
and D′ = [P]2(G)1. Hence, there exists n! devices for a given architecture. We
denote by D[i] the sub-device of D delimited by the pair of marks corresponding
to input i. For instance, D[1] = [P]1 and D[2] = (G)2. The notions of part and
input erasures are naturally extended to devices.

3.1 Device Activation and Architecture Rearrangement

The underlying architecture of a device is rearranged depending on the excisions
and inversions activated by the environment stimuli. Let us denote by B = {0, 1}
the Boolean domain. We define a possible configuration of the environment where
a n-input device D is deployed as a tuple c ∈ Bn. Then, the activation function,
we denote by activ(D, c) yields an elementary sequence by rearranging D as
the result of successively performing all excisions and inversions according to
c. For every elementary sequence activ(E, c) = E, no rearrangement happens.
Otherwise, let c[i] be the i-th element of the tuple c and D the sequence on
which the activation of the i-th input is performed. If D[i] is an excision, i.e.
D[i] = [D′]i, the rearrangement of input i consists at substituting D[i] with D′ if
c[i] = 0 and with ε if c[i] = 1. Moreover, if D[i] is an inversion, i.e. D[i] = (D′)i,
the rearrangement of input i consists at substituting D[i] with D′ if c[i] = 0 and
with inverse(D′) if c[i] = 1, where the inverse() function is defined as follows.

inverse(ε) = ε inverse(AA′) = inverse(A′) inverse(A)

inverse([A]i) = [inverse(A)]i inverse((A)i) = (inverse(A))i

inverse(P) =

P

inverse(

P

) = P inverse(T) =

T

inverse(

T

) = T

inverse(G) =

G

inverse(

G

) = G

The result of activ(D, c) consists at performing all architecture rearrangements,
in any order, for all inputs i ∈ {1, . . . , n}. Note that the result of the activation
is an elementary sequence where all marks have been removed. The result of the
rearrangement function is unique, and does not depend on the order on which
elements are activated. Finally, note that for any two devices with the same
architecture produce the same set of elementary sequences.

To illustrate, [P(

T

)]G is a 2-input architecture yielding two devices D1 =
[P(

T

)2]1G and D2 = [P(

T

)1]2G. So, inverse(D1) =

G

[(T)2

P

]1 and inverse(D2) =

G

[(T)1

P

]2. Consider now the possible input configurations. If no input is activated,
then both devices transcribe the gene activ(D1, 00) = P

T

G = activ(D2, 00). In all
other cases no gene is transcribed as activ(D1, 01) = PTG = activ(D2, 10), and
activ(D1, 10) = activ(D1, 11) = G = activ(D2, 01) = activ(D2, 11).

3.2 The Transcriptional Semantics of a Device

We formalize in this section the transcriptional semantics of devices, a notion
which defines the computation that they perform. We model this as a transcrip-

6 G. Pérution-Kihli et al.

P
s0 sP

sP sP

s1 s1

T
s0 s0

sP s0

s1 s1

G
s0 s0

sP s1

s1 s1

0
s0 s0

sP sP

s1 s1

1
s0 s1

sP s1

s1 s1

S
s0 sP

sP s1

s1 s1

◦ 0 P T G S 1
0 0 P T G S 1
P P P P S S 1
T T T T G G 1

◦ 0 P T G S 1
G G 1 T G 1 1
S S 1 P S 1 1
1 1 1 1 1 1 1

Fig. 1. Transcriptional function of parts (left). Neutral and composed functions (cen-
ter). Composition of characteristic functions (right).

tion state function running over a finite number of states: neutral (s0), transcrip-
tion (sP), and gene transcribed (s1). We denote this set of states {s0, sP, s1} by
S. In the neutral state no transcription is started and no gene is transcribed. In
the transcription state no gene is transcribed but a transcription is started. The
final state is reached when the gene is transcribed.

We will present first the transcriptional semantics of elementary sequences
and then turn to that of general devices. We define the transcriptional semantics
τ() for a sequence of parts without a specific orientation (again, we write in the
forward orientation merely for readability).

τ(ε) = 0 τ(EE′) = τ(E′) ◦ τ(E) τ(P) = P τ(T) = T τ(G) = G

For each part P, T, and G we define a characteristic transition function P, T,
and G, respectively, reported in Figure 1. We now briefly comment on these. A
system which is in the neutral state s0 moves to the transcription state sP when
a promoter part starts the transcription. All other parts do not modify the s0

state. When a system is in the transcription state sP the gene part lifts it to
the gene expressed state s1. However, a terminator part gets it back to state s0.
Finally, the state s1 is the final state of the computation as no part can further
impact it. Figure 1 also presents a neutral transition function 0 which behaves
as the identity and models the empty architecture ε.

More interestingly, the concatenation of any two biological parts (in the same
orientation) and thus the composition of any of the previously mentioned func-
tions, yields only two new composite functions S and 1, reported in Figure 1.
The function 1, denoting gene expression, results from a promoter (function P)
followed by a gene (function G). The function S describes the effect of a sequence
containing an expressible gene (function G) followed by a promoter (function P).
We denote by C the set of characteristic functions 0,P,T,G,S,1. To illustrate,
τ(PG) = 1, τ(TGPT) = T and τ(GPPTGP) = S.

Proposition 1. Characteristic functions are closed under composition.

An elementary sequence E with parts on both orientations can be seen as
a pair of distinct elementary sequences (EF , ER), containing only the parts in
each orientation in the order of the original sequence. For example

P

TG can be
seen as the pair (TG,

P

). The transcriptional semantics can then be described by a
function T : P ∗ → C × C yielding a characteristic functions for each orientation.
Formally, we define T (E) = 〈 τ(EF), τ(inverse(ER)) 〉. We are ready to define the
semantics of general devices, which depends on the environment configuration.

Boolean Recombinase-based Devices 7

Definition 2 (Transcriptional Semantics). Let D be a n-input device. The
transcriptional semantics of D is a function δD : Bn → C×C such that, for any
configuration c ∈ Bn, δD(c) = T (E) where E = activ(D, c).

To illustrate, consider again D1 = [P(

T

)2]1G. The configuration 00 gives the
elementary sequence E = P

T

G, thus EF = PG and ER =

T

. Then δD1
(00) =

(1,T), δD1
(01) = (0,0), and δD1

(10) = δD1
(11) = (G,0).

Note that with six characteristic functions, for an elementary sequence we
have 36 possible bidirectional transcriptional semantics. From this it follows that
the number of possible logical semantics of a n-input device is 2n · 36.

4 The Logical Semantics of Gene Transcription

The purpose of this section is to establish a connection between devices and
the Boolean functions modeling gene transcription they implement. Boolean
functions are important as they constitute a starting point for the biologist
willing to design a new device that implements a certain logic.

A Boolean function is a function ϕ : Bn → B, where n denotes its arity.
We associate to each device a Boolean function. The goal of a Boolean function
is to model the fact that gene transcription occurs after a certain activation of
the inputs. Importantly, the function should not make any distinction regarding
the orientation on which gene transcription succeeds. This leads to the following
definition.

Definition 3. Let D be a n-input device. The Boolean function of gene tran-
scription ϕD : Bn → B associated with D is such that, for any configuration
c ∈ Bn, ϕD(c) = 1 if δD(c) = 〈1,C〉 or δD(c) = 〈C,1〉 with C ∈ C.

One first important observation is that two devices can be different from a tran-
scriptional semantics point of view, yet implement the same Boolean function. To
see that consider E = PG and E′ =

GP

P. In this case δE = (1,0) and δE′ = (P,1)
but ϕE = 1 = ϕE′ . The same holds for the devices D = [E]1 and D′ = [E′]1
with different transcriptions but such that ϕD = ϕ¬i1 = ϕD′ .1

We wish now to have a mean to compare devices on the basis of the Boolean
functions they implement, so as to propose to the biologists a set of viable
design alternatives. As already explained, by means of input permutations one
has access to the implementation of different Boolean functions with the same
architecture. Also, we should take into account the fact that architectures with a
different number of inputs may turn out to implement the same logics. The rest
of the section is dedicated to the formalization of such notions of equivalence.

The P and M classes of Boolean functions. A classical notion for Boolean
functions, introduced in the context of circuit design, is that of P -class [1].

Definition 4. Two n-input Boolean functions ϕ and ϕ′ belong to the same per-
mutation class (or simply P -class) if ϕ′ = ϕ◦ρ, where ρ is an input permutation.

1 ϕ also denotes the Boolean function associated with the logic formula built with the
inputs. For instance, ϕ(¬i1∧i2) = {00 7→ 0, 01 7→ 1, 10 7→ 0, 11 7→ 0}.

8 G. Pérution-Kihli et al.

For example, the functions ϕ(i1∧¬i2) 6= ϕ(¬i1∧i2) belong to the same P -class
by the permutation that interchanges the two inputs. Therefore, the permu-
tation class of a function ϕ(A,ρ) contains all Boolean functions modeling gene
transcription that can be implemented by using a given architecture A and a
permutation of its inputs. This is the case for instance for D1 = P[T]1(G)2 and
D2 = P(T(

G

)2)1 simply because ϕD1 = ϕ(i1∧¬i2) = ϕD2 . However, also D3 =
[P(

G

)2]1 yields functions in the same permutation class because ϕD3 = ϕ(¬i1∧i2).
Finally D4 = P

G

[T

T

]1(G

P

)2 is also such that ϕD4
= ϕ(i1∧¬i2) but it does not uses

a minimal number of part, as the gene is transcribed in both directions here,
and can hence be simplified to again obtain D1.

The notion of P -class does not allow however to compare functions that have
a different number of inputs. To do so, we now define the notion of M -class,
which allows one to group Boolean functions with a different number on inputs,
but that are equal once they have reached their minimal form, i.e., where all
redundant inputs have been removed. We formalize this as follows. We say that
a n-input function ϕ is the jth-input minimization of a (n+1)-input function ϕ′,
when given the mapping removing the jth input of ϕ, namely πj : Bn+1 → Bn,
which is defined as πj(i1, . . . , in+1) = (i1, . . . , ij−1, ij+1, . . . , in+1) we have that
ϕ ◦ πj = ϕ′. We say that ϕ is a minimization of ϕ′ if ϕ is obtained as the
result of a sequence of input minimizations from ϕ′. A function that cannot
be minimized is said to be in minimal form. The minimal form of a Boolean
function ϕ is unique, and we denote it by min(ϕ).

Definition 5. Two Boolean functions ϕ and ϕ′ belong to the same minimization
class (or simply M -class) if min(ϕ) = min(ϕ′).

To illustrate, the function ϕ(i2∧¬i3∧(i1∨¬i1)) (where the input i1 is redundant)
belongs to the same M -class as ϕ(i2∧¬i3), which is its minimal form, but not to
the same P -class. The function ϕ(i2∧¬i3∧(i1∨¬i1)) is implemented for instance by
the 3-input device D5 = P([T]2[G]3)1

P

. It turns out that D1, D2, D3, D4, D5 are
all viable design alternatives (albeit D4, D5 are not minimal in the number of
parts and inputs and shall be avoided). We can now define equivalent devices.

Definition 6. Two devices D and D′ are equivalent for gene transcription, de-
noted D ≡GenTran D

′, if ϕD and ϕD′ belong both to the same P -class or M -class.

Note that ≡GenTran is an equivalence relation that partitions every set of devices
with at most n inputs in a finite number of classes. Still, every class has an
infinite number of elements, which makes the space of design configurations
impossible to explore for the biologist willing to compare all n-input architectures
implementing the same logic. For example, there is a class which contain all
sequences PG, PPG, PPPG, etc. Furthermore, it may be interesting to consider
only devices that satisfy some minimality criteria concerning their inputs and
number of parts.

The remainder of the section is dedicated to answering the following ques-
tions.

1. Is it possible to characterize the devices which are representative of all ele-
ments of an equivalence class defined by ≡GenTran ?

Boolean Recombinase-based Devices 9

2. Are such representative device finite in number ?
3. Are all n-input Boolean functions implementable with this type of devices ?

Representative Devices We say that a device is representative if it is minimal
in regard of the number of parts and inputs it uses. It is said irreducible if none
of its parts can be erased without affecting gene expression. It is said irredundant
when reducing its input set does affect gene expression.

Definition 7. A device D is representative when the following holds.

1. if for any of its part-erasures D′ holds D′ 6≡GenTran D (Irreducibility)
2. if for any of its input-erasures D′ holds D′ 6≡GenTran D (Irredundancy)

Note that if a device is not irreducible then there exists another equivalent one
in the same P -class that uses less parts. Similarly, if a device is not irredundant
then there exists another equivalent device in the same M -class that uses less
inputs. It is not difficult to see that for every device D there exists an equivalent
device D′ which is irredundant and irreducible.

Theorem 8. The number of representative devices in an equivalence class de-
fined by ≡GenTran is finite.

Take the minimum number of inputs n for a device in a class defined by ≡GenTran.
All devices with more than n inputs are redundant, and hence not representa-
tive. Then, a n-input device architecture is a well-parenthesized expression with
n pairs of marks. The parenthesis themselves (we call architecture skeleton)
constitute Dyck words with two types of delimiters of size 2 × n. There are
2n × C(n), where C(n) is the n-th Catalan number. This means that an archi-
tecture interleaves such a word with 2 × n + 1 elementary sequences. One can
check that there are only 53 irreducible (representative) elementary sequences,
which implies that the number of representative devices is bounded by m! where
m = 2n×C(n)×532n+1. We also derive the following on the device expressivity.

Proposition 9. There is a n-input Boolean function which is not implementable
for every n ≥ 7.

We know that 2n × C(n) × 532n+1 is an upper bound for the number of n-
input architectures yielding representative devices. Since the number of n-input
Boolean functions is 22

n

, and the number maximum of n-input Boolean functions
belonging to a n-input P -class is bounded by n! (corresponding to the number
of permutations of its n inputs), then (22

n

/n!) is a lower bound for the number
of n-input P -classes. It follows that from 7 inputs the upper bound of n-input
architectures yielding representative devices is strictly lower than the number
lower bound for the number of n-input P-classes.

5 Generating Canonical Representative Architectures

Theorem 8 directly allows us to define a terminating algorithm for generating
all n-input representative devices. Importantly, the generation method rather
works on generating the architectures leading to the representative devices.

10 G. Pérution-Kihli et al.

1. Generate all possible architecture skeletons with n inputs
2. Fill the architecture skeletons with 2n+1 representative elementary sequences
3. Filter the architectures that don’t yield representative devices

Once an architecture is generated, the devices are obtained by input permutation.
Note that the third step of the algorithm is necessary because by assembling ir-
reducible elementary sequences we are not guaranteed to build an architecture
yielding a representative device. For example, P, G, and PG taken alone are ir-
reducible elementary sequences but the device P[PG]1G is not representative as
equivalent to PG. In this respect, it is important to see that to test if all de-
vices obtained from one architecture are representative it suffices to test only
one device with that architecture. Indeed, it holds that any device D from A is
representative if and only all devices obtained from A are representative.

Removing Mirror Structures An important optimization of the method
we just presented accounts for the bidirectionality of architectures. Since the ori-
entation of the architecture is merely conventional, there is no difference between
an architecture and its inverse. We call a mirror architecture an architecture A
such that inverse(A) = A. Hence, we can optimize step (1) by discarding one
among a pair of distinct mirror skeletons that have been generated. For exam-
ple we keep one between the skeletons []() and ()[]. This almost drops by half
the number of architectures generated. For the special case of skeletons that are
mirror of themselves, like [], we can then optimize step (2) by carefully avoid-
ing to generate pair of equivalent mirror architectures like [P]G and

G

[

P

]. The
correctness of this optimization is stated as follows.

Proposition 10. Let A be an architecture and D a device obtained from A. Let
D′ be a device obtained from the architecture inverse(A). Then, D ≡GenTran D

′.

Using Canonical Elementary Sequences We know that with respect to gene
transcription all elementary sequences whose transcriptional semantics contains
1 in one of the two orientations are equivalent.

Definition 11. Two elementary sequences E and E′ are gene transcription
equivalent, denoted E ≡1 E

′, if either (i) ϕE = 1 = ϕE′ or (ii) δE = δE′ .

Therefore, for each equivalence class defined by ≡1 we can consider only one
irreducible elementary sequence, we call canonical. This optimization is key be-
cause in practice biologists prefer to work with a single canonical elementary
sequence per semantics. This allows us to further limit the number of irreducible
elementary sequence to consider in step (2), which drops from 53 to 26 (as all
elementary sequences E such that ϕE = 1 have a unique canonical). The cor-
rectness of the optimization is now stated.

Proposition 12. Let D be a representative device and E an irreducible elemen-
tary sequence. For any irreducible elementary sequence E′ such that E ≡1 E

′ and
D′ obtained by substituting some occurrence of E with E′ in D, we have that
D ≡GenTran D

′. Moreover, D′ is also a representative device.

Boolean Recombinase-based Devices 11

Table 1. Generation results up to 4-inputs.

inputs generation # canonical # implemented functions
time architectures vs. # possible functions

0 - 2 2 / 2 (100%)
1 3 seconds 10 2 / 2 (100%)
2 3 seconds 724 10 / 10 (100%)
3 5 minutes 96,981 218 / 218 (100%)
4 87 minutes 18,065,512 59,590 / 64,594 (92.25%)

6 Implementation and Results

We implemented our method for generating all n-input architectures without
mirror structures in C++(version 17), which allows us to have an optimized im-
plementation. Our tool has been run on a High Performance Computer (HPC)
cluster to generate all representative architectures from 1 to 4-input. The HPC
processor is an Intel Xeon E5-2680 v4, 2.40GHz, 14 physical cores, with 128Go
RAM DDR4 2400Mhz. Our implementation features a parallelization of the gen-
eration method which exploits multi-threading to fully use the 28 logical cores
of the machine.

Table 1 reports the results of the generation. The generation time (column 2)
follows the number of architectures leading to canonical representative devices
(column 3) which, as already outlined, have an exponential growth in the number
of inputs. Recall that each architecture allows to produce n! different canonical
devices. The last column indicates the number of Boolean functions searchable
by biologists which are implemented by at least one architecture, over the to-
tal number of Boolean functions without redundant inputs (those that are not
in minimal form are excluded). The results for 4-inputs functions complement
Proposition 9, as they show that already for n = 4 some Boolean functions can-
not be implemented with the devices considered here, while for every 0 ≤ n ≤ 3
all functions are implemented.

The Recombinator Web Platform To help biologists in their design tasks,
a database containing the results of the generation have been made openly
available on the Recombinator Web platform http://recombinator.lirmm.fr.
The application offers an interface allowing the biologist to identify, for a given
Boolean function, the set of canonical devices which implement it. The Web
interface also offers a number of filters with relevant criteria for biologists that
can be applied for a detailed search. For instance, it is possible to control the
size of the device, as well as the number of promoters, terminators, genes, exci-
sions, and inversions, in the sequence, and finally their relative positioning. The
database has also been used to carry a statistical analysis of the relationships
between devices and Boolean functions [7].

12 G. Pérution-Kihli et al.

7 Conclusions and Perspectives

In this paper, we carried a formal study of a type of Recombinase-based devices
an important family of biotechnologies used in synthetic biology. We presented
a formal semantics for such type of devices and outlined a generation method
for listing all representative and canonical n-input devices. We believe that the
notions presented here can be used for further developments of design methods
in synthetic biology. Our method has been implemented and the result of the
generation published in a platform for detailed search of devices implementing a
certain Boolean functions. Our results also show some limits in the expressivity
of devices, in terms of the Boolean functions they implement. Future work will
focus on the precise characterization of the (non-)implementable Boolean func-
tions. The framework can also be extended with a probabilistic time-dependent
activation of the inputs to express more complex logics within living organisms.

References

1. Astola, J., Stankovic, R.: Fundamentals of Switching Theory and Logic Design A
Hands on Approach. Springer (2006)

2. Bischof, J., Maeda, R.K., Hediger, M., Karch, F., Basler, K.: An optimized trans-
genesis system for drosophila using germ-line-specific ϕc31 integrases. Proceedings
of the National Academy of Sciences 104(9), 3312–3317 (2007)

3. Bonnet, J., Yin, P., Ortiz, M.E., Subsoontorn, P., Endy, D.: Amplifying genetic
logic gates. Science 340(6132) (2013)

4. Chiu, T.Y., Jiang, J.H.R.: Logic synthesis of recombinase-based genetic circuits.
Scientific reports 7(1), 12873 (2017)

5. Dueber, J.E., Yeh, B.J., Chak, K., Lim, W.A.: Reprogramming control of an al-
losteric signaling switch through modular recombination. Science 301(5641), 1904–
1908 (2003)

6. Endy, D.: Foundations for engineering biology. Nature 438(7067), 449 (2005)
7. Guiziou, S., Pérution-Kihli, G., Ulliana, F., Leclère, M., Bonnet, J.: Ex-

ploring the design space of recombinase logic circuits. bioRxiv (2019).
https://doi.org/10.1101/711374

8. Guiziou, S., Ulliana, F., Moreau, V., Leclère, M., Bonnet, J.: An automated design
framework for multicellular recombinase logic. ACS synthetic biology 7(5), 1406–
1412 (2018)

9. Kumari, A., Pasini, P., Daunert, S.: Detection of bacterial quorum sensing n-acyl
homoserine lactones in clinical samples. Analytical and bioanalytical chemistry
391(5), 1619–1627 (2008)

10. Nielsen, A.A., Der, B.S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychalski,
E.A., Ross, D., Densmore, D., Voigt, C.A.: Genetic circuit design automation.
Science 352(6281), aac7341 (2016)

11. Wang, Y., Yau, Y.Y., Perkins-Balding, D., Thomson, J.G.: Recombinase technol-
ogy: applications and possibilities. Plant cell reports 30(3), 267–285 (2011)

12. Weinberg, B.H., Pham, N.H., Caraballo, L.D., Lozanoski, T., Engel, A., Bhatia,
S., Wong, W.W.: Large-scale design of robust genetic circuits with multiple inputs
and outputs for mammalian cells. Nature biotechnology 35(5), 453 (2017)

13. Win, M.N., Smolke, C.D.: Higher-order cellular information processing with syn-
thetic rna devices. Science 322(5900), 456–460 (2008)

