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From Classic Forward Substitution to Parallel trsv

Triangular solver

Given a lower triangular n × n-matrix T and n-vector b.

Find x such that Tx = b.

Forward substitution:

x i = b i -i-1 j=1 t i,j × x j /t i,i . Dependency of x i wrt. x j , j < i.

T b

Sequential computation x1 = b1/t1,1. Parallel computation trsv blocks build on previous transformation to ensure correctly rounded b i -i-1 j=1 t i,j × x j and then divide it by t i,i .

x i = (b i -i-1 j=1 t i,j × x j )/t i,i .

Sources of non reproducibility

x i = (b i -r j=1 t i,j × x j -2r j=r +1 t i,j × x j -i-1 j=2r +1 t i,j × x j )/t i,
Philippe Langlois (UPVD)

Reprod TRSV ICIAM 2019, Valencia, Spain 14 / 28

Reproducible Triangular Solvers

RTrsv

Error-Free Transformation for summation 

[ ] V [ ] C [2048] Split(v j , H, L) C exp(L) += L C exp(H) += H n j=1 v j = 2048 j=1 c
T [i, :] [ ] C TwoProd(t i,j , x j ) result error Parallel EFT [ ] X [:] trsv b i -m j=1 t i,j × x j -i-1 j=m+1 t i,j × x j = 2048 j=1 C j Philippe Langlois (
p i = k v k v 1 v 2 v 3 ... ... vn Philippe Langlois (UPVD)
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Indexed Floating-Point Numbers (Demmel-Nguyen, 2016)

Fixed exponent range decomposition

Emin Emax Indexed Floating-Point Numbers (Demmel-Nguyen, 2016) Indexed Floating-Point Numbers (Demmel-Nguyen, 2016) Indexed Floating-Point Numbers (Demmel-Nguyen, 2016)

p i = k v k v 1 v 2 v 3 ... ..
p i = k v k v 1 v 2 v 3 ... ..
p i = k v k v 1 v 2 v 3 ... ...
Operand splitting: K = 1 Emin Emax p i = k v k v 1 v 2 v 3 ... ...
Operand splitting: K = 2 Emin Emax p i = k v k v 1 v 2 v 3 ... ...
"Exact" thread accumulations Emin Emax Indexed Floating-Point Numbers (Demmel-Nguyen, 2016)

p i = k v k v 1 v 2 v 3 ... ...
"Exact" reduction and final rounding Emin Emax 

p i = k v k v 1 v 2 v 3 ... ..
Cond(T, x) = T -1 |T | |x| ∞ / |x| ∞ Accuracy: Cond ∈ [10 5 , 10 15 ] Run-time: Cond = 10 8
Reference solution : 

x = MPFR(T -1 b) Relative error = x -x ∞ / x ∞ Normalized Residual = b -T x ∞ / b ∞

  HybridSum to transform several rows in parallel.

  Parallel BLAS 1: correctly rounded dot and asum, reproducible and faithfully rounded nrm2 Parallel BLAS 2: correctly rounded gemv Accuracy vs. efficiency https://gite.lirmm.fr/rare-blas-group/rare-blas Today: Reproducible Parallel trsv Provide a reproducible, accurate and efficient triangular solver. Two different approaches are presented and compared. Performance evaluation on CPU and Intel Xeon Phi accelerator.
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the Forward Relative Error Log10 of the Condition Number

  

	Challenging solutions Accuracy: Intel MKL Trsv (b64) High accuracy: XBLAS double-doubled Trsv Performance: Intel MKL Trsv Philippe Langlois (UPVD) Reprod TRSV Relative error 4 6 8 10 12 14 16 -18 4 6 ICIAM 2019, Valencia, Spain Reproducible Solvers: Accuracy Results -inf -16 Normalized residual 8 10 12 14 -14 -12 -10 -8 -6 -4 -2 0 Rtrsv BinnedTrsv BinnedTrsvIR XBLASTrsv -16 -15 -14 -13 Log10 of MKLTrsv -17 Log10 of	16

the Normalized Residual Log10 of the Condition Number

  Run-time overhead ratio vs.MKL Trsv, Cond = 10 8 .
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BinnedTrsvIR: BinnedTrsv + Iterative Refinement

Reproducible Iterative Refinement 1 Solve the system with BinnedTrsv and K = 2.

Reproducibility Tradeoff efficiency vs.initial accuracy 2 Compute r (i) = b -T x using higher precision.

× → TwoProd Higher precision indexed FP numbers: K = 3 Parallel and reproducible 3 Solve the system Ad (i) = r (i) with reproducible BinnedTrsv

5 Repeat from 2 until x is accurate enough.