Reproducible and Accurate Parallel Triangular Solver

Chemseddine Chohra1,
Philippe Langlois2 and David Parello2

1University 8 Mai 1945 Guelma, LabSTIC, Algeria
2DALI-LIRMM, U. Perpignan Via Domitia, U. Montpellier, CNRS, France

July, 17th 2019

ICIAM 2019, Valencia, Spain.
Table of Contents

1. Rounding Errors and Reproducibility

2. Parallel Triangular Solver

3. Reproducible Triangular Solvers
 - RTrsv
 - BinnedTrsvIR

4. Accuracy and Performance

5. Conclusion and Future Works
IEEE-754 Floating-Point Numbers

- Approximate real numbers on computer.
- \(f = \pm \text{mantissa} \cdot 2^{\text{exponent}} \).
- IEEE-754 standard defines formats and rounding modes.
- *binary64* and RTN in this talk.

Floating-Point Operations

- For \(x, y \in \mathbb{IF} \) and \(x + y \notin \mathbb{IF} \), \(x + y \neq x \oplus y = \text{round}(x + y) \).
- The same applies for \(\ominus, \otimes \) and \(\oslash \).

Operation Order Matters: FP Addition is not Associative

- \(a \oplus (b \oplus c) \neq (a \oplus b) \oplus c \).
- For *binary64*’s round-off unit \(u = 2^{-53} \):
 \[0 = -1 \oplus (1 \oplus u) \neq (-1 \oplus 1) \oplus u = u. \]
Does Numerical Reproducibility Matter?

Numerical Reproducibility and HPC

- Reproducibility: bitwise identical results for every \(p \)-parallel run, \(p \geq 1 \)
- Reproducibility \(\neq \) Accuracy
- How to debug? to test? to validate? to receive legal agreements?
 - Debug: rounding errors vs. bugs? reproduce errors?
 - Validate: reproduce the reference result? the same results from one run to another?

In Practice?

Telemac2D simulation: a white plot displays a non reproducible result (Nheili et al., 2016)

1 proc., \(t = 0.2 \) sec. 2 proc., 0.2 sec. 2 proc., 0.8 sec. 2 proc., 1.4 sec.
Strategies for Reproducibility

- Static order of operations
 - Static scheduling.
 - Deterministic Reduction.
 - Intel MKL Conditional Numerical Reproducibility (CNR).

- Pre-rounding Techniques.
 - ReprodSum and FastReprodSum (Demmel et al., 2013).
 - **Indexed (Binned) floating-point format** (Demmel et al., 2016).
 - Used in ReproBLAS library\(^a\).

- Higher precision (Villa et al., 2009, Iakymchuk et al., 2015).

- **Correctly rounded** (Chohra et al., 2016).

\(^a\)http://bebop.cs.berkeley.edu/reproblas/
Rounding Errors and Reproducibility

Our Aim

RARE-BLAS (2017-)

- Reproducible, Accurately Rounded and Efficient BLAS*
- Parallel BLAS 1: correctly rounded \texttt{dot} and \texttt{asum}, reproducible and faithfully rounded \texttt{nrm2}
- Parallel BLAS 2: correctly rounded \texttt{gemv}
- Accuracy vs. efficiency
 - Chose and tune summation algorithms wrt. architecture and problem constraints.
 - SIMD (AVX2-512), openMP, MPI
 - Run-time overhead ratio: \(\times 1 \rightarrow \times 10 \)

*https://gite.lirmm.fr/rare-blas-group/rare-blas

Today: Reproducible Parallel \texttt{trsv}

- Provide a reproducible, accurate and efficient triangular solver.
- Two different approaches are presented and compared.
- Performance evaluation on CPU and Intel Xeon Phi accelerator.
Parallel Triangular Solver

From Classic Forward Substitution to Parallel trsv

Triangular solver

- Given a lower triangular $n \times n$-matrix T and n-vector b.
- Find x such that $Tx = b$.
- Forward substitution: $x_i = \left(b_i - \sum_{j=1}^{i-1} t_{i,j} \times x_j\right) / t_{i,i}$.
- Dependency of x_i wrt. x_j, $j < i$.

Philippe Langlois (UPVD)
Sequential computation

- \(x_1 = b_1 / t_{1,1} \).
- \(x_i = \left(b_i - \sum_{j=1}^{i-1} t_{i,j} \times x_j \right) / t_{i,i} \).

Sources of non reproducibility

- Dot product accumulation
- SIMD lengths
- SIMD reduction schemes
Parallel Process

- \textit{trsv}: sequential.
- \textit{gemv}: parallel.

Parallel computation

\[
x_i = (b_i - \sum_{j=1}^{r} t_{i,j} \times x_j - \sum_{j=r+1}^{2r} t_{i,j} \times x_j - \sum_{j=2r+1}^{i-1} t_{i,j} \times x_j)/ t_{i,i}.
\]

Sources of non reproducibility

- Dot product: partial accumulations wrt. block size \(r \)
- Accumulation order wrt. \textit{gemv} scheduling
- \textit{gemv}: SIMD lengths, SIMD reduction schemes
Table of Contents

1 Rounding Errors and Reproducibility

2 Parallel Triangular Solver

3 Reproducible Triangular Solvers
 - RTrsv
 - BinnedTrsvIR

4 Accuracy and Performance

5 Conclusion and Future Works
Reproducible Triangular Solvers

Trade-off

Efficiency vs. Accuracy vs. Reproducibility

RTrsv

- Correctly rounded $b_i - \sum_{j=1}^{i-1} t_{i,j} \times x_j$
- EFT: TwoProd, HybridSum (Zhu-Hayes, 2009)

BinnedTrsvIR

- Reproducibility: BinnedTrsv
 - Binned accumulation à la Demmel-Nguyen’s ReproBLAS.
 - Efficiency: “only” target reproducibility
- Accuracy: Iterative refinement
Table of Contents

1. Rounding Errors and Reproducibility
2. Parallel Triangular Solver
3. Reproducible Triangular Solvers
 - RTrsv
 - BinnedTrsvIR
4. Accuracy and Performance
5. Conclusion and Future Works
RTrsv: Relies on HybridSum (Zhu-Hayes, 2009)

Parallel Process

- EFT blocks use HybridSum to transform several rows in parallel.
- \(trsv \) blocks build on previous transformation to ensure correctly rounded \(b_i - \sum_{j=1}^{i-1} t_{i,j} \times x_j \) and then divide it by \(t_{i,i} \).
Error-Free Transformation for summation

\[V \]

\[\text{Split}(v_j, H, L) \]

\[C_{\text{exp}}(L) \triangleq L \]

\[C_{\text{exp}}(H) \triangleq H \]

\[\sum_{j=1}^{n} v_j = \sum_{j=1}^{2048} c_j \]
Error-Free Transformation for trsv

\[\text{TwoProd}(t_{ij}, x_j) \]

\[\text{result} \]

\[\text{error} \]

\[\sum_{j=1}^{m+1} t_{ij} \times x_j - \sum_{i=1}^{m} t_{ij} \times x_j = \sum_{j=1}^{n} C_j \]
Error-Free Transformation for trsv

Parallel EFT

\[
\begin{align*}
T[i, :] \times X[:]
\rightarrow \text{TwoProd}(t_{i,j}, x_j)
\rightarrow \text{result}
\rightarrow C
\end{align*}
\]
Error-Free Transformation for \texttt{trsv}

\[T[i, :] \times X[:] \]

\[\text{TwoProd}(t_{i,j}, x_j) \]

\[b_i - \sum_{j=1}^{m} t_{i,j} \times x_j - \sum_{j=m+1}^{i-1} t_{i,j} \times x_j = \sum_{j=1}^{2048} C_j \]
First Results (detail later)

Reproducible but a bit disappointing

- Reproducible solver
- but correctly rounded accumulation \Rightarrow solution accuracy improvement
- with run-time overhead.
Table of Contents

1 Rounding Errors and Reproducibility

2 Parallel Triangular Solver

3 Reproducible Triangular Solvers
 - RTrsv
 - BinnedTrsvIR

4 Accuracy and Performance

5 Conclusion and Future Works
BinnedTrsv: Relies on Indexed Floating-Point Format

Parallel Process
- The input matrix is recursively decomposed into:
 - Square GEMV blocks.
 - Triangular TRSV blocks.
- Sequential small TRSV blocks
- Parallel GEMV blocks.

Reproducibility
- FP multiplications and divisions
- All accumulations are performed into a \(n \)-vector of Indexed FP numbers: one for every \(x_i \)
Indexed Floating-Point Numbers (Demmel-Nguyen, 2016)

\[p_i = \sum_k v_k \]

\[v_1 \]
\[v_2 \]
\[v_3 \]
\[\vdots \]
\[v_n \]
Indexed Floating-Point Numbers (Demmel-Nguyen, 2016)

Fixed exponent range decomposition

\[p_i = \sum_k v_k \]

\[v_1 \]
\[v_2 \]
\[v_3 \]
\[\vdots \]
\[v_n \]
Indexed Floating-Point Numbers (Demmel-Nguyen, 2016)

De facto parallel sharing

\[p_i = \sum_{k} v_k \]

\(v_1 \)

\(v_2 \)

\(v_3 \)

\(\vdots \)

\(v_n \)

Thread 0

Thread 1

Thread 2
Indexed Floating-Point Numbers (Demmel-Nguyen, 2016)

Independent first significant shrunk

\[p_i = \sum_{k_i} v_k \]

Thread 0

Thread 1

Thread 2
Operand splitting: $K = 1$

$$p_i = \sum_{k_i} v_k$$

v_1 v_2 v_3 \ldots v_n

Thread 0 Thread 1 Thread 2
Indexed Floating-Point Numbers (Demmel-Nguyen, 2016)

Operand splitting: \(K = 2 \)

\[p_i = \sum_{k} v_k \]

Thread 0

Thread 1

Thread 2
Indexed Floating-Point Numbers (Demmel-Nguyen, 2016)

“Exact” thread accumulations

\[p_i = \sum_k v_k \]

Thread 0

Thread 1

Thread 2
Indexed Floating-Point Numbers (Demmel-Nguyen, 2016)

"Exact" reduction and final rounding

\[p_i = \sum_{k} v_k \]

.Thread 0
.Thread 1
.Thread 2

\(v_1 \)
\(v_2 \)
\(v_3 \)
\(\vdots \)
\(v_n \)
Reproducible Triangular Solvers

BinnedTrsvIR: BinnedTrsv + Iterative Refinement

Reproducible Iterative Refinement

1. Solve the system with \textit{BinnedTrsv} and $K = 2$.
 - Reproducibility
 - Tradeoff efficiency vs. initial accuracy

2. Compute $r^{(i)} = b - T\hat{x}$ using higher precision.
 - $\times \rightarrow \text{TwoProd}$
 - Higher precision indexed FP numbers: $K = 3$
 - Parallel and reproducible

3. Solve the system $Ad^{(i)} = r^{(i)}$ with reproducible \textit{BinnedTrsv}

4. Update $\hat{x} = \hat{x} + d^{(i)}$.

5. Repeat from 2 until \hat{x} is accurate enough.
Table of Contents

1 Rounding Errors and Reproducibility

2 Parallel Triangular Solver

3 Reproducible Triangular Solvers
 - RTrsv
 - BinnedTrsvIR

4 Accuracy and Performance

5 Conclusion and Future Works
Experimental Framework: Hardware and Software Configurations

CPU Configuration
- Dual Intel Xeon E5-2650 v2 16 cores (8 per socket).
- Memory bandwidth 59.7 GB/s.

Many-core Accelerator
- Intel Xeon Phi 7120 accelerator, 60 cores.
- Memory bandwidth 352 GB/s.

Compiler and Options
- Intel compiler (17.0.1)
- Intel OpenMP 5.0
- `-O3 -fp-model double -fp-model strict -funroll-all-loops`
 - `-fp-model double`: rounds intermediate results to 53-bit precision
 - `-fp-model strict`: disable contractions
Experiments

- System size
 - Accuracy: \(n = 1000 \)
 - Run-time: \(n \in [10000, 15000] \)

\[
\text{Cond}(T, x) = \frac{\|T^{-1}\| \|T\| \|x\|_\infty}{\|x\|_\infty}
\]

- Accuracy: \(\text{Cond} \in [10^5, 10^{15}] \)
- Run-time: \(\text{Cond} = 10^8 \)

- Reference solution: \(\tilde{x} = \text{MPFR}(T^{-1}b) \)
- Relative error = \(\frac{\|\tilde{x} - \hat{x}\|_\infty}{\|\tilde{x}\|_\infty} \)
- Normalized Residual = \(\frac{\|b - T\hat{x}\|_\infty}{\|b\|_\infty} \)

Challenging solutions

- Accuracy: Intel MKL Trsv (b64)
- High accuracy: XBLAS double-doubled Trsv
- Performance: Intel MKL Trsv
Accuracy: correctly rounded (RTrsv) vs. reproducible (BinnedTrsv) dot prods → slightly but not significantly better

More accuracy: similar and classic iterative refinement effect

Residual: no condition effect, nor solution accuracy significance, slight effect of the correctly rounded version (RTrsv)
Reproducible Solvers: Performance Results

Run-time overhead ratio vs. MKL Trsv, Cond = 10^8.

<table>
<thead>
<tr>
<th></th>
<th>Sequential</th>
<th>Parallel CPU</th>
<th>Parallel Accelerator</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTrsv</td>
<td>×10</td>
<td>×5</td>
<td>×5 – 10</td>
</tr>
<tr>
<td>BinnedTrsv</td>
<td>×2</td>
<td>×1</td>
<td>×0.7 – 1.2</td>
</tr>
<tr>
<td>BinnedTrsvIR</td>
<td>×15 – 20</td>
<td>×8 – 10</td>
<td>×2</td>
</tr>
</tbody>
</table>

Note: no accelerator benefit (trsv dependencies – as it)

- Parallel solutions scale well
- Reproducibility: from no over-cost to very reasonable cost with BinnedTrsv
- Accuracy cost: not free (iterative refinement) but interesting for accelerator
Table of Contents

1 Rounding Errors and Reproducibility

2 Parallel Triangular Solver

3 Reproducible Triangular Solvers
 - RTrsv
 - BinnedTrsvIR

4 Accuracy and Performance

5 Conclusion and Future Works
Conclusion

- Numerical reproducibility for SIMD, multi-core, many-core architectures
- Accuracy: similar to XBLAS
- Run-time performance (vs. MKLTrsv):

<table>
<thead>
<tr>
<th></th>
<th>Sequential</th>
<th>Parallel CPU</th>
<th>Parallel Accelerator</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTrsv</td>
<td>$\times 10$</td>
<td>$\times 5$</td>
<td>$\times 5 - 10$</td>
</tr>
<tr>
<td>BinnedTrsvIR</td>
<td>$\times 15 - 20$</td>
<td>$\times 8 - 10$</td>
<td>$\times 2$</td>
</tr>
</tbody>
</table>

Future Works

- Higher level BLAS: compute bound algorithms \Rightarrow need for other strategies
- Auto tuning to easy optimization
- Build a reproducible LAPACK upon RARE-BLAS