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Software Product Line Engineering (SPLE) is a software engineering paradigm that focuses on reuse
and variability. Although feature-oriented programming (FOP) can implement software product line
efficiently, we still need a method to generate and prove correctness of all product variants more ef-
ficiently and automatically. In this context, we propose to manipulate feature modules which contain
three kinds of artifacts: specification, code and correctness proof. We depict a methodology and a
platform that help the user to automatically produce correct-by-construction product variants from
the related feature modules. As a first step of this project, we begin by proposing a language, GFML,
allowing the developer to write such feature modules. This language is designed so that the artifacts
can be easily reused and composed. GFML files contain the different artifacts mentioned above.
The idea is to compile them into FoCaLiZe, a language for specification, implementation and formal
proof with some object-oriented flavor. In this paper, we define and illustrate this language. We also
introduce a way to compose the feature modules on some examples.

1 Introduction

Software Product Line Engineering (SPLE) is a paradigm used to develop software-intensive systems
that share common assets [14, 1]. In SPLE, a feature is used to represent a characteristic behavior as a
unit of functionality of the software product line (SPL) [1]. Given a set of features, the configuration of
a SPL is constructed by composing the features. Following generative programming mechanisms [4],
the respective product variant can be derived automatically from a feature selection and artifacts of each
selected feature. The product generation may be realized through Feature-Oriented Programming (FOP)
techniques [7], in which each feature is mapped to a feature module containing its artifacts. The product
variant is synthesized from the artifacts of the involved feature modules. In this context, we demonstrate
our approach that helps the developer to write feature modules containing their artifacts using a dedicated
and generic language.

Some authors proposed approaches for constructing product variants of a product line by reusing and
synthesizing artifacts. Using design by contract [13] and adhering to FOP techniques, Thiim proposed
a proof composition approach and strategies to reduce the effort of verification by reusing partial proofs
[18] [17] [16]. The FEATUREHOUSE framework, described in [2], enables the construction of a new
program from existing programs using the structure of the SPL feature tree. Although the above methods
can implement software product line efficiently and mostly automatically, we still need a method to
generate and prove correctness of all product variants more efficiently and automatically.

In this direction some advances have been proposed in the context of programming language meta-
theory within the Coq proof assistant [10] [11]. However these tools are dedicated to a very specific
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domain and still require an important expertise.

To tackle the above limitations, we depict a methodology that helps the user to automatically produce
correct-by-construction product variants. This methodology aims at being independent of any concrete
target language but at first we focus and experiment with FoCal.iZe, a language used to specify, imple-
ment and prove (http://focalize.inria.fr). In this paper, we propose a language, called GFML
(for Generic Feature Module Language) allowing the developer to write feature modules which contain
three kinds of artifacts: specifications, code and correctness proofs. GFML is inspired from FoCaL.iZe
but sticks to a FOP approach and tries to reduce the developer’s effort. This language is designed so that
the artifacts can be easily reused, composed and translated into different languages.

In Section 2, we first describe the background of our paper, in particular we present briefly FoCal-
iZe. Then in Section 3, we illustrate our definition of feature module and a brief description of our
language (GFML) used to write feature modules. In Section 4, we illustrate the translation of GFML
into FoCaLiZe. In Section 5, we describe how to compose two feature modules by giving an example,
and depict a composition framework for automatically generating correct-by-construction product vari-
ants. In Section 6, we review related work. Finally we conclude the paper and discuss future works in
Section 7.

2 Background

2.1 Software Product Line

In SPLE, a feature is a characteristic behavior specified as a unit of functionality of a product line [1].
A set of features, called a feature model, is often graphically depicted as a tree, also called a feature
diagram. In addition to the presentation of commonality and variability, a feature diagram also con-
tains various relationships and additional constraints between features. The main relationships in feature
diagrams are optional/mandatory, alternative/or and implies/excludes. Because of visual aid, feature di-
agrams are considered as standard representations that help the user to choose product configurations of
a product line. In this work, we only focus on a simple form of feature diagrams (i.e. Figure 1) that can
illustrate optional features.

Valid Configuration. A configuration of a product line is a

set of features selected in the corresponding feature diagram. All A Legend:
the information such as relations and constraints inferred from the m ; g::::;fry

feature diagram is used to check the validity of the configuration. B cl pl| A or

In our work, we only consider valid configurations. However, /ﬂ\ /\ A Atternative
checking the validity of a configuration is out of the scope of this

paper. Many checkers exist (e.g. [5], [8]) and we rely on them. As SS g
we start from valid configurations, we consider that the configu-
rations contain all the features that are to be composed in order to
build the final products. So the distinction between mandatory and optional features is not relevant here.

D=>2G
Figure 1: Feature diagram

2.2 Motivating Example

BankAccount
As a running example, we consider the bank account product line ) [ )
described in [17] whose feature diagram is shown in Figure 2. It Currency | | LowLimit | | DailyLimit

illustrates a family of products allowing the management of bank J
accounts. The root feature BankAccount (BA for short) provides | currencyExchange

Figure 2: Feature diagram of bank
account product line
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the basic management of an account. It allows the bank storing the current balance and the amount
of money added into or withdrawn from the account. A customer can withdraw more money from the
account than available if it is within an over limit. The feature BA has three optional child features
DailyLimit (DL for short), LowLimit (LL for short), Currency. The feature DL allows the bank to limit
the amount of money withdrawn in a day while the other feature LL indicates that the bank only au-
thorizes a customer to withdraw money from the account only if the amount is greater than a low limit.
Related The feature Currency accommodates the management of currency. Finally, an optional feature
CurrencyExchange is established as a child of Currency to enable the calculation of currency exchange.

2.3 Quick Presentation of FoCaLiZe

This subsection presents briefly the technical background necessary to understand the section about the
translation of GFML to FoCaLiZe.

The FoCaLiZe (http://focalize.inria.fr) environment provides a set of tools to describe and
implement functions and logical statements together with their proof. A FoCaliZe source program
is analyzed and translated into OCaml sources for execution and Coq sources for certification. The
FoCal.iZe language has an object oriented flavor allowing inheritance, late binding and redefinition.
These characteristics are very helpful to reuse specifications, implementations and proofs.

A FoCalL.iZe specification can be seen as a set of algebraic properties describing relations between
input and output of the functions implemented in a FoCaLiZe program. For writing code, FoCaLiZe
offers a pure functional programming style close to ML, featuring strong typing, recursive functions,
data types and pattern-matching. Proofs written using the FoCaLiZe proof language are sent to the
Zenon prover which produces proofs that can be verified by Coq for more confidence [9]. The FoCaLiZe
proof language is a declarative language in which the programmer states a property and gives hints to
achieve its proof which is performed by Zenon.

FoCaL.iZe units are called collections. They contain entities in a model akin to classes and objects or
types and values. Collections have functions and properties which can be called using the “!”” notation.
They are derived from other units called species which specify and implement functions.

A species defines a set of entities together with functions and properties applying to them. At the
beginning of a development, the representation of these entities is usually abstract, it is precised later
in the development. However the type of these entities is referred as Self in any species. Species may
contain specifications, functions and proofs. More precisely species may specify a function or a property
(with resp. signature, property keywords) or implement them (let keyword when a function is
defined, proof of keyword to introduce a proof of a property). A let defined function must match
its signature and similarly a proof introduced by proof of should prove the statement given by the
property keyword. Statements belong to first order typed logic.

As said previously, FoCaLiZe integrates inheritance, late binding and redefinition to ease reuse and
modularity. Inheritance allows the definition of a new species from one or several other species. The
new species inherits all the functions, properties and proofs of its parents. Some syntactical mechanisms
are provided to prevent ambiguities. A species may provide a definition for a function that is only
specified in its parents. It may also redefine a function when this one is already defined in a parent but
in that case the signature is maintained (no overloading). Multiple inheritance comes with a late binding
mechanism close to the one found in object oriented languages (even if the resolution is statically done
by the compiler).

A collection is a species where every specified function is defined and every property is proved
(or explicitly admitted). Furthermore, in a collection, the concrete representation of entities is made
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private and a programmer using the collection can only use its functions and properties according to the
interface. Consequently building a collection from a species provides encapsulation. Species may have
parameters which may either be collections or entities providing in that way parametric polymorphism.
This parametrization will be intensively used in the translation of GFML to FoCaLiZe (see Section 4).

For more details on FoCaLiZe please refer to the reference manual. A more thorough overview can
be found in [3].

3 Artifacts

3.1 Feature Module

We adhere to the FOP technique that suggests to map each feature to a separate feature module that
implements the feature. In our context, each feature module consists of its artifacts: specifications,
code and correctness proofs. Specifications are given as a set of expected properties or requirements.
Technically these properties are logical formulas relating together some functions described only by
their signature. Thus in our setting, a specification is close to an algebraic data-type. Code has to be
understood here as the implementation of the functions introduced/declared in the specifications. We
place ourselves in a functional programming setting. The proofs here concern the correctness of the code
with respect to the specifications.

o Specification artifact includes the function declarations and the properties. A function declaration
or signature only describes the name of the function and the type of its arguments and result. A
property is a (first order typed) logical formula. A new property is expressed by a new logical
formula while a refining property refers to existing properties of the parent feature module and
may add new premises and conclusions.

e Code artifact consists of the definition of the concrete representation type r and the function
definition/redefinitions d f. The representation type is the concrete type associated to the abstract
data-type specified in the specification artifact. It will be a concrete type (basic or complex types, a
la ML) or a Cartesian product of concrete types. The representation type is unique for each feature
module and can be also constructed from the existing representation type of parent. A function is
defined/redefined after the representation type has been defined.

e Proof artifact contains proofs pf. Each proof corresponds to a property. While writing the proof
for a refining property, the mentioned properties of parent can be reused to support the proving
process.

We define a feature module fm as a 5-tuple: function declarations d, properties p, representation
type r, function definitions/redefinitions d f and proofs pf.

fm= (d7p7r7dfapf)

3.2 Description of GFML

We propose a generic language, called GFML, to write these feature modules. Each feature module is
embedded into a separate file .gfm. This language is suitable for all feature modules possibly containing
three kinds of artifacts: specifications, code and correctness proofs.

This language is inspired from FoCaLiZe, in particular the styles for writing specifications, code and
proofs are common. GFML and FoCaLiZe mainly differ in the way to structure and organize information.
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1 £ module DL from BA
signature limit withdraw: int;
signature withdraw: DL -> int;

w ra

4 property update succ DL: all x : DL, all a :
5 int, all r : DL * 8§ =
6 refines BA!update_succ_BA(x, a, r)
7 new premise: H1
8 new conclusion: (withdraw(first(r)) =
1 £ module BA 9 withdraw(x) + a);
2 ;ignature over: int; 10 property update no succ DL: all ..
3 signature balance: BA -> int; . . .
4 signature update: BA -> int -> BA * §; 11 representation = int*BA!representation;
5 property update succ BA: all x : BZ, all a : 12 let withdraw(x) = second(x),: .
6 int, all r : BA * § = 13 1let update(x,a) = let w = withdraw(x) in
’ : = A 2
7 (balance (x) + a) >= over -> update (x,a) = r i-_l iet rrb _Blf;:update (x,.a) £n
8 -> (balance(first(r)) = (balance(x) + a)) && 1; let e _ 1rstc(irr) =
9 (second(r) = success); 17 let s = se:on .(rr) i
7 et n w=w+ a in
10 representation = int; 18 i.f (a <= 0) th?n‘ .
19 if ((n_w >= limit withdraw) && (n_s =
20 success)) then
11 1let balance(x) = x; 21 ((n b,n w),n =)
12 1?"3 update(x,a) = 22 else_(x,;o_su;cess)
13 if ((balance(x) + a) >= over) then 23 else ((n b,w),n s);
14 ((palance (x) + a), success) - -
15 else (x, no_success); 24 proof of update succ DL = (by hypothesis H2
25 definition of withdraw, update, make balance
16 proof of update succ BA = (by definition of 26 property BA!update_succ B3);
17 update, balance); 27 proof of update no succ DL = (by ..);
(a) Module BA (b) Module DL

Figure 3: Feature modules in GFML

Our main objective in defining GFML is to propose a language close to FoCaLiZe that already allows for
the three kinds of artifacts in a single setting but closer to the description of commonality and variability
we can find in feature diagrams. As we will see in Section 4, the expression of a feature module is much
simpler that its translation in FoCaLiZe. GFML is also inspired from design by contract applied to FOP
as in [15]. In the same way, GFML syntax allows the programmer to focus in a GFML feature module
on the modifications brought to the specifications or implementations of the parent.

3.3 Examples

Corresponding to the feature diagram of the bank account product line given in Figure 2, the feature
module BA implements the root feature BA. Feature modules DL, LL, and Currency are mapped from
the features DL, LL, and Currency respectively. They have a common parent, i.e. the root module BA.
Feature module CurrencyExchange corresponding to feature CurrencyExchange, is a child of the module
Currency.

The root feature module BA, written with GFML, is shown in Figure 3a. This module includes three
signatures: over - is over limit, balance - gets the current balance value of the account and update - up-
grades the new value balance and also returns the status of the operation (success or no_success, of type S
whose definition is omitted here). The next part of the module BA contains the property update_succ_BA
(line 5) that specifies a customer can withdraw more money a from the account than available if the
balance is within over. In that case, its status must be success. The primitive functions first and second
used in this property are the usual projections of a Cartesian product. Then the representation type is
defined as int (line 10), it means that an account is only represented by its balance. Then appear the
definitions of the functions balance and update (lines 11-15). The proof of property update_succ_BA
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includes two proof hints: by definition of update and balance definitions. This means that the proof
must be done by unfolding the definitions of both functions.

Another example of GFML feature module is the module DL defined according to its parent feature
module BA (Figure 3b). Two new declarations /imit _withdraw and withdraw are added into the module
(lines 2-3). The module introduces the constant limit_withdraw only declared at that point. It denotes
the limit of withdrawn money in a day. It also introduces another function withdraw that returns, for
an account, the current amount of withdrawn money in a day. The functions update, balance and over
defined in the parent are also available in the present feature module. A new property update _succ_DL is
obtained by modifying the property update_succ_BA from the parent (line 6). This modification includes
anew premise called H1 (line 7) for short in the figure (but announced below) and a new conclusion (lines
8-9). The premise H1 is expressed as follows:

r=update(x,a) — (a <=0) — (all n-w w:int,all ns:S, withdraw(x) =w && w+a=
nw && second(BAlupdate(x,a)) =n_s — (n-w >= limit_withdraw) && (n_s = success))

It states that the bank allows a customer to withdraw money only if the amount of withdrawn money in
a day is greater than /imit_withdraw (in this case w, n_w and [imit_withdraw are negative numbers). The
new conclusion states that this operation has to modify the account by updating the amount of withdrawn
money. The representation type of module DL is defined as a Cartesian product of inf (i.e. the concrete
type associated with the amount of money withdrawn in a day) and the representation type of the parent
(line 11). The functions withdraw and update are defined/redefined (lines 12-23). We can notice that in
the redefinition of update the call to the parent function update is done with the parameter x, there is
here an implicit conversion that will be inserted during the translation into FoCal.iZe. The proof of the
property update_succ_DL reuses the property update_succ_BA as a proof hint (line 26). All modifications
and additions compared to the parent module BA are highlighted or underlined.

4 From GFML to FoCaLiZe

In this section, we illustrate the translation from GFML to FoCaLiZe. A GFML feature module is
mapped into three FoCaLiZe separate species. The first species Inh_ contains all desired elements that
are inherited in the child module. These elements can be function declarations, properties or predicates.
A predicate, which is introduced with the keyword ‘logical let’ and named [_cons, is associated with
each property p found in a module. For example, the feature module BA written in Figure 4a is mapped
to the species Inh_BA (line 1). A predicate [_cons_update_succ_BA (line 5) is associated with the property
update_succ_BA. In Figure 4b, the species Inh_DL of the child DL inherits the species /nh_BA of module
BA (line 2).

The FoCaLiZe inheritance mechanism allows the programmer to reuse the artifacts without any
change (except for functions that can be redefined without changing its signature). But although some
properties may be kept in the child module, others may be modified by adding new premises or/and new
conclusions. In this last case, the FoCaLiZe inheritance mechanism is not sufficient. We have to use the
parametrization facility to encode the right meaning. To tackle this limitation, we propose the second
species Reu_ that inherits the first species Inh_. It includes all desired specifications that are reused
to describe new ones in the child. Each property specified in this species must have a corresponding
predicate [_cons in the first species Inh_. Instead of mentioning the property, we use this predicate
for expressing new properties in the child. This trick is used because FoCaLiZe does not allow the
modification of an inherited property in a species. For example, in Figure 4a species Reu_BA inherits
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1 species Inh DL =
2 ipherit Inh BA;
3 signature limit withdraw: int;
4 signature withdraw : Self -> int;
1 species Inh BA = 5 end;;
2 signature update : Self -> int -> Self * 5;
3 signature balance : Self -> int; 6 species Reu DL =
4 signature over: int; 7 ipherit Inh DL;
5 logical let 1 cons_update_succ_BA (x : Self, a : 8 property update succ DL : all x : Self, all a :
6 int, r : Self % 5) = 9 int, all r : Self * § =
7 (balance(x) + a) >= over -> update (x,a) = r 10 Hl > (1_cons_update_succ BA (x, a, r) /N
8 -> (balance (first(r)) = (balance(x) + a)) && 11 (withdraw(first(r)) = withdraw(x) + a));
9 (second(r) = success); 12 end;;
10 end;;
13 species Imp DL (BA is Reu_BA)=
11 species Reu BA = 14 ipherit Reu DL;
12 inherit Inh BA; 15 representation = int“Ba;
13 property update succ BA: all x : Self, all a : 16 let withdraw(x) = second(x);
14 int, all r : Self * ST 17 1let update(x,a) = let w = withdraw(x) in

15

17
18

20
21
22
23
24
25
26
27

1 _cons_update_succ BA(x,a,r);
end;;

species Imp BA =
inherit Reu_BA;
representation
let balance(x)
let update(x,a) =

if ((balance(x) + a) >= over) then

((balance(x) + a), success)

else (x, no_success);
proof of update succ BA = by definition of
update, balance,_l_cogs_update_succ_BA;
end;;

int ;
x5

let rr = BR'update(x,a) in
let n b first(rr) in
let n:s second(rr) in
let n w = w + a in
if (a <= 0) then
if ((n_w >= limit withdraw) && (n_s =
success)) then
((n_b,n w),n_s)
else (x,no_success)
else ((n b,w),n_s);
proof of update succ DL = by hypothesis H2
definition of l_zons_;pdate_succ_?u‘;, update,
withdraw property Ba!update_succ BA;
end;;

(a) Module BA in FoCaLize

(b) Module DL in FoCalL.ize

Figure 4: Feature modules in FoCaLize

the species Inh_BA. It contains the property update_succ_BA (line 13) that is related to the predicate
[_cons_update_succ_BA in species Inh_BA. This predicate is reused to specify the refining property
update_succ_DL of module DL (line 10 of Figure 4b).

The parametrization mechanism in FoCaLize is used here to circumvent the fact that in FoCaLiZe
when the representation type is fixed in a species P, it cannot be changed in any species which inherits
P. So in order to build a new species that can reuse functions, properties, predicates and proofs that are
defined for BA, we have to parametrize this species by an implementation of BA. Thus, when the DL
feature is selected, the account is implemented as a pair containing a basic account of type BA and an
integer corresponding to the new attribute, i.e. the amount of money withdrawn in a day. The implemen-
tation of the functions balance and over are, in this context, just a call to the parent’s functions combined
with the first projection. For example, species Imp_BA inherits species Reu_BA (line 18 of Figure 4a)
while species Imp_DL inherits species Reu_ DL (line 14 of Figure 4b). A parameter BA encapsulates
species Reu_BA (line 13 of Figure 4b). It is used to call function update of module BA (line 18). In the
proof of the refining property update_succ_DL, property update_succ_BA of the parent BA is considered
as a proof hint (line 30). Its associated formula /_cons_update_succ_BA is also a proof hint (line 29). Let
us notice that Zenon, the FoCaLiZe prover has done all the proofs with the given hints.

We can notice that the use of a language such as FoCaLiZe for implementing and verifying feature
modules is quite complex. The proposed language GFML is a solution to write the feature modules
together with their artifacts more easily. We have followed with success this translation scheme for
all the features appearing on the feature diagram of Figure 2. For the moment, the translation is done
manually.
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S Towards Feature Module Composition

5.1 Methodology for composing artifacts

The work previously described is the first step in the proposition of a methodology to help the user to au-
tomatically produce correct-by-construction product variants from features selected in a feature diagram.
This methodology is illustrated in Figure 5. We assume a SPL is described with a feature diagram. First,
the developer writes the different feature modules with the GFML language. He uses the GFM Pre-
compiler to translate his/her feature modules into FoCaLiZe to verify them (using the Zenon prover).
Once this work has been done, the user - he may be different from the developer - chooses features from
the feature diagram. Based on this selection, the corresponding configuration is determined. The related
GFML feature modules are then sent to the GFM Combiner that will compose the feature modules of
the configuration in order to obtain a composition feature module that will be translated into the desired
product variant, which by composition is correct by construction. We expect this method to be indepen-
dent from the target language which is required to be able to express specifications and code and also
proofs (unless these ones can be automatically produced).

In the next subsection we explain the main ideas of our composition mechanism on the running
example.

5.2 Composition of two feature modules: an example

Some problems may appear when composing two feature modules, in particular conflicts may appear
when synthesizing their artifacts. For example, which properties should be performed first? Which
synthesized representation type will make less complex writing? To solve these problems, we suggest
the user gives a composition order of the modules. In our work, we only consider the modified elements
such as refining properties, representation types, function redefinitions or proofs of refining properties.

Similar to module DL, module LL written in Figure 6a is extended from the root module BA. A
new signature /imit_low declares the low limit of the account. A new property update_no_succ_LL is
specified in line 7 and its proof is indicated in line 16. However, we only consider the modifications that
can cause conflicts when composing two modules. For example, let us compose module LL with module
DL. Their composition is the module LL_DL given in Figure 6b. Property update_succ_LL of module
LL includes two parts (lines 3-6 of Figure 6a). Its highlighted part includes a new premise (shortened by
H?2), expressed as follows:

r =update(x,a) = ((a >=0) || (a <= limit_low))
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f module LL from BA
signature limit low: int;

[

property update succ LL: all x : LL, all a :
int, all r : LL * 8 =

refines BA!update_succ_BA(x, a, r)

new premis: H2;

property update no succ ILL: all ..

1 £ module LL DL from LL, DL

2 property update succ LL DL : all x : LL DL, all
3a: int, all r : LL DL ¥ S =

4 refines DL!update_succ_DL(x, a , r )

5

6

~h Ul W

new premise: r = update(x,a) —>
. . >= <= limi .
8 representation = BA!representation; ((a 0) Il (a L L

9 1let update(x,a) = 7 representation = DL!representation;

10 if ((a >= 0) || (a <= limit_low)) then 8 let update(x, a) =
11 Ba!update (x,a) 9 if (a >=0) || (a <= limit low) then
12 else (x, no_success); 10 DL!update (x, a) -

. 11 else (x, no success);
13 proof of update succ LL = (by hypothesis H1 -

14 definition of update, balance property Ba! 12 proof of update succ LL DL = (by hypothesis H1
15 update_succ BR); 13 defintion of update, balance property DL!
16 proof of update no succ IL = (by ..); 14 update_succ DL, BA!update_succ_BA);

(a) Module LL (b) Module LL_DL

Figure 6: Composition of feature modules

The premise specifies that a customer can withdraw money a from the account only if a is less than
limit_low (in this case a and [limit_low are negative numbers). The property update_succ_BA from
the parent BA is its remaining part. Following the composition order, the composite property of two
properties update_succ_LL and update_succ_DL is synthesized by taking H2 first and then mixing with
update_succ_DL. 1t is named update_succ_LL_DL and embedded into a composition feature module
LL_DL (lines 2-6 of Figure 6b). Similarly, the composite representation type is synthesized in line 7.
The function update is redefined (lines 8-11). The proof of the composite property update_succ_LL_DL
reuses two properties update_succ_DL and update_succ_BA as its proof hints (lines 13-14) indicate. The
highlighted parts of module LL (Figure 6a) are the parts highlighted in module LL_DL (Figure 6b). The
other parts which are not highlighted in Figure 6b are taken from module DL.

6 Related Work

Recently, many authors focused on constructing and verifying program variants in SPL. Together with
these, composition methods of feature artifacts are offered. In this subsection, we compare to some of
them.

Thiim et al., in [18], presents a composition approach where partial proofs are given in features and
then composed to build the complete proofs for an individual product. The specifications are expressed
using design by contract [13]. The Krakatoa/Why tool [12] is used to generate proof obligations that are
exported to the Coq proof assistant where proofs are done and verified.

Our work is in line with the previous approach but it is dedicated to a functional setting whereas Thiim
et al’s work involves object-oriented programs. Specification artifacts - expressed as logical formulas
- found in a GFML feature module are close to contracts. For example, a refining property is close
to a refining contract since it includes a former specification and may add a new premise and a new
conclusion. However in our work, each proof is complete. It is extended in a new proof in the result of a
composition and thus in the resulting product variant.

Another composition framework FEATUREHOUSE is offered in [2]. Using the FST (feature struc-
ture tree) model, existing artifacts can be composed to construct a new program. The artifacts must
have tree structures. In contrast, we presented a framework that allows us to construct products from
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the artifacts of the features selected by the user. We are interested in expressing feature compositions
as algebraic expressions using composition operations for each kind of artifacts instead of relying on
the tree structure. Similar ideas were mentioned in [7] [6]. However, these approaches only focus on
constructing products but do not mention how to verify them.

Recent researches [10] [11] had proposed some advances in feature composition in the context of
meta-theory. However, these tools are dedicated to a very specific domain. Similar to Thum’s work,
the products in these approaches are verified in Coq. In contrast, implementing feature modules inde-
pendently of any concrete target language is the purpose of our work. By proposing a generic formal
language (GFML) for feature module, the artifacts are easy to reuse and synthesize but don’t belong to
any concrete language.

7 Conclusion

In this paper we have described a first step towards the production of a methodology allowing for the
development of correct-by-construction product variants according to a FOP paradigm. The contribution
is here the definition of the language GFML allowing the developer to write feature modules containing
their specifications, code and correctness proofs.

These modules are translated to FoCaLiZe for verification and also for obtaining OCaml operational
code. Consequently the product variants we are aiming at will be implemented in OCaml. GFML is
here introduced to help the developer when he is writing the different feature modules, allowing him
to describe the artifacts of a feature with respect to the artifacts of its parents. Realizing this directly
in FoCal.iZe is a difficult task as it is exemplified by the translation scheme presented in a previous
section. For the moment, nothing is implemented, all the examples found in this paper (all the possible
configurations of the case study) have been obtained by a manual translation and composition.

Next step is to provide an implementation for the GFML Pre-compiler that will automatically trans-
late GFML to FoCaLiZe. Then composition of feature modules will be formally defined and imple-
mented in the GFML Combiner.

Another important perspective is to make our methodology independent of the target languages.
Regarding this point, an intermediate step could be to adapt our methodology and tools to B or EventB
where inheritance is not available.
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