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On the Force Control of Kinematically
Defective Manipulators Interacting

With an Unknown Environment
Nabil Zemiti, Guillaume Morel, Alain Micaelli, Barthélemy Cagneau, and Delphine Bellot

Abstract—In this paper, the problem of force feedback control of
kinematically defective manipulators (KDMs) is considered. KDMs
are robot manipulators that have fewer joints than the dimension
of the space in which their end-effector moves. It is well known
that controlling the end-effector velocity of an -joint KDM can
be easily solved by appropriately selecting components of the
output twist, thus squaring the control problem. On the contrary,
we show that such a component selection approach is not appro-
priate in general to solve the force control problem for KDMs. In
particular, for advanced force control applications, such as coma-
nipulation, where the contact geometry is not known in advance,
the selection of the wrench components leads to a lack of passivity,
which in turn may induce instability. This instability does not arise
from the system dynamics. Rather, it can be viewed as a new form
of kinematic instability. Moreover, by formulating the problem in
the joint space, we show how to properly design a stable force con-
troller for KDMs subject to arbitrary external forces applied to
their end-effector. Furthermore, we propose several implementa-
tions for pure force control and damping control. Experimental re-
sults with a kinematically defective laparoscopic comanipulator il-
lustrate these propositions.

Index Terms—Defective manipulators, force control, kinematic
constraints, passivity, surgical robotics.

I. INTRODUCTION

N OWADAYS, customized robots have been built for dedi-
cated tasks in order to exploit their kinematic properties.

Many of these robots have fewer joints than the dimension of
the space in which their end-effector moves. In the literature [2],
[3], these robots are called kinematically defective manipulators
(KDMs). Their particular geometry makes them more adapted
to a specific task, and leads to reduced costs.

For example, endoscopic surgery requires the manipulation
of an instrument through a fulcrum point, which is the entry
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point to the patient’s body through his/her skin. This imposes
a 2 degrees-of-freedom (DoFs) planar constraint, and has
motivated the design of several instrument holders with 4
DoFs (see, e.g., [4]–[6]). Also, a number of 4 or 5 DoFs robots
are commercially available for industry (e.g., LRMate 100iB,
Fanuc Robotics, http://www.fanuc.co.jp/), education (e.g.,
Ericc3, http://www.cybernetix.fr/), or research applications
(e.g., WAM, http://www.barrett.com/).

Velocity control of KDMs is easy to derive: instead of con-
trolling the full end-effector twist using the jacobian pseudo-in-
verse, which is known in the literature to possibly lead to phys-
ically inconsistent results [7]–[9], a reduced parameterization
can be used by appropriately selecting some of the twist com-
ponents. This approach allows for squaring the control problem
and preserves the passivity of the system, as it will be detailed
in Section IV.

Considering now the force control problem of KDMs, it has
been shown in [10], [11] for grasping manipulators that not all
the trajectories of the end-effector can be controlled nor arbi-
trary contact forces can be applied. This induces difficulties in
controlling the overall system. Indeed, as it will be shown in
Section III, a KDM is a hyperstatic system that is, if the robot
end-effector was embedded to the environment, one could not
predict the applied wrench at the end-effector given a torque ap-
plied at the joints. An explicit model of the environment is thus
mandatory to solve this problem, as it has been presented in [3].

The force control problem considered in this paper concerns
advanced applications such as surgical robotics and comanipu-
lation, where arbitrary wrenches are applied to the end-effector,
and are actively produced by one or several operators. Conse-
quently, the use of the environment model shall be avoided.

To solve the force control problem for KDMs without having
to model the environment, one can think that the component
selection might be used, here again, for squaring the control
problem. Unfortunately, we will show in this paper that this
naive approach leads to a lack of passivity, which, in turn, may
lead to a new form of kinematic instability when the contact ge-
ometry changes.

This has motivated our research to consider the problem of
force control applied to KDMs subject to arbitrary external
forces, i.e., without any environment model, and establish the
necessary and sufficient conditions for a passive, thus kinemat-
ically stable, component selection.

Although this work does not propose any new structure for
the force controller (a Jacobian Transpose controller, projecting
a 6-D error into the joint space, can be finally used), its nov-
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elty lies in a constructive rule helping the selection of the force
components for KDMs, which is based on a formal proof of pas-
sivity. This new fundamental rule shows that the component se-
lection shall respect the robot kinematics rather than the contact
geometry. It is thus quite straightforward to apply knowing the
robot kinematics. This allows us to propose a controller which
is stable for any kind of external wrenches, even when the con-
tact geometry is unknown. An illustrative example is taken for a
minimally invasive surgery robot assistant, emphasizing stable
response to forces exerted both inside the patient and outside the
patient, while using a single force sensor.

The remainder of this paper is organized as follows. In
Section II, an ongoing research overview and a formulation
of the force control problem for KDMs are presented. In
Section III, we further detail the notations and the robot models
used in the paper. In Section IV, the component selection
approach is applied to the velocity control of KDMs, and a
passivity analysis is proposed. In Section V, we consider the
problem of pure force control applied to KDMs and establish
the basic passivity properties of two different force projection
methods. In Section VI, these results are extended to damping
control of KDMs. In Section VII, we provide experimental
results to a particular KDM, which is a comanipulator for force
feedback minimally invasive surgery. Finally, Section VIII
provides a summary and discussion of the results, together with
perspectives.

II. RELATED WORK

Stability problems raised by component selection has been
early reported in [12] and [13] where it has been shown that the
kinematic stability of the hybrid position/force control method
proposed by Raibert and Craig [14] is very dependent on the
geometry of the manipulator.

The component selection has been pointed out in [15] and
[16] as another significant factor for force control stability. In-
deed, the authors have shown that the force controlled manipu-
lator may become unstable if the force-controlled directions are
not carefully selected with respect to the manipulator configu-
ration. In [9], [17], [18], it has been shown that the component
selection approach leads to physically inconsistent results and
may induce the kinematic instability of the systems if a transla-
tion or change in unit of the coordinate frame is performed. All
these studies do not explicitly consider the possibility for the
robot to be kinematically defective.

The kinematic instability problem has been identified in
[19] as a result of an inappropriate formulation of the hybrid
position/force control scheme when using component selection
approach. The authors have proposed a kinematically stable
hybrid position/force scheme, where the task specification
(selection of the force-controlled direction) is based on an
orthogonal projection approach instead of a conventional se-
lection matrix. However, the orthogonal projection approach
used for force control has been criticized in [17]. Furthermore,
a counterexample has been given in [20], where the modified
projection method proposed in [19] is proven to possibly fail.
The alternative solution proposed in [20] consists in specifying
the hybrid task using a dynamic projector. This approach

Fig. 1. One DoF robot comanipulating a heavy load with human operators.

conserves the passivity of the controller and thus guarantees the
kinematic stability of the hybrid position/force control scheme.
However, since the dynamic projector is calculated using the
manipulator model, an error in the estimation of this latter may
affect the stability of the system.

In [17], [18], [21], instead of a conventional selection matrix,
kinestatic filters completely based on the environment model
have been developed. These filters possess invariant properties
with respect to Euclidean translations and changes in units
which lead to the physical consistency of the system and thus
guarantees the kinematic stability of the hybrid position/force
control scheme. But they cannot be used when the environment
model is not known.

The force selection problem considered in this paper differs,
here again, from the problem studied within the hybrid posi-
tion/force control paradigm. In hybrid position/force control,
the force selection (or force filter) is designed from an explicit
geometric description of the contacts (see [22] for a broad
overview of hybrid control). Rather, here, such a geometric
description shall be avoided in order to be able to deal with
arbitrary wrenches applied to the end-effector. Indeed, as pre-
viously mentioned in Section I, this research targets advanced
applications where contacts may occur at different locations,
and are actively produced by one or several operators.

The force selection problem under consideration can thus be
described as follows: given a non-singular joint KDM, which
end-effector is subject to arbitrary external wrenches, how to
appropriately select components of the measured interaction
wrench and servo them to a desired value so that the system
remains kinematically stable? The answer to this question shall
be established carefully, as illustrated in the trivial following
example.

Consider a one rotating joint robot, that comanipulates a
heavy load together with one or several human operators, as
depicted in

Fig. 1. Assume that the desired behavior for the load is to be
transparent, i.e., not to resist to the forces applied by the op-
erators. In terms of control, this behavior can be achieved by
a force feedback controller, with a desired force equal to zero.
Assume also that one can measure all the components of the
external wrench applied to the robot, i.e., in this planar case,

, along and and the measured moment (at point
) along . With a 1 DoF robot, it is not possible to servo all

the three measurements to a desired value. Therefore, the com-
ponent selection paradigm consists, for example, in arbitrarily
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selecting a force component along in order to built the force
error

where is the reduction matrix that allows for
the construction of a 1-D error from the wrench error.

Note that, in the general 3-D case, is an matrix con-
nected to the classical selection matrix through

which, for the above example, writes

Due to the construction of the error, the force controller will pro-
vide the same corrective motion for any external forces along .
Whether this force is applied by operator or operator (see
Fig. 1) cannot be distinguished by the controller. Therefore, the
system cannot be stable for both operators. Indeed, in order to
ensure stability, the controller should produce corrective mo-
tions with opposite signs in response to the same force applied
by operator or along .

This trivial example shows that the arbitrary component se-
lection approach applied to force control of KDMs may lead to
instability.

Obviously, the problem depicted in Fig. 1 can be solved by
servoing the joint torque rather that the selected force compo-
nent along , as any measured positive joint torque shall produce
a positive joint velocity, without depending on where the force is
applied. In other words, if the reduction matrix was chosen to be

, then the above stability problem would be solved.
Therefore, we are facing a kinematic stability problem, that only
depends on the robot kinematics and the selection matrix.

III. MODELING

A. Kinematic and Static Models of KDMs

A robot with independent joints is considered, with
denoting the joint positions. Furthermore, the pose of the robot
end-effector evolves in .

A kinematically defective manipulator is characterized by
. For such a robot, one cannot control

independently each component of the end-effector velocity
, which is a vector grouping the coordinates of the

end-effector linear and rotational velocity vectors. As a matter
of fact, one has

(1)

where is the Jacobian matrix of the manipulator
and denotes the joint velocity vector regrouping either
angular velocity components (rotational joints) or translational
velocity components (prismatic joints).

The matrix is not square, thus, one cannot specify ar-
bitrarily a desired velocity and compute the corre-
sponding joint velocity .

Similarly, the force transmission model can be obtained by
applying the virtual power principle, together with (1), which
leads to, [23]

(2)

where is the generalized joint force vector,1 while
groups the coordinates of the end-effector wrench (force and

moment) equivalent to . Again, is not controllable from ,
as is not square.

It is important to note that the force control problem funda-
mentally differs from the velocity control problem.

Indeed, assume that a desired velocity is specified such
that belongs to the range space of , noted ,
(a condition to ensure that can be achieved). Assume also
that the robot is not in a singular configuration. Since the null
space of , noted , has a null dimension, one
can compute according to (1) the unique joint velocity vector

corresponding to . Applying at the robot joints will
necessarily generate at the robot end-effector.

On the other hand, if an arbitrary vector of is specified,
(2) allows the computation of a corresponding joint torque

. However, applying this computed torque results
in an equivalent wrench that verifies, according to (2)

(3)

As the dimension of the null space of is not null, (3) does
not guarantee that the resulting wrench is equal to . Rather,
the general solution is for to lie in ,
i.e., the resulting wrench equilibrates with the desired wrench

, [24].
In fact, we are facing an hyperstatic system with an under-de-

termined force control problem. Consequently, an explicit
model of the environment may be used to solve the indetermi-
nacy which will be avoided in this paper.

B. Linearized Robot Dynamics

As noticed in the introduction, the problem under considera-
tion only relies on the kinematics of the robot and the force com-
ponent selection. Here, the dynamics is not an issue. Therefore,
in order to allow for a simplified analysis, a linearized model
will be used for the robot dynamics. It is well known that the
general form of an -joint robot dynamics in contact with the
environment can be written as [25]

(4)

where it follows:
• is the positive definite, symmetric inertia matrix;
• is a vector grouping the Coriolis and centrifugal

joint torques;

1In the following, for shortness, generalized joint forces will be referred as
joint torques. However, the reader should keep in mind that this vector may
group either torques or forces, depending on the nature of the joints (rotation or
translation).
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• is a vector grouping the dissipative (friction) joint
torques;

• is a vector grouping the gravity joint torques;
• is the command vector for the joint torques;
• is the joint torque corresponding to

an external wrench applied by the environment to
the robot (by convention, denotes, in the following, the
wrench applied by the robot to the environment).

It is assumed in the next that, at the lowest level of the controller,
a proportional velocity feedback is used in order to partly lin-
earize the robot dynamics

(5)

where is a symmetric, positive definite matrix of velocity
feedback gains, (respectively, ) is a compensa-
tion for the gravity (respectively, the Coriolis and centrifugal)
joint torques, and is the new command vector for the joint
torques. From a mechanical point of view, can be viewed as
an additional viscous friction term. If chosen high enough, this
term will be dominant. If, additionally, the compensation terms
are supposed to be precise enough, a simplified model can be
used

(6)

Furthermore, it will be assumed in the next that the robot
moves in a neighborhood of a given joint configuration , so
that the variation of can be negligible and the model can
be linearized by setting constant, [26]. Note that,
this linearization is valid in a rather large neighborhood of
when high gear ratio transmission is used (i.e., when the inertia
matrix has the particularity of being diagonal dominant
and mostly constant over the workspace, [27]). In the experi-
mentations shown in this paper, this assumption is verified since
the used surgical robot has a high gear ratio transmission.

The resulting linearized model of (4) writes

(7)

where is the Laplace complex variable.
Again, this model is valid only locally, around an average

configuration . Note that the purpose of the model lineariza-
tion is only to allow for the use of linear tools for passivity anal-
ysis in the rest of the paper. This simplification does not influ-
ence the problem under study, that concerns kinematic stability.
Moreover, even when not linearized, the robot dynamics can be
shown to be passive [24].

Finally, when it will be necessary for the passivity analysis,
the kinemato-static transmission models will be linearized as
well, by simply setting

(8)

with .

C. Passivity

When considering a robot interacting with its environment,
the stability properties depend not only on the robot dynamics,
but also on the environment dynamics. In advanced applications

of force control, such as force feedback teleoperation or coma-
nipulation, one cannot assume for a known model for the en-
vironment. Therefore, a useful tool for the stability analysis of
such systems is passivity analysis. Here, the basic idea is to pro-
vide a controlled system such that the interaction port between
the robot and the environment, i.e., the transfer between the ex-
ternal wrench and the twist is passive.2 Although this
condition is quite conservative, it provides a formal guarantee
that, when coupled to passive environments, the system will re-
main stable.

In practice, considering an LTI system, with an input and
an output , the system is passive if, and only if, the real rational
transfer matrix such that is positive real (PR).
In turn, positive realness can be checked by the following prop-
erty [29].

1) Property 1: Let be a linear transfer function, let
, , denote the poles of all the elements

of , and let , , denote the pure
imaginary poles of all the elements of . The transfer

is Positive Real if, and only if:
1) ;
2) , is of multiplicity 1, and the associated

residue matrix is hermitian, positive semidefinite
(PSD). The matrix can be computed as

if is finite (9)

and

if is infinite (10)

Note that a zero of is considered as a pole at the
infinity.

3) is PSD, for any
.

For mechanical systems interacting with each other, the input-
output variables are the forces ( or ) and the velocities ( or

). Quite usefully, either the impedance transfer function
or the admittance transfer function can be checked to be
PR in order to prove the system passivity [28]. For example, one
can check for the robot passivity by considering its admittance

with: (11)

Here, the positive realness of can be verified straightfor-
wardly invoking Property 1.

IV. VELOCITY CONTROL OF KDMS

In this section, one considers the problem of controlling the
end-effector velocity of a KDM. To do so, a reduced parameter-
ization is used by appropriately selecting some of the twist com-
ponents. This approach allows for squaring the control problem
and preserves the passivity of the system, as it will be shown in
the next section.

2In this paper, simple passivity is studied rather than strict passivity, as, in
practice, it is not required that the interaction port exhibits an excess of passivity
[28].
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Fig. 2. End-effector velocity control for KDMs.

Indeed, as only components of the twist are independently
controllable, the velocity measurement is reduced to

(12)

where is a reduction matrix that selects the com-
ponents of to be servoed. Each line of is built with zeros,
except for one column where a 1 is used to the select the corre-
sponding component of . In the rest of this paper, the following
assumption will be used.

Assumption 1: The matrices , and are all of
full rank .

This assumption is weak in practice. The fact that is of
rank only imposes that different velocity components are
selected. The fact that is of rank means that the robot is
not in a singular configuration. Finally, the fact that is
of rank imposes that the parametric reduction does not create
a singularity. In other words, one shall not select components
of the robot velocity that are linearly dependent and, for this
reason, cannot be controlled. Furthermore, one shall not select
a direction along which the robot cannot move.

Given a desired value for the reduced twist, the velocity
servoing error is . Thanks to Assumption 1, one can com-
pute the corresponding joint error by

(13)

where is the reduced robot jacobian
matrix such that

(14)

The joint error can be fed to a joint velocity compensator ,
which results in the control law

with

(15)

The corresponding block diagram is depicted in Fig. 2.
The linearized output admittance of the velocity controlled

robot writes

(16)

In the following, a joint proportional-integral (PI) compen-
sator is used:

(17)

Fig. 3. Direct joint torque control.

where and are symmetric, posi-
tive definite matrices of proportional and integral gains, respec-
tively. Therefore, thanks to Assumption 1, since is known
to be of full rank , the positive realness of is equivalent
to the positive realness of

(18)

Proposition 1: The admittance defined in (18) is pas-
sive for any choice of symmetric, positive definite gain matrices

and .
The proof of this proposition is given in the Appendix .
It is clear from this result that, as long as the component re-

duction does not affect the rank of the kinematic transmission, it
does not create any particular problem for the system in terms of
closed loop passivity (thus stability). On the contrary, as detailed
in the next section, the component selection paradigm may gen-
erate a lack of passivity within the context of force control.

V. FORCE CONTROL FOR KDMS

This section addresses the force control problem for KDMs,
and more precisely the question of the construction of the
wrench error with eventually selecting the force components
to be servoed. Two methods are presented for constructing the
wrench error and their passivity is analyzed.

A. Direct Joint Torque Control

In order to study the problem of force control for KDMs, let us
first consider the case where the manipulator is equipped with
joint torque sensors that are able to measure the joint torques
resulting from an external action on the robot3.

In this case, one can specify a desired value for the torques,
compare it to the measured torques , and implement a torque
compensator at the joint level . Most frequently, a PI
feedforward compensator is used, as it provides enough band-
width while compensating for the static disturbance created by
dry friction:

(19)

where and are symmetric, positive
definite matrices of gains. The resulting control scheme is rep-
resented in Fig. 3.

3Whether such devices can be implemented or not is not a problem considered
here. Indeed, in this paper, direct joint torque control is only a formal case of
study, that will be used hereafter when considering force controllers based on
end-effector measurements.
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The output admittance at the joint level is

(20)

Proposition 2: The admittance given in (20) is passive
if, and only if the three following conditions are verified:

is PSD

is PSD
(21)

The proof of this proposition is given in the Appendix.
Conditions (21-a) and (21-d) are weak as they only depend

on the designed control gains and allow for a quite wide range
of possible choices for and , which includes all positive
diagonal matrices.

Condition (21-b) requires that any eigenvector of , when
multiplied by , remains an eigenvector of . Dynamic de-
coupling schemes, that would set could be used to
verify this condition, providing that a correct estimate of the
robot inertia was available. In the experimentations shown in
this paper, for the sake of implementation simplicity, all the gain
matrices ( , , and ) were chosen to be diagonal and con-
stant over the workspace. A simple solution to satisfy Condition
(21-b) in spite of the variation of over the workspace is then
to choose

with:

(22)

In some particular cases, other choices are possible for a con-
stant diagonal matrix . For example, if is diagonal, any
diagonal matrix will satisfy Condition (21-b). Also, if
is block-diagonal, different gains can be used for each diag-
onal block. However, such dynamical properties are obtained
for very particular robot designs only.

When is set according to (22), Condition (21-c) writes

is PSD (23)

The matrix being obviously positive definite, this
condition can be viewed as a limitation for the joint torque in-
tegral gain . For example, if all the gains are the same for all
the joints, i.e., and the necessary and suf-
ficient condition for passivity is simply

(24)

where is the largest singular value of . For a given
robot, if or an upper bound for is known,
Condition (24) provides a maximum value for once and
have been set.

B. Force Control From an End-Effector Measurement

In practice, the external forces are generally measured at the
end-effector level through a 6-axis force-torque sensor, and can
be compared with some desired values in order to compute an
end-effector error . However, it has been demonstrated in the
past (for 6 DoFs manipulators) that the use of joint torque com-
pensation provides a better robustness than direct compensation
in the operational space [30]. This type of implementation is
thus chosen. Namely, joint torque compensators are kept at
the lowest level of the controller.

Therefore, a joint torque error has to be computed from a
wrench error . This can be done by

(25)

The main question addressed in the following concerns the con-
struction of the wrench error, and more particularly the eventu-
ality of selecting force components to be servoed. In the next,
two methods are proposed for constructing the wrench error.

In a first approach, considering that joint variables only can
be controlled (a KDM case), one can choose to select only
components for the wrench error, such that

(26)

Here, is the same selection matrix that is used in con-
ventional hybrid position/force control, connected to the reduc-
tion matrix given in (12) through . A main advantage
of the selection approach proposed in (26) is that, in practice it
requires to measure only wrench components, which may lead
to the use of a simpler sensor (e.g., a 3-component force sensor
for a 3-joint robot). However, we will see in the following that
this approach, in general, leads to a lack of passivity, which in
turn may induce instability.

In a second approach, considering that 6 independent scalar
components can be measured to quantify the external wrench,
one can always specify 6 components for a desired wrench, and
set

(27)

Note that this definition always allows for the computation of
an -component torque error thanks to (25).

The two definitions for the force error, given by (26) and (27),
fundamentally differ and will lead to very different behaviors.
Indeed, if one supposes that the closed-loop system is stable,
the PI joint torque compensator will necessarily produce a null
torque error

(28)

With the first approach, this is equivalent to

(29)

Introducing a reduced parametrization for wrenches, ,
this can be written as

(30)
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Fig. 4. Force feedback control scheme for KDMs. The scheme depicts both the
proposed approaches, depending on the value of� (� is either a rank� selection
matrix, or simply the identity).

where it appears that the force control problem has been artifi-
cially squared: when the reduced robot jacobian matrix is
not singular, the equilibrium configuration leads for the reduced
wrench , that contains the selected force components,
to be equal to specified components in .

With the second approach, the joint equilibrium condition
leads to

(31)

This means that the end-effector wrench error is not necessarily
zero, but belongs to the null space of . In other words, an
equilibrium is obtained between a virtual (rather than desired)
wrench and the external wrench .

C. Passivity Analysis of the Two Proposed Force Control
Approaches

Fig. 4 depicts the control scheme for the two proposed ap-
proaches. The corresponding linearized output admittance of the
system with its controller is given by

(32)

where either or is a selection matrix of rank .
Note that here, the admittance under consideration is ,

where no particular structure is assumed for . This choice is
made because no particular contact geometry is assumed. Get-
ting back to the comanipulation example depicted in Fig. 1, it
is clear that external wrenches can be applied in any directions
by the operators. However, if a particular application was con-
sidered with a known contact geometry and a perfect contact
model, in such a way that some of the wrench components can
be supposed to be always null, one could design appropriately
the selection matrix so that at any time and check
for the passivity of

which, thanks to Assumption 1, is equivalent to the passivity
of defined in (20). However, again, this study focuses
on the passivity of the closed loop system when submitted to an
arbitrary external wrench, so that the passivity of the admittance

given in (32) is under consideration.
Proposition 3: Under Assumption 1, the admittance

given in (32) is passive if, and only if:
C1) ;
C2) the conditions (21) are verified (i.e., the corresponding

direct joint torque controller is passive).
The proof of this proposition is given in the Appendix.

Conditions C1) and C2) are completely independent. Condi-
tion C2) applies to the control gains of the joint compensator
with respect to the robot inertia, while condition C1) concerns
the robot kinematics and the selection matrix.

Note that condition C1) applies to the linearized kinematics
around a given configuration . However, if we

want this condition to be verified for any configuration , it is
then necessary and sufficient that

Condition C1) is obviously satisfied with the second approach,
i.e., when . Moreover, with the first approach, when

, Condition (C1) may also be satisfied, but only
for a specific class of robots, and an appropriate selection.

Namely, Condition C1) will be satisfied, if and only if the
following.

• The considered robot has a particular design that, by the
mean of a bright choice of the jacobian reference frame and
expression point, allows for the expression of the jacobian
matrix with null lines.

• The zeros of are chosen to match the null lines of the
computed .

In most cases, does not have zero lines in all the
workspace, so that one cannot find a selection matrix of rank

providing passivity. Therefore, most frequently, one shall use
6 components of the wrench to provide passive force control of
an -joint kinematically defective manipulator by projecting the
wrench error into the joint space according to (27).

Remarkably, Condition C1) refer only to the kinematic prop-
erties of the robot and the selection matrix. This justifies a pos-
teriori the use of the term kinematic instability to qualify the
problem studied in this paper.

Indeed, the experimental results provided in Section VII will
show that for surgical comanipulation applications where the
contact geometry is not known, if Condition (C1) is not satis-
fied, the selection of the wrench components may lead to a lack
of passivity which in turn may induce instability. On the other
hand, by formulating the problem in the joint space, i.e., when

, Condition C1) is always satisfied and thus the stability
of the controller is unconditionally guaranteed.

VI. DAMPING CONTROL OF KDMS

A. Damping Control of Conventional Manipulators

Damping control is a particular implementation of impedance
control, that is aimed at controlling not only the nominal ve-
locity of a robot, but also the laws that govern the deviation from
the nominal velocity generated by external forces.

Considering a conventional manipulator with 6 DoFs,
damping control allows for the specification of both a reference
velocity , which is the desired velocity for the robot when
it does not experience any contact with its environment, and a
damping matrix , such that

(33)

A physical interpretation of this behavior consists in replacing
the robot by an equivalent virtual damper attached to the end-
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Fig. 5. Equivalent desired behavior of a conventional (6 DoFs) manipulator
under damping control. Here, the 6 DoFs damper� is materialized by an equiv-
alent set of individual 1 DoF dampers.

effector, whose reference velocity can be controlled indepen-
dently (see Fig. 5).

Two different types of controllers can provide this behavior.
The first type uses at the lowest level a force/torque controller,
which allows for specifying a desired wrench . An external
velocity loop is then added that computes in function of the
velocity error by

(34)

The second type of damping controller exploits at the lowest
level a velocity loop, which is fed with a desired velocity .
An external force/torque loop is then added for the computation
of this desired velocity in function of the reference velocity
and the measured external wrench by

(35)

It can be noticed that both controllers described by (34) and
(35) provide only an approximation of the desired behavior
given by (33). Namely, the desired behavior is achieved if
the inner loop is fast and precise enough to provide an output
that is permanently equal to the desired input (i.e.,
and , respectively). Clearly, this is valid only within a
limited bandwidth, that should be large enough with respect
to the overall system bandwidth. Therefore, since a higher
bandwidth can be obtained for the inner force control loop than
for the inner velocity control loop, the first implementation
should be preferred. However, in some particular cases, one has
no choice but using the second implementation, e.g., when the
robot control hardware includes velocity loops that cannot be
removed.

In any cases, when considering a kinematically defective ma-
nipulator, difficulties occur with both implementations. Indeed,
only a reduced -component velocity vector can be speci-
fied. On the other hand, as emphasized in the previous section,
reducing the force measurement through a selection matrix may
lead to kinematic stability problems. Therefore, the problem of
mapping 6 components of a wrench into components of a ve-
locity should be addressed carefully. This is done in the next
two sections, by considering both the inner force loop and the
inner velocity loop implementations.

B. Damping Control of KDMs With an Inner Force/Torque
Loop

Assume that a KDM is equipped with a force/torque loop, that
allows for the specification of a desired wrench , as detailed

Fig. 6. Damping control for kinematically defective manipulators with a pas-
sive inner force/torque loop.

in Section V. Here, obviously, a passive formulation shall be
chosen, with a non reduced wrench measurement.

On the other hand, due to the kinematic constraint, one cannot
specify for a 6-component reference velocity . Rather, a re-
duced reference velocity , with components, can be speci-
fied. The external velocity loop shall compute an error between
this reduced reference velocity and the reduced velocity

(36)

and compute a desired wrench for the inner loop by

(37)

where is a matrix which elements are homogeneous
to damping coefficients. The corresponding control scheme is
given in Fig. 6.

In order to evaluate what possible choices can be made for ,
a passivity analysis is proposed in the next section.

Here, the output passivity is under study, i.e., passivity be-
tween external wrenches and velocities. Therefore, the output
admittance is considered, while a null reference ve-
locity is assumed, which leads to

(38)
where , is the closed-loop admit-
tance of the direct joint torque controlled robot as defined in
(20).

Proposition 4: Under Assumption 1, the admittance
defined in (38) is passive if, sufficiently it follows:

1) is positive real;
2) is positive definite.
This proposition is proven in the Appendix.
Note that Condition 1) is simply equivalent to the passivity of

the inner loop. Moreover, a first possible choice for in order to
respect Condition 2) is to consider the desired behavior given in
(33), and to add the kinematic constraint provided by the robot.
Namely, since one has

(39)

Equation (33) can be rewritten as

(40)
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Fig. 7. Equivalent desired behavior of a kinematically defective ma-
nipulator under damping control with an inner force loop, when setting
� � � ���� ����� . Here, the 6 DoFs damper � is materialized by an
equivalent set of individual 1 DoF dampers.

In this case

(41)

so that the positive definiteness of is sufficient to guarantee
the system passivity. In order to physically interpret the behavior
of the system with this choice for , let us assume that, within
a limited bandwidth, the inner loop provides a null error, that is

One obtains for the closed-loop behavior

(42)

where here, is the velocity error of the
robot end-effector when it experiences a reduced velocity error

. In other words, at any time, the external wrenches equili-
brate with the wrench produced by a virtual damper attached
to the end-effector, while the end-effector is attached to virtual
unactuated mechanism, that has no inertia and reproduces the
kinematic chain of the robot. The equivalent physical system is
represented in Fig. 7. Notice that a 6-D virtual damper can
be specified, although, obviously, it cannot be fully realized by
the robot due to a lack of DoFs.

Note that another possible choice for consists in setting

(43)

with positive definite. Indeed, in this case, one has

(44)

which is positive definite thanks to Assumption 1. The closed-
loop behavior becomes (at low enough frequencies)

(45)

which corresponds to the behavior obtained in (42) and the
equivalent mechanical system depicted in Fig. 7, with the
generalized damper that specifies null damping
coefficients for the unselected directions.

C. Damping Control of KDMs With an Inner Velocity Loop

In this section, it is assumed that a KDM is provided with a
passive velocity controller, such as the one depicted in Fig. 2.

Fig. 8. Damping control for kinematically defective manipulators with a pas-
sive inner velocity loop.

The input of this low level controller is a reduced velocity .
An external force/torque loop is to be designed, which writes,
by analogy to (35)

(46)

where is a matrix of gains which elements are
homogeneous to the inverse of a damping coefficient. The cor-
responding control scheme is given in Fig. 8.

Again, in order to evaluate what possible choices can be made
for , let us evaluate the passivity of the output port, that is
the positive realness of the following admittance:

(47)

where is the admittance of the velocity controlled robot
at the joint level, defined in (18).

Proposition 5: Under Assumption 1, the admittance
defined in (47) is passive if and only if

such that rank and
(48)

and, setting , the following conditions are veri-
fied:

is PSD
is PSD

(49)

This proposition is proven in the Appendix.
One can note that selecting an appropriate matrix can

be done by choosing a PSD matrix , that can be viewed as a
matrix of gains which elements are homogeneous to the inverse
of joint damping coefficients. Also, Condition (48) imposes that
all the 6 wrench components must be measured in order to guar-
antee the system passivity, unless, of course, thanks to a partic-
ular kinematic design, columns of are null (in
this case, one can find of rank such that ). This
is consistent with the result obtained for force feedback control.

Condition (49-a) is easy to satisfy as it only applies to con-
trol gains and leaves a wide possible choice for , and ,
which includes any positive diagonal matrices. Moreover, Con-
dition (49-b) could be satisfied with choices for and/or
that depend on , such as, e.g., and . If, for
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Fig. 9. Equivalent desired behavior of a kinematically defective manipulator
under damping control with an inner velocity loop. For a general robot and con-
stant control gains, the passivity constraint only allows for the specification of
a joint damping behavior.

simplicity, is chosen to be constant and diagonal, Condition
(49-b) can still be statisfied if

with (50)

In this case, it can be straightforwardly verified that Conditions
(49-a) to (49-e) are satisfied for any choice of positive diagonal
matrices , , and .

In other words, the choice given in (50) is a simple and prac-
tical way to provide passivity. With this choice, the closed loop
behavior is given, within the limited bandwidth where one can
assume , by

(51)

or

(52)

An equivalent mechanical system, depicted in Fig. 9, consists
in a kinematic chain identical to the robot, each joint being
equipped with a damper exhibiting a damping coefficient equal
to .

VII. FORCE CONTROL EXPERIMENTAL RESULTS ON A

MINIMALLY INVASIVE SURGICAL ROBOT

In this section, we compare the practical behavior of the force
control scheme depicted in Fig. 4, with two different choices
for the matrix . To do so, a minimally invasive surgical robot
interacting with an unknown environment is used.

A. Experimental Setup

The robot (French acronym for compact manipulator
for endoscopic surgery) is a KDM specially suited for minimally
invasive robotic surgery applications [31], [32]. With
joints and a spherical structure, this robot provides 4 degrees of
freedom at the instrument tip, which evolves in .

More precisely, the robot consists of two parts, as shown in
Fig. 10. The lower part is a compact spherical 2 DoFs mech-
anism ( and ) which joint axes coincide with the trocar
center. This provides an invariant center at the fulcrum point.
The upper part of the robot (see Fig. 11) is mounted on the
trocar. It provides the two remaining DoFs: the rotation about

Fig. 10. Picture of �� � with joint parameters. This robot can comanipu-
late an instrument with a surgeon, and measures wrenches applied either by the
surgeon, or at the instrument tip.

Fig. 11. Upper part of the�� � robot, which realizes rotation and translation
of the instrument.

the instrument axis and translation along the instrument
axis .

The Fig. 10 shows, the robot fixed base frame located
at , and the end-effector frame located at the instrument
tip ”.

Apart from its compactness, the main feature of this robot is
that it offers a new possibility of force measurement in mini-
mally invasive surgery. Namely, can measure the distal
organ-instrument interaction with a 6-axis force-torque sensor
placed outside the patient (thus subject to much less steriliza-
tion constraints). Remarkably, due to the special mounting of
the force sensor, neither the friction between the instrument and
the trocar nor the wrench between the trocar and the patient’s
skin influence these measurements.

With the same sensor it is also possible to measure forces due
to surgeon-instrument interaction. Therefore, this robot is suited
for comanipulation tasks, i.e., the robot and the surgeon can si-
multaneously manipulate the instrument (see [32] for details).

B. Experimental Results With Force Control

A set of experiments was conducted with for the eval-
uation of the practical behavior of the force control scheme de-
picted in Fig. 4, with two different choices for the matrix .
More precisely, the objective for these experiments is to eval-
uate the system behavior when using a passive controller, noted
Controller , and a non passive controller, noted Controller .

During these experiments, the robot interacts with an un-
known environment illustrated here by two different contact
points: one at the instrument tip and the other near the in-
strument handle .
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For practical reasons (flexion and backlash introduced in the
overall system), due to a lack of performance of the prototype’s
third joint transmission, the joint was intentionally frozen.
In the following, only joints ( , , and ) are used
without any consequence during the experiments.

In a first tuning stage, all the gain matrices ( , , and )
were chosen to be diagonal and constant over the workspace.
This gains values

were chosen in such a way that the conditions given in (21) are
verified. Consequently, the passivity of the system only depends
on the selection matrix . During all the experiments, the Jaco-
bian matrix of the robot is expressed in the fixed robot base
frame , at the instrument tip . Therefore, from the force and
moment initially measured in the sensor frame, one calculates
the force and moment at point and project them into the robot
base frame , which is done thanks to standard robot geomet-
rical model and exploits the measurement of the robot position,
as detailed in [32].

In a first experiment (Experiment 1), the instrument is rigidly
attached to a fixed environment near its tip . This illustrates
the situation when the instrument contacts the patient organ. For
this experiment, two controllers are evaluated as follows.

• Controller does not use any selection: . There-
fore, theoretically, it is passive.

• Controller uses a component selection aimed at servoing

the force at the instrument tip: . According

to the theoretical study provided in this paper, as the con-
dition is not verified, Controller is not passive.

In order to present comparable results for the two controller,
the desired wrench is speci-
fied for both the controllers, with triangular signals components
varying between 1 and 3 N (for and ), and between
and (for ).

The experimental results are first plotted in the joint space,
in Fig. 12. In this experience, controller runs from
to 2.4 s. At 2.4 s, Controller is switched off while
Controller is switched on. In these plots, the desired torque
was computed by for Controller and

for Controller . Due to the choice for , one has
so that these desired torques are identical.

It can be observed that both the controller behave in a very
similar way. In particular, although not passive, Controller is
stable. This is due to the fact that a small clamping device was
used near point to attach the instrument to the environment.
Therefore, the moments at point are small. As a result, in
practice, the wrench exerted by the instrument on the environ-
ment, expressed at point , verifies . As noticed in
Section V-B, Controller responds passively to wrenches that
verify . Experiment 1 is thus an experimental ev-
idence that, when this condition is approximately verified, the
stability is maintained.

Fig. 12. Experiment 1: Results at the joint level.

Fig. 13. Experiment 1: Results at the end-effector level.

Next, end-effector forces and moments measured during the
same experiment are plotted in Fig. 13. At the end-effector level,
a difference can be observed between the two controllers. With
Controller (see Fig. 13, 2.4 s), the forces only ap-
proximately reach their “desired value”. This shall not be con-
sidered as a lack of performance. Indeed, one should keep in
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Fig. 14. Experiment 2: Results at the joint level. The system is stable from
� � � to � � 0.6 s, when Controller � is used. At � � 0.6 s, Controller � is
switched on which leads to instability.

mind that with this control formulation, represents a virtual
wrench and not a desired wrench. Namely, should balance
the effective wrench through

By no way, we are trying to obtain that some of the components
of equal the corresponding components of .

On the contrary, for Controller (see Fig. 13, 2.4 s
4.5 s), the null torque error imposes that the three measured
force components are equal to the three desired force compo-
nents. Meanwhile, as observed in Fig. 13(d), the moment com-
ponents at point are rather small. For this reason, we have

, which explains why the controller, although not
passive, is stable for this particular interaction.

In a second experiment (Experiment 2), the clamp was re-
moved from and attached at point near the handle of the
instrument (see Fig. 10). This illustrates the situation when the
surgeon grasps the instrument in a comanipulation mode. On
the other hand, the two controllers are kept unchanged. In this
configuration, Controller lead to instability, as illustrated in
Fig. 14. In this plot, from to 0.6 s, Controller is
running, with a zero desired wrench. It can be observed that the
joint torques stably remain null. At 0.6 s, one switches from
Controller to Controller . It can be observed that the mea-
sured force rapidly diverges.4 Clearly, with a clamp placed at
point , the equality is not verified, even approxi-
mately. In this case, the lack of passivity induces instability.

4In fact, the measured force stabilizes at a given value after approximately
150 ms, but this phenomena is only the consequence of a saturation value that
was imposed to the motors current in order to preserve the robot safety.

Fig. 15. Experiment 3: Results at the joint level.

Fig. 16. Experiment 3: Results at the end-effector level.

Finally, Figs. 15 and 16 show the results for a third ex-
periment, where Controller is used while the instrument is
clamped at point , with consisting of triangular signals
for force components and null moment at point .

The robustness of Controller is emphasized, as the joint
torques are stably servoed to their desired values. Moreover,
Fig. 16 shows that the components of the virtual force and
the components of the actual force are completely different.
Namely, they are almost opposite. This is explained by the fact
that the virtual wrench is a force applied at point , that bal-
ances the actual wrench , which is applied at point , on the
opposite side from the fulcrum point.
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VIII. OVERVIEW AND CONCLUSION

This paper has considered the problem of force control for
kinematically defective manipulators, in a context where arbi-
trary external wrenches can be applied to the end-effector.

Although, intuitively, one could have thought that only
components of force or torque are enough for the control of
joint robots, both the theoretical analysis and the experimental
results have shown that this cannot be achieved in general.
Namely, we have established the necessary and sufficient
condition for a passive, thus kinematically stable, component
selection. This condition, given by , is satisfied only if
the considered robot has a particular design that, thanks to a
judicious choice of the jacobian reference frame and expression
point, allows for generating only non null and controllable
velocity components.

However, from a practical point of view, it is most likely that
for a non particular robot kinematics, such a reference frame and
expression points cannot be found. It is thus difficult to satisfy
the condition for .

Alternatively, by formulating the problem in the joint space,
we have proposed a passive force control scheme that does not
use component selection and applies to any KDM. Indeed, for
KDM robots, one shall use all the 6 wrench component (i.e.,

), which leads to a standard Jacobian transpose control.
An important feature of this approach is that the stability is guar-
anteed but the equality between the desired and the external
wrench cannot be obtained: the wrench is not anymore a de-
sired value for the measured wrench but rather a virtual wrench
which the actual wrench shall balance.

This paper also provided a comprehensive way of specifying
a damping behavior for a KDM. If a passive inner force loop
is used, a generalized 6 DoFs damper can be specified and at-
tached to the kinematic chain of the robot that represents the
constraint. On the contrary, the only possible passive formula-
tion of a damping behavior when using an inner velocity loop
is to use constant joint dampers. These propositions shall be ex-
perimentally evaluated.

Within the development of a teleoperated system for mini-
mally invasive surgery, that will exploit as a slave arm
and a conventional haptic device as a master arm, we are now
extending these results to a passive formulation of the telema-
nipulation for KDMs.

APPENDIX

Proof of Proposition 1: The positive realness of de-
fined in (18) is equivalent to the positive realness of its inverse

(53)

Finally, the following can be verified.
1) The only pole of , which is , is not strictly in

the right hand plane.
2) The residue matrix , associ-

ated to pole is hermitian, positive definite since
is designed to be symmetric, positive definite.

The residue matrix as-
sociated to the pole at the infinity is Hermitian, positive
definite.

3) One can straightforwardly show that

(54)

which is positive definite since both and are positive
definite.

Therefore, according to property 1, is positive real and,
overall, the output port of the closed loop system is passive.

Proof of Proposition 2: Property 1 can be used to verify
the positive realness of .

1) has one pole that verifies and
poles that are the solutions of and are
all strictly negative.

2) At the finite pole , the residue of writes

shall be Hermitian, which leads to the necessary Con-
dition (21-a).

3) In order to verify the third condition, one has to compute
and verify its positive

semidefiniteness.
One has

where . Moreover, the positive semidefiniteness
of is equivalent to the positive semidefiniteness of

that is

(55)

Developing this expression, one gets

(56)

Decomposing into its real and imaginary parts, one gets
, where , , and

are constant real matrices defined by

(57)

The system is passive only if is PSD for any where
it is non singular. This condition writes:

(58)
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Therefore, the necessary and sufficient conditions for the posi-
tive semidefiniteness of are

and:
and:

is PSD

Next, recalling that , , , , and are
all symmetric, and remarking that is symmetric as well,
the necessary and sufficient conditions for the positive semidef-
initeness of are the ones given in Conditions (21-b) to
(21-d).

Proof of Proposition 3: In order to study the passivity of
, let us first consider the third condition of property 1.

One shall study the sign of for any , with

Consider the eigen decomposition of , which, thanks to
Assumption 1, is of rank . Let be the matrix
grouping the eigenvectors of associated with the strictly
positive eigenvalues of , and be the matrix
grouping the eigenvectors of associated with the null
eigenvalues of . One has,

(59)

where lies in the nullspace of . Therefore, one has,

(60)

Let us first assume that the matrix is not null. In
this case, it is always possible to find such that

.
Furthermore, as the columns of span the range space of ,

the matrix is obviously of full rank . Therefore,
such that the matrix

is of full rank .
To summarize, it is always possible to find and

such that

(61)

with . With this choice for and , one obtains, com-
bining (61) with (60)

which is strictly negative.

In conclusion, a necessary condition for the positive semidefi-
niteness of is that . Recalling
that the columns of span the kernel of , one has

(62)

In other words

(63)

Moreover, from Assumption 1, we know that is of full rank
. Therefore, the matrix , which has lines equal

to the lines of and lines of zeroes, is also of rank
. Therefore, both and are of dimension

, and

(64)

On the other hand, trivially

(65)

Since both and are of dimension , (65)
leads to

(66)

Finally, from (64) and (66), one gets

(67)

Since is spanned by the set of vectors of the canon-
ical base of corresponding to the selected directions, it fol-
lows that the same base spans the range space of . Thus, the
vectors of have a component which is null along any
of the non-selected directions. In other words, the
lines of corresponding to the non selected directions are null,
which leads to

or, equivalently: (68)

This condition is necessary for the system passivity. Supposing
that this condition is verified, the output admittance , re-
duces to

(69)

Thanks to Assumption 1, , so that the positive
realness is equivalent to the positive realness of
[i.e., the joint compensator shall respect the conditions given
in (21)].

In summary, the positive realness of is obtained if, and
only if, and is positive real.

Proof of Proposition 4: Since is of full rank , the posi-
tive realness of the admittance given in (38) is equivalent
to the positive realness of
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Fig. 17. Equivalent block diagram for the passivity analysis of inner force
based damping control of KDMs.

This transfer can be viewed as the system depicted in Fig. 17.
Therefore, it is positive real if, sufficiently [28]:

1) is positive real;
2) and is positive definite.
In other words, given an inner passive force loop, it is suf-

ficient that satisfies the positive definiteness of in
order to guarantee the passivity of the overall system.

Proof of Proposition 5: A first necessary condition for the
admittance given in (47) to be positive real is that
has the same kernel as . Indeed, in order to check for the third
condition of property 1, one shall study the sign of

Using, for , the decomposition given in (59), and setting

with chosen such that is
invertible and chosen such that leads to

(70)

which is strictly negative. Such a choice is always possible un-
less has the same kernel as .

Therefore, there must exist a full rank matrix
such that

(71)

In this case, one has, from (47)

(72)

Thanks to Assumption 1, the positive realness of the admittance
is then equivalent to the positive realness of

(73)

In turn, it is equivalent to study the passivity of the impedance

(74)

where, for shortness, one has set .
Invoking property 1, one can check for the following three

conditions.
1) Poles of shall be in the right-hand half plane. Re-

placing by its expression from (18) and by
its expression from (17) one gets

where . The poles of are then the
solutions of

(75)

Since their real part shall be non positive, one gets Condi-
tion (49-a).

2) has no pure imaginary poles.
3) The last necessary condition is that

shall be PSD. Multiplying on the left by
and on the right by , it is equivalent
to check for the positive semidefiniteness of

(76)

Similarly to the analysis provided for , in the proof of
proposition 2, the necessary and sufficient conditions for the
positive semidefiniteness of where it is not singular are
as follows:

1) ;

2) ;

3) is PSD;
4) is PSD.

This straightforwardly leads to Conditions (49-b) to (49-e) by
using the symmetry of , , and .
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