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In this chapter, four adaptive controllers have been proposed to control a 2-DOF exoskeleton dedicated to kids' rehabilitation. These control laws are implemented at the hip and the knee joints. In fact, tracking the gait scheme with an intense and a precise work may allow children to increase their brain plasticity. Through the proposed study, it is shown that the augmented L 1 adaptive controller is robust regards to parametric variations. Besides, to validate this controller, different scenarios and simulations were carried out to prove its effectiveness.

Introduction

Robotic systems have recently impacted the human life. Indeed, human-robot interaction in several domains is considered as one of the most remarkable achievement all over the world. Nowadays, exoskeletons can be considered as a significant example of human-robot interaction. Initially, exoskeletons were developed for military applications. Then, for industrial applications and medical uses. Since walking is a key feature of independency, restoring safe walking is one of the main goals of robotic rehabilitation. There exist several disabilities that may cause the movement disorders and affect the brain which is the responsible of the body functions. Any damage in the brain tissue before, during or after childbirth may affect certain areas of the brain. Besides, depending on the degree of injury, it can cause permanent disorders, characteristic of a non-progressive injury. Among the potentially determining factors of irreversible brain damage, the most frequently observed include infections of the nervous system, hypoxia (lack of oxygen), head injuries, etc. Children with cerebral motor disorders represent 3 per 1000 newborns. In this context, several medical applications appear in order to help paralyzed kids to restore their locomotion.

In this work, we consider the case of lower limb rehabilitation using exoskeletons in order to assist children movements. In the sequel, we will be interested in kids who have between 2 and 13 years old. Hence, we propose to implement robust controllers that can be adapted to the difference of children morphologies [START_REF] Refai | Adaptive control of a human-driven knee joint orthosis[END_REF]. An adaptive control is a controller with adjustable parameters. In fact, it can adapt to changes in the process dynamics and the disturbance characteristics. Moreover, adaptive techniques can also be used to provide automatic tuning of controllers. In this chapter, four control laws are proposed to solve the problem of parametric variations. The chosen controllers include two nonlinear state feedback adaptive controllers, the L 1 adaptive control and augmented L 1 adaptive control. The first approach, based on Slotine works [START_REF] Slotine | On the adaptive control of robot manipulators[END_REF], consists in a PD feedback part and a full dynamic feedforward tacking into consideration parametric variations. The second approach is also based on Slotine works [START_REF] Slotine | On the adaptive control of robot manipulators[END_REF]. It consists in adding an integral control action to the previous approach in order to eliminate undesirable steady-state position errors. The third approach consists in applying L 1 adaptive control proposed by Naira Hovakimyan [START_REF] Hovakimyan | L1 adaptive control theory guaranted robustness with fast adaptation[END_REF]. The fourth approach is the augmented L 1 adaptive control [START_REF] Refai | Augmented L1 adaptive control of an actuated knee joint exoskeleton: from design to real-time experiments[END_REF] which combines the L 1 adaptive control with a Proportional-Integral control to eliminate the time lag and to improve the tracking performances. Simulation results will be presented with a comparative study which aims to show the robustness of the augmented L 1 adaptive control.

Description and Modeling of Exoskeletons

Exoskeletons are made in order to help kids suffering from several diseases, such as the cerebral palsy, to restore their walk again by a cyclical and alternative rhythmic activities. The basic idea is to control the lower limb exoskeleton (Fig. 1) at the hip and knee joints.

The dynamic model includes the human limb and the exoskeleton, it is written as follows [START_REF] Ghezal | Design and robust control of a 2 DOFs lower limb exoskeleton[END_REF]:

M(q) q + C(q, q) q + G(q) = τ (1)
with, [START_REF] Bennehar | L1 adaptive control of parallel kinematic manipulators: design and real-time experiments[END_REF] where: q = [q 1 q 2 ] T ∈ R 2 represents the position vector of the hip and knee joints, respectively, q = [ q1 q2 ] T ∈ R 2 is the speed vector, q = [ q1 q2 ] T ∈ R 2 is the acceleration vector, M(q) ∈ R 2 is the inertia matrix, which is symmetric, uniformly bounded and positive definite, C(q, q) q ∈ R 2 represents the Coriolis, and centrifugal forces and torques, G(q) ∈ R 2 denotes the gravity torques, τ ∈ R 2 is the vector of actuator torques, 
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Adaptive Control [12]

Let consider that q d is the desired joint position and qd is the desired velocity. The main idea is to develop a globally stable adaptive controller which is obtained from a Lyapunov stability analysis. The Lyapunov function associated to the system is: K p , Γ : symmetric positive definite matrices q = qq d : represents the position tracking error q = q -qd : represents the velocity tracking error

V (t) = 1 2 ˙ q T M(q) ˙ q + a T Γ a + q T K p q (2)
The derivative of V with respect to time is:

V (t) = ˙ q T M ¨ q + 1 2 ˙ q T M ˙ q + a T Γ ˙ a + q T K p ˙ q = ˙ q T τ -C(q, q) q -G(q) -M qd + ˙ q T 1 2 ( Ṁ -2C) + C ˙ q + a T Γ ˙ a + ˙ q T K p q = ˙ q T τ -M(q) qd -C(q, q) qd -G(q) + K p q + a T Γ ˙ a (3)
Using the property of skew symmetric matrix, we have: 

d dt ( qT M q) = qT τ -G(q) (4) qT 1 2 Ṁ -C q = 0 ( 5 ) 
Considering the following control law:

τ = M qd + C(q, q) + G(q) -K p q -K D ˙ q (6)
gives

V = ˙ q T M(q) qd + C(q, q) qd + G(q) -K D ˙ q + a T Γ ˙ a ( 7 
)
where: 
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M(q) = M(q) -M(q) = i M i a i (8) C(q, q) = C(q, q) -C(q, q) = i C i a i (9) G(q) = G(q) -G(q) = i G i a i ( 10 
)
Then, let's write:

M(q) qd + C(q, q) qd + G(q) = Y a ( 11 
)
where Y = Y (q, q, qd , qd ) is an n × m matrix. Therefore:

V = -˙ q T K D ˙ q + a T [Γ ˙ a + Y T ˙ q] ( 12 
)
Assuming that variations of the unknown vector a can be neglected, we obtain: 

V = -˙ q T K D ˙ q ≤ 0 ( 13 
)
using the adaptive law of the parameter vector a: 

˙ a = -Γ -1 Y T ˙ q ( 14 

Adaptive Control with an Integral Action [12]

The idea is to eliminate the steady-state position errors by restrict them to lie on a sliding surface.

˙ q + Λ q = 0 ( 15 
)
where Λ is a positive definite diagonal matrix.

The virtual reference trajectory is expressed by 

q r = q d + Λ qdt ( 16 
s = ˙ q r = q -qr = ˙ q + Λ q (19)
The control and the adaptation laws become:

τ = M qr + C(q, q) qr + G(q) -K D s (20) ˙ a = -Γ -1 Y T (q, q, qr , qr )s (21)
We use a Lyapunov function to demonstrate the global convergence of the tracking:

V = 1 2 s T Ms + 1 2 a T Γ a ( 22 
)
Its first time derivative leads to: The control law does not contain K p , since the position error q is already included in ˙ q r . Moreover where s becomes equal to 0, q converges to 0.

V = -s T K D s ≤ 0 ( 
It is well known that the adaptive controller has several limitations such as (i)

the initial value of the parameters, (ii) the persistent excitation of the estimated parameters, and (iii) the stability. Hence, L 1 Adaptive controller is presented in the next subsection which overcome these limitations.

L 1 Adaptive Control [2]

L 1 adaptive control is inspired from the Model Reference Adaptive Control (MRAC), it is structured into four principal parts as illustrated in Fig. 2 The expression of the torque is:

τ (t) = A m r (t) + τ ad (t) ( 24 
)
where:

A m ∈ R 2×2 is a Hurwitz matrix τ ad ∈ R 2×2 is the adaptive component
The tracking error is expressed as: Fig. [START_REF] Tucker | Control strategies for active lower extremity prosthetics and orthotics: a review[END_REF] Position, speed and torque control of the knee joint, obtained with a Augmented L 1 adaptive controller in the nominal case. Solid line: actual trajectory, dashed line: desired trajectory with Λ ∈ R 2×2 is a symetric positive definite matrix. It is difficult to know exactly all nonlinearities of the system, hence the adaptive control can be defined in such a way to cancel the effect of these nonlinearities. For that, we consider the state predictor which is based on estimated parameters obtained from the adaptation mechanism:

r = ( q -qd ) + Λ(q -q d ) ( 25 
˙ r = A m r (t) + τ ad (t) -[ θ(t) r t ∞ + σ(t)] -K r (t) ( 26 
)
where:

r (t) = r (t) -r (t) is the prediction error K ∈ R 2×2 used to reject high frequency noises.
Using the projection method, we obtain the estimate of θ(t) and σ(t): 

θ(t) = Γ Proj ( θ(t), P r (t) r t ∞ ) (27) σ(t) = Γ Proj ( σ(t), P r (t)) ( 28 
Fig. 14 Influence of -30% of masses and -15% of length uncertainties on the hip joint tracking with augmented L 1 adaptive controller where Γ is the adaptive gain.

Let's P the solution of the algebric Lyapunov equation:

A T m P + P A m = -Q (29) 
The adaptive control is as follows: 

τ ad (s) = C(s) η(s) (30 
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Fig. 15 Influence of -50% of masses and -25% of length uncertainties on the hip joint tracking with augmented L 1 adaptive controller

Augmented L 1 Adaptive Control [2]

The implementation of the classical L 1 adaptive control indicates the presence of a time lag. Hence, the idea is to develop an augmented version of the L 1 adaptive control. Figure 3 shows the block diagram of the augmented L 1 adaptive control. In fact, a linear PI controller is used as an additional part to the filtered control input.

The expression of the torque becomes:

τ (t) = A m r (t) + τ ad (t) + K p (q -q d ) + K i (q -q d )dt ( 31 
)
where K p and K i ∈ R 2×2 are diagonal positive definite matrices. 

Simulation Results

Lower limb exoskeletons are actuated at the knee and hip joints. To validate the different controllers proposed in the previous section, some simulations are presented.

First, Figs. 4 and5 show respectively the position evolution of the hip and the knee joints, the tracking error, their speed and their applied torques using the first approach of Slotine in the nominal case. Besides, Fig. 6 show the convergence of the estimated unknown parameter to the system parameters.

The second part consists in the adaptive control using an integral action. Results 

I AE R = |e|dt |q d |dt (34) 
e denotes the tracking error.

The obtained results are summarized in Table 1. 

Conclusion and Future Work

In this work, four adaptive controllers have been proposed and implemented to control an exoskeleton for kids rehabilitation. These control laws have been tested for the tracking of walking cycle desired trajectory. This study concerns kids who have between 2 and 13 years old (i.e. with different morphologies). Through numerical simulations, it has been shown that the augmented L 1 adaptive controller is the best one in terms of robustness against these parametric variations. Future works aim to validate the proposed approaches on a real exoskeleton, as well as the application to the targeted kids therapy. 
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 131 Fig. 1 Concept of the 2-joint lower limb exoskeleton
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 23 Fig.2Block diagram of L 1 adaptive control[START_REF] Hovakimyan | L1 adaptive control theory guaranted robustness with fast adaptation[END_REF] 

m 1 ,

 1 m 2 , l 1 , l 2 represent the mass and length of thigh and shank segments of the exoskeleton, respectively, m t , m s denote thigh and shank masses of human limb, k 1 , k 2 are the position of the center of mass of thigh and shank segments, respectively, I 1 , I 2 , I s , I t represent the moments of inertia of thigh and shank of the exoskeleton and human limb, respectively, g is the gravity acceleration.
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 14 Fig. 4 Classical adaptive control of the hip joint. For the position and the speed, dashed line: desired trajectory, solid line: actual trajectory
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 5 Fig. 5 Classical adaptive control of the knee joint. For the position and the speed, dashed line: desired trajectory, solid line: actual trajectory
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 16 Fig. 6 Evolution of the estimated Parameters for the first approach of Slotine
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 7 Fig. 7 Adaptive control with integral action of the hip joint. For the position and the speed, dashed line: desired trajectory, solid line: actual trajectory
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 8 Fig.[START_REF] Jamshidi | Modelling of human walking to optimise the function of ankle-foot orthosis in Guillan-Barré patients with drop foot[END_REF] Adaptive control with integral action of the knee joint. For the position and the speed, dashed line: desired trajectory, solid line: actual trajectory
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 9 Fig. 9 Evolution of the estimated Parameters for the second adaptive approach of Slotine
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 10 Fig. 10 Classical L 1 adaptive control of the knee joint. For the position and the speed, dashed line: desired trajectory, solid line: actual trajectory
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 11 Fig. 11 Classical L 1 adaptive control of the hip joint. For the position and the speed, dashed line: desired trajectory, solid line: actual trajectory
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 112 Fig.[START_REF] Slotine | On the adaptive control of robot manipulators[END_REF] Position, speed and torque control of the hip joint, obtained with a Augmented L 1 adaptive controller in the nominal case. Solid line: actual trajectory, dashed line: desired trajectory
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  ) where η(s) is the Laplace transform of η(t) = θ(t) r t ∞ + σ(t), and C(s) is a bounded-input bounded-output (BIBO) stable strictly proper transfer function.
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 116 Fig. 16Influence of 30% of masses and 15% of length uncertainties on the hip joint tracking with augmented L 1 adaptive controller
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 17 Fig. 17Influence of 50% of masses and 25% of length uncertainties on the hip joint tracking with augmented L 1 adaptive controller
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 18 Fig. 18Influence of -30% of masses and -15% of length uncertainties on the knee joint tracking with augmented L 1 adaptive controller
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 1920 Fig. 19Influence of -50% of masses and -25% of length uncertainties on the knee joint tracking with augmented L 1 adaptive controller
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 21 Fig. 21 Influence of 50% of masses and 25% of length uncertainties on the knee joint tracking with augmented L 1 adaptive controller

Table 1

 1 Tracking performance comparison

		Classical adaptive controller	L 1 adaptive controller	Augmented L 1 adaptive controller
		Joint 1	Joint 2	Joint 1	Joint 2	Joint 1	Joint 2
	I AE	0.0037	0.0169	0.0972	0.1578	0.0054	0.0609
	I SE	0.0062	0.0181	0.0057	0.0279	1.2702×10 -4 0.0183
	I AE R	28.2872	3.1664	0.4075	0.2513	0.0228	0.0970
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