An Emerging Trend in Post Moore Era: Monolithic 3D IC Technology
Aida Todri-Sanial

To cite this version:


HAL Id: lirmm-02487849
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02487849
Submitted on 21 Feb 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
This tutorial aims to provide an in-depth look into process, integration and design methods for 3D ICs. As first, an overview of 3D stacked ICs, and their physical design challenges with respect to conventional 2D circuits will be provided, followed by an in-depth look into the power and thermal integrity challenges and solutions [1-12]. More specifically, design challenges related to power, signal and clock distribution will be covered and also present some of the current solutions. Secondly, an overview of physical design challenges for monolithic 3D integration will be provided, and the differences with respect to 3D stacked ICs. The focus will be on power delivery for monolithic 3D ICs [13-14]. The tutorial will conclude with current challenges and future directions for 3D physical design.

References: