
HAL Id: lirmm-02493066
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02493066v1
Preprint submitted on 27 Feb 2020 (v1), last revised 24 Nov 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast in-place algorithms for polynomial operations:
division, evaluation, interpolation
Pascal Giorgi, Bruno Grenet, Daniel S. Roche

To cite this version:
Pascal Giorgi, Bruno Grenet, Daniel S. Roche. Fast in-place algorithms for polynomial operations:
division, evaluation, interpolation. 2020. �lirmm-02493066v1�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02493066v1
https://hal.archives-ouvertes.fr

ar
X

iv
:2

00
2.

10
30

4v
1

 [
cs

.S
C

]
 2

4
Fe

b
20

20

Fast in-place algorithms for polynomial operations:

division, evaluation, interpolation

Pascal Giorgi

LIRMM, Univ. Montpellier, CNRS

Montpellier, France

pascal.giorgi@lirmm.fr

Bruno Grenet

LIRMM, Univ. Montpellier, CNRS

Montpellier, France

bruno.grenet@lirmm.fr

Daniel S. Roche

United States Naval Academy

Annapolis, Maryland, U.S.A.

roche@usna.edu

February 25, 2020

Abstract

We consider space-saving versions of several important operations on univariate polynomials,

namely power series inversion and division, division with remainder, multi-point evaluation, and

interpolation. Now-classical results show that such problems can be solved in (nearly) the same

asymptotic time as fast polynomial multiplication. However, these reductions, even when applied

to an in-place variant of fast polynomial multiplication, yield algorithms which require at least a

linear amount of extra space for intermediate results. We demonstrate new in-place algorithms for

the aforementioned polynomial computations which require only constant extra space and achieve

the same asymptotic running time as their out-of-place counterparts. We also provide a precise

complexity analysis so that all constants are made explicit, parameterized by the space usage of

the underlying multiplication algorithms.

1 Introduction

1.1 Background and motivation

Computations with dense univariate polynomials or truncated power series over a finite ring are

of central importance in computer algebra and symbolic computation. Since the discovery of sub-

quadratic (“fast”) multiplication algorithms [10, 4, 17, 9, 3], a major research task was to reduce

many other polynomial computations to the cost of polynomial multiplication.

This project has been largely successful, starting with symbolic Newton iteration for fast inversion

and division with remainder [12], product tree algorithms for multi-point evaluation and interpola-

tion [13], the “half-GCD” fast Euclidean algorithm [16], and many more related important problems

[2, 5]. Not only are these problems important in their own right, but they also form the basis for many

more, such as polynomial factorization, multivariate and/or sparse polynomial arithmetic, structured

matrix computations, and further applications in areas such as coding theory and public-key cryptog-

raphy.

But the use of fast arithmetic frequently comes at the expense of requiring extra temporary space

to perform the computation. This can make a difference in practice, from the small scale where

embedded systems engineers seek to minimize hardware circuitry, to the medium scale where a space-

inefficient algorithm can exceed the boundaries of (some level of) cache and cause expensive cache

misses, to the large scale where main memory may simply not be sufficient to hold the intermediate

values.

1

http://arxiv.org/abs/2002.10304v1

In a streaming model, where the output must be written only once, in order, explicit time-space

tradeoffs prove that fast multiplication algorithms will always require up to linear extra space. And

indeed, all sub-quadratic polynomial multiplication algorithms we are aware of — in their original

formuation — require linear extra space [10, 4, 17, 9, 3].

However, if we treat the output space as pre-allocated random-access memory, allowing values

in output registers to be both read and written multiple times, then improvements are possible. In-

place quadratic-time algorithms for polynomial arithmetic are described in [14]. A series of recent

results provide explicit algorithms and reductions from arbitrary fast multiplication routines which

have the same asymptotic running time, but use only constant extra space [18, 15, 8, 6]. That is,

these algorithms trade a constant increase in the running time for a linear reduction in the amount

of extra space.

So far, these results are limited to multiplication routines and related computations such as middle

and short product. Applying in-place multiplication algorithms directly to other problems, such as

those considered in this paper, does not immediately yield an in-place algorithm for the desired

application problem.

1.2 Our work

Time Space Reference

Power series inversion (λm +λs)M(n)
1
2 max(cm, cs + 1)n [7, Alg. MP-inv]

at precision n λmM(n) log cm+2

cm+1
(n) O(1) Theorem 2.3

(λm +
3
2λs)M(n)

cm+1

2 n [7, Alg. MP-div-KM]

Power series division λmM(n) log cm+3

cm+2
(n) O(1) Theorem 2.5

at precision n O(M(n)) αn, for any α > 0 Remark 2.6
�

λm(
c+1

2 +
1
c) +λs(1+

1
c)
�

M(n) O(1)‡ Remark 2.7

Euclidean division (λm +
3
2
λs)M(m) +λsM(n) max(

cm+1

2
m− n, csn) standard algorithm

of polynomials 2λsM(m) + (λm +λs)M(n) (1+max(
cm

2 ,
cs+1

2 , cs))n
�

m
n

�

balanced div. (precomp)

in sizes (m+ n− 1, n)
�

λm(
c+1

2 +
1
c) +λs(2+

1
c)
�

M(m) O(1) Theorem 2.8

multipoint evaluation 3/2M(n) log(n) n log(n) [2]

size-n polynomial on n points 7/2M(n) log(n) n [19], Lemma 3.1

(4+ 2λs/ log(
cs+3

cs+2))M(n) log(n) O(1) Theorem 3.4

interpolation 5/2M(n) log(n) n log(n) [2]

size-n polynomial on n points 5M(n) log(n) 2n [5, 19], Lemma 3.3

≃ 105M(n) log(n) O(1) Theorem 3.6

Table 1: Summary of complexity analyses, omitting non-dominant terms and assuming c f ≤ cs ≤ cm.

We use c = cm + 3. For O(1)‡ space, the memory model is changed such that the input dividend can

be overwritten.

In this paper, we present new in-place algorithms for power series inversion, polynomial division

with remainder, multi-point evaluation, and interpolation. These algorithms are fast because their

running time is only a constant time larger than the fastest known out-of-place algorithms, parame-

terized by the cost of dense polynomial multiplication.

By “in-place”, we mean precisely that our algorithms can work using the output space plus a

constant number of extra memory locations, for any input size. In this, we assume that a single

memory location or register may contain either an element of the coefficient ring, or a pointer to the

input or output space (i.e., an index from 0 up to the input size plus output size).

2

For all five problems, we present in-place variants which have nearly the same asymptotic running

time as their fastest out-of-place counterparts. The power series inversion and division algorithms

incur an extra log(n) overhead in computational cost when composed with a quasi-linear multiplica-

tion algorithm, while the polynomial division, evaluation, and interpolation algorithms have exactly

the same asymptotic runtime as the fastest known algorithm for the same problem.

Our reductions essentially trade a small amount of extra runtime for a significant decrease in

space usage. We make this tradeoff explicit by also providing precise leading-term constants in the

running time calculations.

A summary of the complexities of previous approaches, as well as our new in-place algorithms,

is provided in Table 1. We emphasize that the main novelty of our algorithms is that they require no

extra space; the constant difference in running time may give some idea of how they would compare

in practical situations.

1.3 Notation

As usual, we denote by M(n) a bound on the number of operations in K to multiply two size-n

polynomials, and we assume classically that αM(n) ≤M(αn) for any constant α ≥ 1.

All known multiplication algorithms have at most a linear space complexity. Nevertheless, sev-

eral results managed to reduce this space complexity at the expense of a slight increase in the time

complexity [18, 15, 8, 6]. To provide tight complexity analysis, we consider that multiplication algo-

rithms have a time complexity λ f M(n) while using c f n extra space for some constants λ f ≥ 1 and

c f ≥ 0.

Let us recall that the middle product of a size-(m + n − 1) polynomial F ∈ K[X] and a size-n

polynomial G ∈ K[X] is the size-m polynomial defined as MP(F, G) = (FG div X n−1)mod X m. We

denote by λmM(n) and cmn the time and space complexities of the middle product of size (2n−1, n).

Then, a middle product in size (m + n − 1, n) where m < n can be computed with
�

n
m

�

λmM(m)

operations in K and (cm + 1)m extra space. Similarly, the short product of two size-n polynomials

F, G ∈ K[X] is defined as SP(F, G) = FG mod X n and we denote by λsM(n) and csn its time and space

complexities.

On the one hand, the most time-efficient algorithms achieve λ f = λm = λs = 1 while c f , cm, cs are

usually between 2 and 4, using the Transposition principle [7, 2] for λm = λ f . On the other hand, the

authors recently proposed new space-efficient algorithms reaching c f = 0, cm = 1 and cs = 0 while

λ f , λm and λs remain constants [6].

Writing F =
∑d

i=0
fiX

i ∈ K[X], we will use rev(F) ∈K[X] to denote the reverse polynomial of F ,

that is, rev(F) = X d F(1/X), whose computation does not involve any operations in K. Note that we

will use abusively the notation F[a..b[to refer to the chunk of F that is the polynomial
∑b−1

i=a
fi X

i , and

the notation F[a] for the coefficient fa. Considering our storage, the notation F[a..b[will also serve to

refer to some specific registers associated to F .

2 Inversion and divisions

In this section, we present in-place algorithms for the inversion and the division of power series as

well as the Euclidean division of polynomials. As a first step, we investigate the space complexity

from the literature for these computations.

3

2.1 Space complexity of classical algorithms

Power series inversion Power series inversion is usually computed through Newton iteration: If G

is the inverse of F at precision k then H = G + (1− GF)G mod X 2k is the inverse of F at precision

2k. This allows to compute F−1 at precision n using O(M(n)) operations in K, see [5, Chapter 9].

As noticed in [7, Alg. MP-inv] only the coefficients of degree k to 2k − 1 of H are needed. Thus,

assuming that G[0..k[= F−1 mod X k, one Newton iteration computes k new coefficients of F−1 into

G[k..2k] as

G[k..2k[= −SP(MP(F[1..2k[, G[0..k[), G[0..k[). (1)

The time complexity is then (λm +λs)M(n) for an inversion at precision n. For space complexity, the

most consuming part is the last iteration of size n
2 . It needs max(cm, cs + 1) n

2 extra registers: One

can store temporarily the middle product in G[n
2 ..n[using cm

n
2 extra registers, then move it to n

2 extra

registers and compute the short product using cs
n
2

registers.

Power series division Let F, G ∈K[[X]], the fast approach to compute F/G mod X n is to first invert

G at precision n and then to multiply the result by F . The complexity is given by one inversion and one

short product at precision n. Actually, Karp and Markstein remarked in [11] that the last iteration can

directly compute F/G. Applying this trick, [7] shows that the complexity becomes (λm +
3
2
λs)M(n).

Further details on these constants together with an historical report can be found in [1]. The main

difference with inversion is the storage of the short product of size n
2 , yielding a space complexity of

max(cm + 1, cs + 1) n
2
.

Euclidean division of polynomials Given two polynomials A, B of respective size m + n − 1 and

n, the fast Euclidean division computes the quotient Adiv B as rev(rev(A)/ rev(B)) viewed as power

series at precision m [5, Chapter 9]. The remainder R is retrieved with a size-n short product, yielding

a total time complexity of (λm +
3
2
λs)M(m) + λsM(n). Since the remainder size is not determined

by the input size we assume that we are given a maximal output space of size n− 1. As this space

remains free when computing the quotient, this step requires 1
2 max(cm + 1, cs + 1)m − n + 1 extra

space, while computing the remainder needs csn.

As a first result, when m ≤ n, using space-efficient multiplication is enough to obtain an in-place

O(M(n)) Euclidean division. Indeed, the output space is enough to compute the small quotient, while

the remainder can be computed in-place [6].

When m > n, the space complexity becomes O(m − n). In that case, the Euclidean division of

A by B can also be computed by
�

m
n

�

balanced Euclidean divisions of polynomials of size 2n − 1 by

B. It actually corresponds to a variation of the long division algorithm, in which each step computes

n new coefficients of the quotient. To save some time, one can precompute the inverse of rev(B) at

precision n, which gives a time complexity (λm+λs)M(n)+
m
n

2λsM(n) ≤ 2λsM(m)+ (λm +λs)M(n)

and space complexity (1+max(
cm

2 ,
cs+1

2 , cs))n.

Finally, one may consider to only compute the quotient or the remainder. Computing quotient only

is equivalent to power series division. For the computation of the remainder, it is not yet know how to

compute it without the quotient. In that case, we shall consider space usage for the computation and

the storage of the quotient. When m is large compared to n, one may notice that relying on balanced

divisions does not require to retain the whole quotient, but only its n latest computed coefficients. In

that case the space complexity only increases by n.

Using also the fact that we can always a perform a middle product via two short products, we

state the following result formally because it will be useful later on.

4

Lemma 2.1. Given A ∈ K[X]<m and monic B ∈ K[X]<n, and provided n registers for the output, the

remainder A mod B can be computed using 2λsM(m)+3λsM(n)+O(m+n) operations inK and (cs+2)n

extra registers.

2.2 In-place power series inversion

We notice that during the first Newton iterations, only few coefficients of the inverse have been

already written. The output space thus contains lots of free registers, and the standard algorithm

can use them as working space. In the last iterations, the number of free registers becomes too small

to perform a standard iteration. Our idea is then to slow down the computation: instead of still

doubling the number of coefficients computed at each iteration, the algorithm computes less and less

coefficients at each iteration, in order to be able to use the free output space as working space. We

denote these two phases as acceleration and deceleration phases.

The following easy lemma generalizes Newton iteration to compute only ℓ ≤ k new coefficients

from an inverse at precision k.

Lemma 2.2. Let F be a power series and G[0..k[contain its inverse at precision k. Then for 0< ℓ ≤ k, if

we compute

G[k..k+ℓ[= −SP
�

MP
�

F[1..k+ℓ[, G[0..k[

�

, G[0..ℓ[

�

(2)

then G[0..k+ℓ[contains the inverse of F at precision k+ ℓ.

Algorithm 1 is an in-place fast inversion algorithm. Accelerating and decelerating phases corre-

spond to ℓ = k and ℓ < k.

Algorithm 1 In-Place Fast Power Series Inversion

Input: F ∈ K[X] of size n, such that F[0] is invertible;

Output: G ∈ K[X] of size n, such that FG = 1 mod X n.

Required: MP and SP alg. using extra space ≤ cmn and ≤ csn.

1: G[0]← F−1
[0]

2: k← 1, ℓ← 1

3: while ℓ > 0 do

4: G[n−ℓ..n[←MP(F[1..k+ℓ[, G[0..k[) ⊲ WS: G[k..n−ℓ[

5: G[k..k+ℓ[← SP(G[0..ℓ[,−G[n−ℓ..n[) ⊲ WS: G[k+ℓ..n−ℓ[
6: k← k+ ℓ

7: ℓ←min
�

k,
�

n−k
c

��

where c = 2+max(cm, cs)

8: G[k..n[← SP(G[0..n−k[,−MP(F[1..n[, G[0..k[)) ⊲ O(1) space

Theorem 2.3. Algorithm 1 is correct. It uses O(1) space, and either λmM(n) log cm+2

cm+1
(n) + O(M(n))

operations in K when M(n) is quasi-linear, or O(M(n)) operations in K when M(n) = n1+γ, 0< γ ≤ 1.

Proof. Steps 4 and 5, and Step 8, correspond to Equation (2) and they compute ℓ new coefficients of

G when k of them are already written in the output, whence Lemma 2.2 implies the correctness.

Step 4 needs (cm+2)ℓ free registers for its computation and its storage. Then (cs+2)ℓ free registers

are needed to compute SP(G[0..ℓ[i, G[n−ℓ..n[) using ℓ registers for G[n−ℓ..n[and (cs + 1)ℓ registers for

the short product computation and its result. To ensure that this computation can be done in-place,

we thus need cℓ ≤ n− k. Since at most k new coefficients can be computed, the maximal number of

new coefficients in each step is ℓ =min
�

k,
�

n−k
c

��

.

5

Each iteration of the algorithm costs O(M(k)) operations in K since the middle product in Step 4

amounts to O(
�

k
ℓ

�

M(ℓ)) while the short product of Step 5 is O(M(ℓ)). The accelerating phase stops

when k > n−k
c+1 , that is k > n

c+2 , and it costs
∑⌊log n

c+2 ⌋
i=0

M(2i) = O(M(n)). During the decelerating

phase, each iteration computes a constant fraction of the remaining coefficients. Hence, this phase

lasts for δ = log c
c−1

n steps.

Let ℓi and ki denote the values of ℓ and k at the i-th iteration of the deceleration phase and

t i = n− ki . Then one iteration of the deceleration phase costs one middle product in sizes (n− t i +
�

t i

c

�

−1, n− t i) and one short product in size
�

t i

c

�

. The total cost of all the short products amounts to
∑

i M(t i) = O(M(n)) since
∑

i t i ≤ cn. The cost of the middle product at the i-th step is

λm

l

(n− t i)/
j t i

c

km

M

�j t i

c

k�

= λmM(n) +O(n).

Therefore, the cost coming from all the middle products is at most λmM(n) log c
c−1
(n)+O(M(n)). Since

the middle products dominate and cm ≥ 1, we can choose the in-place short products of [6]. This

implies that c = cm + 2 and that the algorithm has cost λmM(n) log cm+2

cm+1
(n) +O(M(n)).

Assuming now that M(n) = n1+γ with 0 < γ ≤ 1, we can further reduce this bound. The cost

of each iteration is then O(

n−t i

ℓi

£

ℓ
1+γ

i
). Since ℓ0 ≤ n, we easily show that ℓi < n

�

c−1
c

�i
+ c and this

implies
δ
∑

i=1

¡

n− t i

ℓi

¤

ℓ
1+γ

i
≤ n

δ
∑

i=1

ℓ
γ

i
≤ n

δ
∑

i=1

�

n

�

c − 1

c

�i

+ c

�γ

.

Since 0< γ≤ 1, we have (α+ β)γ ≤ αγ + βγ for any α,β > 0, and

the complexity is n1+γ
∑δ

i=1

�

c−1
c

�iγ
+O(n log n) = O(M(n)).

2.3 In-place division of power series

Division of power series can be implemented easily as an inversion followed by a product. Yet, using

in-place algorithms for these two steps is not enough to obtain an in-place division algorithm since

the intermediate result must be stored. Karp and Markstein’s trick, that includes the dividend in

the last iteration of Newton iteration [11], cannot be used directly in our case since we replace the

very last iteration by several ones. We thus need to build our in-place algorithm on the following

generalization of their method.

Lemma 2.4. Let F and G be two power series, G invertible, and Q[0..k[contain their quotient at precision

k. Then for 0< ℓ ≤ k, if we compute

Q[k..k+ℓ[= SP

�

G−1
[0..ℓ[

, F[k..k+ℓ[−MP(G[1..k+ℓ[,Q[0..k[)
�

then Q[0..k+ℓ[contains their quotient at precision k+ ℓ.

Proof. Let us write F/G = Qk + X kQℓ + O(X k+ℓ). We aim to prove that Qℓ = G−1 × ((F −

GQk)div X k)mod X ℓ. By definition, F ≡ G(Qk + X kQℓ)mod X k+ℓ, hence F − GQk has valuation

at least k and (F − GQk)div X k = GQℓ mod X ℓ. Therefore, Qℓ = (G
−1 × ((F − GQk)div X k))mod X ℓ.

Finally, since only the coefficients of degree k to k+ ℓ− 1 of GQk are needed, they can be computed

as MP(G[1..k+ℓ[,Q[0..k[).

Algorithm 2 is an in-place power series division algorithm based on Lemma 2.4, choosing at each

step the appropriate value of ℓ so that all computations can be performed in place.

6

Algorithm 2 In-Place Power Series Division

Input: F, G ∈ K[X] of size n, such that G[0] is invertible;

Output: Q ∈K[X] of size n, such that F/G =Q mod X n.

Required: MP, SP, Inv alg. using extra space ≤ cmn, csn, ci n.

1: k← ⌊n/max(ci + 1, cs + 2)⌋

2: Q[n−k..n[← rev(Inv(G[0..k[)) ⊲ WS: Q[0..n−k[

3: Q[0..k[← SP(F[0..k[, rev(Q[n−k..n[)) ⊲ WS: Q[k..n−k[

4: ℓ← ⌊(n− k)/(3+max(cm, cs))⌋

5: while ℓ > 0 do

6: Q[n−2ℓ..n−ℓ[←MP(G[1..k+ℓ[,Q[0..k[) ⊲ WS: Q[k..n−2ℓ[

7: Q[n−2ℓ..n−ℓ[← F[k..k+ℓ[−Q[n−2ℓ..n−ℓ[

8: let us define Q∗
l
= rev(Q[n−ℓ..n[)

Q[k..k+ℓ[← SP(Q[n−2ℓ..n−ℓ[,Q
∗
l
) ⊲ WS: Q[k+ℓ..n−2ℓ[

9: k← k+ ℓ

10: ℓ← ⌊(n− k)/(3+max(cm, cs))⌋

11: tmp← F[k..n[−MP(G[1..n[,Q[0..k[) ⊲ constant space

12: Q[k..n[← SP(tmp, rev(Q[k..n[)) ⊲ constant space

Theorem 2.5. Algorithm 2 is correct. It uses O(1) space, and either λmM(n) log cm+3

cm+2
(n) + O(M(n))

operations in K when M(n) is quasi-linear or O(M(n)) operations in K when M(n) = O(n1+γ), 0< γ ≤

1.

Proof. The correctness follows from Lemma 2.4.

Note that the inverse of G is required at each step, but with less and less precision. Hence,

it is computed only once at Step 2 for a maximal initial value k and its unneeded coefficients are

progressively erased. For simplicity of the presentation, we store its value in reversed order as the

coefficients n− k to n of the output space Q.

Since c ≥ 2 in the main loop, ℓ ≤ (n − k)/2 and it implies that k + ℓ ≤ n − ℓ. Thus, exactly ℓ

coefficients of the inverse remains at the end of each loop which is sufficient to run the algorithm.

The available space is specified for each computation in the description of the algorithm as WS.

Step 2 requires space ci k while the free space has size n− k: since k ≤ n
ci+1 , the free space is large

enough. Similarly, the next step requires space csk while the free space has size n−2k, and k ≤ n
cs+2

.

Step 6 needs (cm+1)ℓ space and the free space has size n−k−2ℓ, and Step 8 requires csℓ space while

the free space has size n− k−3ℓ. Since ℓ ≤ n−k
3+max(cm,cs)

, these computations can also be performed in

place.

The time complexity of this algorithm is basically the same as the in-place inversion algorithm,

that is O(M(n) log n) in general, and O(M(n)) if M(n) is not quasi-linear. Indeed, the only difference

is Step 7 which adds O(ℓ) operations in K at each iteration, thus only impacting the complexity

with a negligible term O(n log n). The more precise bound given in Theorem 2.3 also holds for that

algorithm, using the appropriate value of c.

The proofs of the following remarks can be found in Appendix A.

Remark 2.6. Algorithm 2 can be easily modified to improve the complexity to O(M(n)) operations in

K when a linear amount of extra space is available, say αn registers for some α ∈ R+.

Remark 2.7. If it can erase its dividend, Algorithm 2 can be modified to improve its complexity
�

λm(
c+1

2
+ 1

c
) +λs(1+

1
c
)
�

M(n) +O(n) operations in K, still using O(1) extra space.

7

2.4 In-place Euclidean division of polynomials

If A is a size-(m + n − 1) polynomial and B a size-n polynomial, one can compute their quotient Q

of size m in-place using Algorithm 2, with O((M(m) log m)) operations in K. When Q is known, the

remainder R satisfying R = A−BQ, can then be computed in-place using O(M(n)) operations inK as it

requires a single short product and some substractions. As previously mentioned, the exact size of the

remainder is not determined by the size of the inputs. Note though that the suggested algorithm can

still work in-place if a tighter space r < n for R is given, assuming deg R< n. The cost for computing

R in that case becomes O(M(r)).

Altogether, we get in-place algorithms for the computation of the quotient of two polynomials

in time O(M(m) log m), or the quotient and size-r remainder in time O(M(m) log m +M(r)). As

suggested in Section 2.1 and in Remark 2.6, this complexity becomes O(M(m) +M(r)) whenever

m ≤ n. Indeed, in that case the remainder space can be used to speed-up the quotient computation.

We shall mention that computing only the remainder remains a harder problem as we cannot account

on the space of the quotient while it is required for the computation. As of today, only the classical

quadratic long division algorithm allows such an in-place computation.

We now provide a new in-place algorithm for computing both the quotient and the remainder

that achieves a complexity of O(M(m) +M(n)) operation in K when m≥ n.

Algorithm 3 In-Place Euclidean Division

Input: A, B ∈K[X] of sizes (m+ n, n), m≥ n, such that B[0] 6= 0;

Output: Q,R ∈K[X] of sizes (m+ 1, n− 1) such that A= BQ+ R;

Required: In-place DIVERASE(F, G, n) computing F/G mod X n while erasing F ; In-place SP;

For simplicity, H is a size-n polynomial such that H[0..n−1[is R and H[n−1] is an extra register

1: H ← A[m..m+n[

2: k← m+ 1

3: while k > n do

4: Q[k−n..k[← rev(DIVERASE(rev(H), rev(B), n))

5: H[0..n−1[← SP(Q[k−n..k−1[, B[0..n−1[)

6: H[1..n[← A[k−n..k−1[−H[0..n−1[

7: H[0]← A[k−n−1]

8: k← k− n

9: Q[0..k[← rev(DIVERASE(rev(H[n−k..n[), rev(B[n−k..n[)))

10: H[0..n−1[← SP(Q[0..n−1[, B[0..n−1[)

11: H[0..n−1[← A[0..n−1[−H[0..n−1[

12: return (Q, H[0..n−1[)

Theorem 2.8. Algorithm 3 is correct. It uses O(1) extra space and
�

λm(
c+1

2
+ 1

c
) + λs(2+

1
c
)
�

M(m) +

O(m log n) operations in K where c =max(cm + 3, cs + 2).

Proof. Algorithm 3 is an adaptation of the classical long division algorithm, recalled in Section 2.1,

where chunks of the quotient are computed iteratively via Euclidean division of size (2n− 1, n). The

main difficulty is that the update of the dividend cannot be done on the input. Since we compute

only chunks of size n from the quotient, the update of the dividend affects only n − 1 coefficients.

Therefore, it is possible to use the space of R for storing these new coefficients. As we need to

consider n coefficients from the dividend to get a new chunck, we add the missing coefficient from A

and consider the polynomial H as our new dividend.

By Remark 2.7, Step 4 can be done in-place while erasing H.

8

Note that erasing H is not a problem as it is not from the original input. It is thus immediate that

our algorithm is in-place. For the complexity, Step 4 and 5 dominate the cost.

Using the exact complexity for Step 4 given in Remark 2.7, one can deduce easily that Algorithm 3

requires
�

λm(
c+1

2 +
1
c) +λs(2+

1
c)
�

M(m) +O(m log n) operations in K.

Using time-efficient products with λm = λs = 1, cm = 4 and cs = 3 yields a complexity ≃

6.29M(m), which is roughly 1.57 times slower than the most time-efficient out-of-place algorithm

for Euclidean division.

3 Multipoint evaluation and interpolation

In this section, we present in-place algorithms for the two related problems of multipoint evaluation

and interpolation. We first review both classical algorithms and their space-efficient variants on which

we base our own in-place variants.

3.1 Space complexity of classical algorithms

Multipoint evaluation Given n elements a1, . . . , an of K and a size-n polynomial F ∈ K[X], mul-

tipoint evaluation aims to computing the n values F(a1), . . . , F(an). While the naive approach using

Horner scheme leads to a quadratic complexity, the fast approach of [13] reaches a quasi-linear com-

plexity O(M(n) log(n)) using a divide-and-conquer approach and the fact that F(ai) = F mod (X−ai).

As proposed in [2] this complexity can be sharpened to (λm +
1
2λ f)M(n) log(n) +O(M(n)) using the

transposition principle and working on the transposed problem of multipoint evaluation.

The fast algorithms are based on building the so-called subproduct tree [5, Chapter 10] whose

leaves contain the (X − ai)’s and whose root contains the polynomial
∏n

i=1
(X − ai). We notice that

the computation of this tree already requires O(M(n) log n) operations, and one needs O(n log n)

space to store it: More precisely, the tree contains 2i degree-n/2i monic polynomials at level i, and

can be stored in exactly n log n registers if n is a power of two. The fast algorithms then require

n log(n) +O(n) registers as work space.

Here, because the space complexity constants c f , cm, cs do not appear in the leading term n log(n)

of space usage, we can always choose the fastest underlying multiplication routines, so the compu-

tational cost for this approach is simply 3
2
M(n) log(n) +O(M(n)).

As remarked in [19], one can easily derive a fast variant that uses only O(n) extra space. In

particular, [19, Lemma 2.1] shows that the evaluation of a size-n polynomial F on k points a1, . . . ,

ak with k ≤ n can be done at a cost O(M(k)(n
k + log(k))) with O(k) extra space.

We begin with the balanced case is when n = k, i.e., the number of evaluation points is equal to

the number size of F . The algorithm proceeds as follows, following the general structure laid out

in [19, Lemma 2.1]. The idea is to group the points in ⌈log(n)⌉ groups of ⌊n/ log(n)⌋ points each,

and to use standard multipoint evaluation on each group, by first reducing F modulo the root of the

corresponding subproduct tree.

The complexity analysis of this approach is given in the following lemma. Observe that here too,

the constants λs, cs, etc., do not enter in since we can always use the fastest out-of-place subroutines

without affecting the O(n) term in the space usage.

Lemma 3.1. Given F ∈ K[X]<n and a1, . . . , an ∈ K, one can compute F(a1), . . . , F(an) using
7
2M(n) log(n) +O(M(n)) operations in K and n+O(n

log(n)
) extra registers.

9

Proof. Computing each subproduct tree on O(n/ log(n)) points can be done in time
1
2M(n/ log(n)) log(n) ≤ 1

2M(n) and space n + O(n/ log(n)). The root of this tree is a polyno-

mial of degree at most n/ log(n). Each reduction of F modulo such a polynomial takes time

2M(n) +O(n/ log(n)) and space O(n/ log(n)) using the balanced Euclidean division algorithm from

Section 2.1. Each multi-point evaluation of the reduced polynomial on n/ log(n) points, using the

pre-computed subproduct tree, takes M(n/ log(n)) log(n) + O(M(n/ log(n))) operations in K and

O(n/ log(n)) extra space [2].

All information except the evaluations from the last step — which are written directly to the

output space — may be discarded before the next iteration begins. Therefore the total time and

space complexity are as stated.

When the number of evaluation points k is large compared to the size n of the polynomial F

being evaluated, we can simply repeat the approach of Lemma 3.1 ⌈k/n⌉ times. But when k ≤ n

the situation is more complicated, because the output space is smaller. Specifically, we compute the

degree-k polynomial M at the root of the product tree, reduce F modulo M and perform balanced

k-point evaluation of F mod M .

Lemma 3.2. Given F ∈K[X]<n and a1, . . . , ak ∈K, one can compute F(a1), . . . , F(ak) using 2λsM(n)+

4M(k) log(k) +O(n+M(k) loglog(k)) operations in K and (cs + 2)k+O(k/ log(k)) extra registers.

Proof. Computing M using a product tree proceeds in two phases. For the bottom levels of the

tree, we use the fastest out-of-place full multiplication algorithm with time M(t) and space O(t).

Then, only for the top loglog(n) levels, we switch to an in-place full product algorithm from [6],

which has time O(M(t)) but only O(1) extra space. The result is that M can be computed using
1
2
M(k) log(k) +O(M(k) loglog(k)) operations in K and k+O(k/ log(k)) registers.

Then, we need to reduce F modulo M . Utilizing the size-k output space, by Lemma 2.1, this is

accomplished using 2λsM(n) +O(n+M(k)) time and (cs + 2)k extra registers.

Adding the cost of the k-point evaluation given by Lemma 3.1 completes the proof.

Interpolation Interpolation is the inverse operation of multipoint evaluation, that is, to reconstruct

a size-n polynomial F from its evaluations on n distinct points F(a1), . . . , F(an). The classic ap-

proach using Lagrange’s interpolation formula has a quadratic complexity [5, Chapter 5] while the

fast approach of [13] has quasi-linear time complexity O(M(n) log(n)). We first briefly recall this fast

algorithm.

Let M(X) =
∏n

i=1
(X − ai) and M ′ its derivative. Noting that M

X−ai
(ai) = M ′(ai) for 1 ≤ i ≤ n, we

have

F(X) = M(X)

n
∑

i=1

F(ai)/M
′(ai)

X − ai

. (3)

Hence the fast algorithm of [13] consists in computing M ′(X) and its evaluation on each ai through

multipoint evaluation, and then to sum the n fractions using a divide-and-conquer strategy. The

numerator of the result is then F by Equation (3).

Performing this rational fraction sum in a binary tree fashion uses 3
2λ f M(n) log(n) + O(M(n))

operations in K and requires (3+ 1
2
c f)n registers, including the space for the output.

However, if the subproduct tree over the ai ’s is already computed, this gives all the denominators

in the rational fraction sum. This leads to the fastest interpolation algorithm, using the textbook

method of [5] with the multi-point evaluation of [2].

Because the same subproduct tree is used for evaluating M ′ and for the rational fraction sum, the

total computational cost is only 5
2M(n) log(n)+O(M(n)), while the space is dominated by the size of

this subproduct tree, n log(n) +O(n) registers.

10

A more space-efficient approach uses instead the O(n)-space multi-point evaluation of [19] as

described above, but suffers more in running time because the subproduct tree must be essentially

recomputed on the first and last steps. The total running time is (2λ f +
7
2
)M(n) log(n) + O(M(n)),

using (2+ 1
2 c f)n+O(n/ log(n)) registers.

This O(n)-space approach can be further improved in two ways: first by again grouping the in-

terpolation points and re-using the smaller subproduct trees for each group, and secondly by using

an in-place full multiplication algorithm from [6] to combine the results of each group in the ratio-

nal function summation. A detailed description of the resulting algorithm, along with a proof of the

following lemma, can be found in Appendix B.

Lemma 3.3. Given a1, . . . , an ∈K and y1, . . . , yn ∈ K, one can compute F ∈K[X]<n such that F(ai) =

yi for 1 ≤ i ≤ n using 5M(n) log(n) +O(M(n) loglog(n)) operations in K and 2n+O(n/ log(n)) extra

registers.

3.2 In-place multipoint evaluation

In order to derive an in-place algorithm we make repeated use of the unbalanced multi-point evalu-

ation with linear space from [19] and Lemma 3.2 to compute only k evaluations of the polynomial

F among the n original points. The strategy is to set k as a fraction of n to ensure that n− k is large

enough to serve as extra space. Applying this strategy on smaller and smaller values of k leads to

Algorithm 4, which is an in-place algorithm with the same asymptotic time complexity O(M(n) log(n))

as out-of-place fast multipoint evaluation.

Algorithm 4 In-place multipoint evaluation

Input: F ∈ K[X] of size n and (a1, . . . , an) ∈K
n;

Output: R= (F(a1), . . . , F(an))

Required: EVAL of space complexity ≤ (cs + 2)k as in Lemma 3.2

1: s← 0, k← ⌊n/(cs + 3)⌋

2: while k > 0 do

3: R[s..s+k[← EVAL(F, as, . . . , as+k) ⊲ WS: R[s+k..n[

4: s← s + k

5: k←
�

n−s
cs+3

�

6: R[s..n[← EVAL(F, as, . . . , an) ⊲ constant space

Theorem 3.4. Algorithm 4 is correct. It uses O(1) extra space and
�

4+2λs/ log(1+ 1
cs+2)
�

M(n) log(n)+

O(M(n) log log n) operations in K.

Proof. The correctness is obvious as soon as EVAL is correct. By the choice of k and from the extra

space bound of EVAL from Lemma 3.2, Step 3 has sufficient work space, and therefore the entire

algorithm is in-place.

The sequence ki =
(cs+2)i−1

(cs+3)i
n, for i = 1,2, . . ., gives the values of k in each iteration. Then

∑

i ki ≤ n

and the loop terminates after at most ℓ log(n) iterations, where ℓ ≤ 1/ log(1+ 1
cs+2).

Applying Lemma 3.2, the cost of the entire algorithm is therefore dominated by
∑

1≤i≤ℓ (2λsM(n) + 4M(ki) log(ki)), which is at most (2λsℓ+ 4)M(n) log(n).

Using a time-efficient short product with λs = 1 and cs = 3 yields a complexity≃ 11.61M(n) log n,

which is roughly 7.74 times slower than the most time-efficient out-of-place algorithm for multi-point

evaluation.

11

3.3 In-place interpolation

Let (a1, y1), . . . , (an, yn) be n pairs of evaluations, with the ai ’s pairwise distinct. The goal of interpo-

lation is to compute the unique polynomial F ∈K[X]<n such that F(ai) = yi for 1≤ i ≤ n. As before,

we will be able to derive an in-place algorithm for interpolation by computing the result on smaller

and smaller chunks.

Our first aim is to provide a variant of polynomial interpolation that computes F mod X k using

O(k) extra space. Without loss of generality, we assume that k divides n. For i = 1 to n/k, let

Ti =
∏ki

j=1+k(i−1)
(X − a j) and Si = M/Ti where M =

∏n

i=1
(X − ai). Note that Si =

∏

j 6=i T j . One can

rewrite Equation (3) as

F(X) = M(X)

n/k
∑

i=1

ki
∑

j=1+k(i−1)

F(a j)

M ′(a j)

1

(X − a j)
(4)

= M(X)

n/k
∑

i=1

Ni(X)

Ti(X)
=

n/k
∑

i=1

Ni(X)Si(X)

for some size-k polynomials N1, . . . , Nn/k . One may remark that the latter equality can also be viewed

as an instance of the chinese remainder theorem where Ni = F/Si mod Ti (see [5, Chapter 5]). Since

we want the first k terms of the polynomial F , we only need to compute

F mod X k =

n/k
∑

i=1

Ni(Si mod X k)mod X k. (5)

One can observe that M ′(a j) = (Si mod Ti)(a j)T
′
i
(a j) for k(i − 1) < j ≤ ki. Therefore, Equation

(4) implies that Ni is the unique size-k polynomial satisfying Ni(a j) = (F/Si mod Ti)(a j). There-

fore, Ni can be computed using interpolation, by first computing Si mod Ti , evaluating it at the a j ’s,

performing k divisions in K to get each Ni(a j) and finally interpolating Ni .

Our second aim is to generalize the previous approach when some initial coefficients of F are

known. Writing F = G + X sH where G is known, we want to compute H mod X k from some evalu-

ations of F . Since H has size at most (n− s), only (n− s) evaluation points are needed. Therefore,

using Equation 4 with M =
∏n−s

i=1
(X − ai), we can write

H(X) = M(X)

(n−s)/k
∑

i=1

ki
∑

j=1+k(i−1)

F(a j)− G(a j)

as
j
M ′(a j)

1

(X − a j)
. (6)

This implies that H mod X k can be computed using the same approach described above by replacing

F(a j) with H(a j) = (F(a j) − G(a j))/a
s
j
. We shall remark that the H(a j)’s can be computed using

multipoint evaluation and fast exponentation. Algorithm 5 fully describes this approach.

Lemma 3.5. Algorithm 5 is correct. It requires 6k + O(k/ log k) extra space and it uses
�

1
2 (

n−s
k)

2 + 23
2

n−s
k

�

M(k) log(k) + (n− s) log(s) +O((n−s
k)

2
M(k) loglog k) operations in K.

Proof. The correctness follows from the above discussion. In particular, note that the polynomials Sk
i

and ST
i

at Steps 6 and 7 equal Si mod X k and Si mod Ti respectively. Furthermore, z j = G(a j+k(i−1))

since G(a j+k(i−1)) = (G mod Ti)(a j+k(i−1)). Hence, Step 12 correctly computes the polynomial Ni and

the result follows from Equations (5) and (6).

From the discussion in Section 3.1, we can compute each Ti in 1/2M(k) log(k)+O(M(k) loglog k)

operations in K and k extra space. Step 9 requires some care as we can share some computation

12

Algorithm 5 Partial interpolation (PARTINTERPOL)

Input: G ∈ K[X]<s and (y1, . . . , yn−s), (a1, . . . , an−s) in Kn−s ; an integer k ≤ n− s

Output: H mod X k where F = G+ X sH ∈ K[X]<n is the unique size-n polynomial s.t. F(ai) = yi for

1≤ i ≤ n− s

1: for i = 1 to (n− s)/k do

2: Sk
i
← 1, ST

i
← 1

3: Ti ←
∏ki

j=1+k(i−1)
(X − a j) ⊲ Fast divide-and-conquer

4: for j = 1 to (n− s)/k, j 6= i do

5: T j ←
∏k j

t=1+k(j−1)
(X − at) ⊲ Fast divide-and-conquer

6: Sk
i
← Sk

i
× T j mod X k ⊲ Sk

i
= Si mod X k

7: ST
i
← ST

i
× T j mod Ti ⊲ ST

i
= Si mod Ti

8: GT ← G mod Ti

9: (b1, . . . , bk)← EVAL(ST
i

, a1+k(i−1), . . . , aki)

(z1, . . . , zk)← EVAL(GT , a1+k(i−1), . . . , aki)

10: for j = 1 to k do

11: b j ← (y j+k(i−1) − z j)/(a
s
j+k(i−1)

b j)

12: Ni ← INTERPOL((z1, . . . , zk), (b1, . . . , bk))

13: H[0..k[← H[0..k[+ NiS
k
i

mod X k

among the two equal-size evaluations. Indeed, the subproduct trees induced by this computation are

identical and thus can be computed only once. Using Lemma 3.1, this amounts to 13
2
M(k) log(k) +

O(M(k)) operations in K using k + O(k/ log k) extra space. Step 12 can be done in 5M(k) log(k) +

O(M(k) loglog k) operations in K and 2k + O(k/ log k) extra space using Lemma 3.3. Taking into

account the n− s exponentations as
j
, and that other steps have a complexity in O(M(k)), the cost of

the algorithm is

�

1

2

�

n− s

k

�2

+
23

2

n− s

k

�

M(k) log(k) + (n− s) log(s)

+O(

�

n− s

k

�2

M(k) loglog k).

We show that 6k+O(k/ log k) extra registers are enough to implement this algorithm. At Step 7,

the polynomials Ti , T j ,S
k
i
,ST

i
must be stored in memory. The computation involved at this step re-

quires only 2k extra registers as ST
i
×T j mod Ti can be computed with an in-place full product (stored

in the extra registers) followed by an in-place division with remainder using the registers of ST
i

and

T j for the quotient and remainder storage. Using the same technique Step 8 requires only k extra

space as for Steps 2 to 6. At Step 9, we need 3k registers to store GT ,ST
i

,Sk
i

and 2k registers to store

(b1, . . . , bk) and (z1, . . . , zk), plus k+O(k/ log k) extra register for the computation. At Step 12 we can

re-use the space of GT ,ST
i

for Ni and the extra space of the computation which implies the claim.

We can now provide our in-place variant for fast interpolation.

Theorem 3.6. Algorithm 6 is correct. It uses at most 1
2 (φ

2+23φ)M(n) log n+O(M(n) loglog n) oper-

ations in K and O(1) extra space, where φ = 1+ cpi .

Proof. The correctness is clear from the correctness of Algorithm PARTINTERPOL. To ensure that the

algorithm uses O(1) extra space we notice that at Step 6, F[s+k..n[can be used as work space. There-

fore, as soon as cpi k ≤ n−s−k, that is k ≤ n−s
cpi+1 , this free space is enough to run PARTINTERPOL. Note

13

Algorithm 6 In-Place interpolation

Input: (y1, . . . , yn) and (a1, . . . , an) of size n such that ai , yi ∈ K;

Output: F ∈ K[X] of size n, such that F(ai) = yi for 0≤ i ≤ n.

Required: PARTINTERPOL with space complexity ≤ cpi k

1: s← 0

2: while s < n do

3: k←
�

n−s
cpi+1

�

4: if k = 0 then k← n− s

5: Y,A← (y1, . . . , yn−s), (a1, . . . , an−s)

6: F[s..s+k[← PARTINTERPOL(F[0..s[, Y,A, k)

7: s← s + k

that when k = 0, n− s < cpi + 1 is a constant, which means that the final computation can be done

with O(1) extra space.

Let us denote k1, k2, . . . , kt and s1, s2, . . . , st all the values of k and s taken during the course of

the algorithm.

Since si =
∑i

j=1
k j ≤ n with s0 = 0, we have ki ≤ λn(1 − λ)i−1, and si ≥ n(1 − (1 − λ)i) where

λ = 1
cpi+1

. Therefore, the complexity T (n) of the algorithm satisfies

T (n) ≤

t
∑

i=1

�

φ2

2
+

23φ

2

�

M(ki) log(ki) +

t
∑

i=1

(n− si−1) log(si−1)

+O((φ2
M(ki) loglog ki)

since
n−si−1

ki
≤ φ = cpi + 1 by definition of ki . Moreover,

t
∑

i=1

M(ki) log(ki) ≤M

�

t
∑

i=1

ki

�

log(n) ≤M(n) log(n).

By definition of si , we have n− si ≤ n(1−λ)i which gives

t
∑

i=1

(n− si−1) log(si−1) ≤ n log(n)

t
∑

i=1

(1−λ)i ≤ (cpi + 1)n log n.

This concludes the proof.

Since cpi < 6+ ε for any ε > 0, the complexity can be approximated to 105M(n) log(n), which is

42 times slower than the fastest interpolation algorithm (see Table 1).

References

[1] D. Bernstein. Fast multiplication and its applications. Mathematical Sciences Research Institute

Publications, 44:325–384, 2008.

[2] A. Bostan, G. Lecerf, and E. Schost. Tellegen’s principle into practice. In Proceedings of the 2003

International Symposium on Symbolic and Algebraic Computation, ISSAC ’03, pages 37–44. ACM,

2003.

14

[3] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras.

Acta Informatica, 28:693–701, 1991.

[4] S. A. Cook. On the minimum computation time of functions. PhD thesis, Harvard University, May

1966.

[5] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 3rd

edition, 2013.

[6] P. Giorgi, B. Grenet, and D. S. Roche. Generic reductions for in-place polynomial multiplication.

In International Symposium on Symbolic and Algebraic Computation, ISSAC’19, 2019.

[7] G. Hanrot, M. Quercia, and P. Zimmermann. The middle product algorithm I. Applicable Algebra

in Engineering, Communication and Computing, 14(6):415–438, Mar 2004.

[8] D. Harvey and D. S. Roche. An in-place truncated Fourier transform and applications to polyno-

mial multiplication. In ISSAC ’10: Proceedings of the 2010 International Symposium on Symbolic

and Algebraic Computation, pages 325–329. ACM, 2010.

[9] D. Harvey and J. van der Hoeven. Polynomial multiplication over finite fields in time O(n log n).

preprint, 2019.

[10] A. Karatsuba and Y. Ofman. Multiplication of Multidigit Numbers on Automata. Soviet Physics-

Doklady, 7:595–596, 1963.

[11] A. H. Karp and P. Markstein. High-precision division and square root. ACM Transactions on

Mathematical Software, 23(4):561–589, 1997.

[12] H. T. Kung. On computing reciprocals of power series. Numerische Mathematik, 22(5):341–348,

1974.

[13] R. Moenck and A. Borodin. Fast modular transforms via division. In 13th Annual Symposium

on Switching and Automata Theory (swat 1972), pages 90–96, Oct 1972.

[14] M. Monagan. In-place arithmetic for polynomials over Zn. In Design and Implementation of

Symbolic Computation Systems, volume 721, pages 22–34. Springer, 1993.

[15] D. S. Roche. Space- and time-efficient polynomial multiplication. In Proceedings of the 2009

International Symposium on Symbolic and Algebraic Computation, ISSAC ’09, pages 295–302.

ACM, 2009.

[16] A. Schönhage. Probabilistic computation of integer polynomial gcds. Journal of Algorithms,

9(3):365–371, 1988.

[17] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7:281–292,

1971.

[18] E. Thomé. Karatsuba multiplication with temporary space of size ≤ n. online, 2002.

[19] J. von zur Gathen and V. Shoup. Computing frobenius maps and factoring polynomials. com-

putational complexity, 2(3):187–224, Sep 1992.

15

A Proofs of remarks on Algorithm 2

Remark 2.6. Algorithm 2 can be easily modified to improve the complexity to O(M(n)) operations in

K when a linear amount of extra space is available, say αn registers for some α ∈ R+.

Indeed, in that specific case, the value of k at Step 1 can be replaced by min(n, ⌊(1+α)n/c⌋) and

the value of ℓ at Step 10 by min(n− k, ⌊((1+α)n− k)/c⌋) . The same proof of Theorem 2.5 shows in

that case that all computations can be performed in the free space of Q plus the extra αn registers.

As a result, ℓ is more than a fraction of the remaining coefficients to compute. In particular, the loop

stops when n− k ≤ ⌊((1+α)n− k)/c⌋, that is n− k ≤ αn
c−1

. In terms of time complexity, this means

that the number of iterations becomes a constant. In other words, allowing αn extra space makes the

time complexity decrease to O(M(n)).

Remark 2.7. If it can erase its dividend, Algorithm 2 can be modified to improve its complexity
�

λm(
c+1

2
+ 1

c
) +λs(1+

1
c
)
�

M(n) +O(n) operations in K, still using O(1) extra space.

Indeed, it is sufficient to notice that F[0..k[in the main loop of Algorithm 2 is not accessed anymore

and it can thus be erased. Then, in Step 7 one can write the result directly in F[k..k+ℓ[. Therefore, the

amount of free space for the computations at Step 6 and 8 become n− 2ℓ instead of n− k− 2ℓ and

n− k− 3ℓ respectively.

This means that ℓ can always be chosen as large as
�

n
c

�

where c =max(cm+3, cs+2). To simplify

the analysis, we note that Steps 2 and 3 can also use this value of c (rather than the one computed at

Step 1). Therefore, the number of loop iterations is at most c which is constant and it implies the cost

O(M(n)). Note that one shall modify the algorithm to return the result after the last loop as Steps 11

and 12 will never be done in that case. To provide a finer complexity analysis, first notice that the

sum of the input sizes of all the short products during the algorithm is n, so that they contribute to

λsM(n) operations in K. Step 2 requires (λs + λm)M(
�

n
c

�

) operations in K. At the i-th iteration of

the loop, Step 6 requires iλmM(
�

n
c

�

) operations in K since k = i
�

n
c

�

at that iteration and ℓ =
�

n
c

�

and Step 7 requires
�

n
c

�

operations. Therefore, the exact complexity is

λsM(n) + (λs +λm)M

�j

n

c

k�

+

c
∑

i=1

�

iλmM

�j

n

c

k�

+

j

n

c

k�

which is
�

λm(
c+1

2
+ 1

c
) +λs(1+

1
c
)
�

M(n) +O(n) operations in K.

B Interpolation with linear space

The algorithm proceeds as:

1. Run the subproduct tree algorithm for each group of n/ log(n) interpolation points, saving only

the roots of each subtree M1, . . . , M⌈log(n)⌉, using fast out-of-place full multiplications.

2. Run the subproduct tree algorithm over these Mi ’s to compute the root M , using in-place full

multiplications from [6], discarding other nodes in the tree.

3. Compute the derivative M ′ in place.

4. Compute the remainders M ′ mod Mi for 1≤ i ≤ ⌈log(n)⌉, using the balanced (with precompu-

tation) algorithm described in Section 2.1. The size-n polynomial M ′ may now be discarded.

16

5. For each group i, compute the subproduct tree over its n/ log(n) points. Use this to perform

multi-point evaluation of M ′ mod Mi over the n/ log(n) points of that group only, and then

compute the partial sum of (3) for that group’s points. Discard the subproduct tree but save

the rational function partial sum for each group.

6. Combine the rational functions for the ⌈log(n)⌉ groups using a divide-and-conquer strategy,

employing again the in-place full multiplications from [6].

The following lemma gives the complexity of this linear-space interpolation algorithm.

Lemma 3.3. Given a1, . . . , an ∈K and y1, . . . , yn ∈ K, one can compute F ∈K[X]<n such that F(ai) =

yi for 1 ≤ i ≤ n using 5M(n) log(n) +O(M(n) loglog(n)) operations in K and 2n+O(n/ log(n)) extra

registers.

Proof. Steps (1) and (5) collectively involve, for each group, 2 subproduct tree computations,

one multi-point evaluation, and one rational function summation over each group, for a total of

3M(n) log(n) +O(M(n)) time.

Step (4) also dominates the time complexity, contributing another 2M(n) log(n)+O(M(n)) oper-

ations in K.

In steps (2) and (5), the expensive in-place multiplications are used only for the top ⌈loglog(n)⌉

levels of the entire subproduct tree, so this contributes only O(M(n) loglog(n)).

For the space, note that the size-n output space may be used during all steps until the last to store

intermediate results.

17

	1 Introduction
	1.1 Background and motivation
	1.2 Our work
	1.3 Notation

	2 Inversion and divisions
	2.1 Space complexity of classical algorithms
	2.2 In-place power series inversion
	2.3 In-place division of power series
	2.4 In-place Euclidean division of polynomials

	3 Multipoint evaluation and interpolation
	3.1 Space complexity of classical algorithms
	3.2 In-place multipoint evaluation
	3.3 In-place interpolation

	A Proofs of remarks on Algorithm 2
	B Interpolation with linear space

